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Abstract

Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly
migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and
collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single
fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both
structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-
ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network
model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density,
crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker
parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated
both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest
that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated
how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a
pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of
cellular behaviors in various ECM conditions.

Citation: Lee B, Zhou X, Riching K, Eliceiri KW, Keely PJ, et al. (2014) A Three-Dimensional Computational Model of Collagen Network Mechanics. PLoS ONE 9(11):
e111896. doi:10.1371/journal.pone.0111896

Editor: Sanjay Kumar, University of California, Berkeley, United States of America

Received June 28, 2014; Accepted September 30, 2014; Published November 11, 2014

Copyright: � 2014 Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by National Institutes of Health (www.nih.gov), 5U01CA143069. BL, KR, KWE, SAG, PJK, AW, and YJ received the funding. The
funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: yjiang12@gsu.edu

Introduction

Extracellular matrix (ECM), the extracellular part of multicel-

lular structure, not only provides mechanical support and physical

separation to tissues [1,2], but also regulates key biological

processes including development, differentiation, and wound

healing [3–5]. ECM dynamically communicates with cells by

chemical and mechanical signals [6–10]. Moreover, as a major

component of the tumor microenvironment, the ECM regulates

cancer cell proliferation and invasion into the stroma [11,12]. In

breast cancer, tumor tissue is found to be stiffer than normal tissue.

Collagen, the main component of ECM in the breast, is observed

be denser in breast tumor tissue [12–14]. The role of stromal

collagen deposition in cancer is a topic of recent intense study, due

to the association with aggressive cancer behaviors [11–16].

Tumor initiation and progression has been linked to perturba-

tions in stromal collagen [11]. Recent evidence from both human

and animal studies indicate that increased density and alignment

of breast tissue, derived from deposition and/or crosslinking of

collagen, may paradoxically increase the formation and aggres-

siveness of breast cancer [12,15]. Specifically, the collagen fibers

surrounding tumors are believed to be mechanically stretched,

locally deformed, and realigned perpendicular to the tumor

boundary [16]. The resulting collagen structures, named tumor

associated collagen signatures (or TACS), can be used as

independent biomarkers that predict breast cancer progression

[12,16]. Both in vitro and in vivo studies suggest that radially

aligned collagen fibers facilitate cancer cell invasion out along the

realigned fibers [16]. Despite these observations, we do not

understand the mechanisms of the causality and interactive

relationship between the tumor associated collagen and tumor

cell migration.

A collagen gel consists of collagen fibers, interconnected into a

three-dimensional fiber network. The basic structural unit of

collagen is a triple-helix, tropocollagen, of 300 nm in length and

1.5 nm in width. Multiple tropocollagen molecules form collagen

fibrils, via covalent cross-linking. Multiple collagen fibrils form

collagen fibers, which cross-link to form a 3D network of collagen

matrix. The mechanical properties of single collagen fiber is well
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understood [17–20]. Molecular weight and size of a collagen fibril

[17], length and thickness of a collagen fiber [18], as well as the

tensile modulus [19] and bending modulus [20] of a fiber have

been measured experimentally. The bulk mechanical properties of

collagen gels have also been reported extensively [21–23]. How

collagen structure relates to its mechanical properties, on the other

hand, has enjoyed less attention [16,23]. Only recently has the

tensile modulus of an aligned collagen network been determined

relative to a randomly organized collagen network [24]. More-

over, the inter-fiber crosslinker that binds fibers into a network

structure is poorly understood. Experimentally, lysyl oxidase can

be added to collagen to build covalent crosslinks [12], but this type

of crosslinker is generally thought to be between fibrils to hold

together larger intra-fiber structure. Collagen can be cross-linked

using a chemical reagent, e.g. glutaraldehyde [21,23], but we do

not know if this fixative agent can recapitulate the natural collagen

crosslinkers. All of these contribute to our lack of understanding of

collagen (and other ECM) at the intermediate scale between single

fiber and bulk gel. This intermediate scale is precisely the cell

scale. Hence, understanding of collagen at this scale is important

to understanding cell-ECM interactions.

Theoretical and computational models have been developed to

study ECM mechanics from a single molecule to fiber network,

and tissue level. Buehler et al. used atomistic molecular dynamics

(MD) to determine the mechanical properties of a single collagen

molecule [25] and a collagen fibril [26,27]. However, the

mechanical property of a collagen gel is different from that of

individual collagen fibrils, showing nonlinear elastic behavior and

strain-stiffening [28]. Rubinstein and Panyukov described the

nonlinear elasticity by a nonaffine deformation of network chain

model [29]. Stein et al. used a worm-like-chain network to

reproduce the strain stiffening of a fiber network [30]. Head et al.

showed nonaffine and bending dominated regime and affine and

stretching dominated regime in semiflexible polymer networks

using a 2D model [31]. Zahalak et al. built a tissue model,

composed of cells and ECM, and predicted mechanical properties

of cell and ECM using relaxation tests [32]. Chandran and

Barocas used a micromesh fiber network model in 2D and showed

the nonlinear mechanical stress-strain responses for the affine

model and network model [33]. Onck et al. and Huisman et al.

pointed out that the fiber realignment and network architecture

directly influences nonlinear elasticity in semiflexible polymer

networks, such as F-actin networks, in 2D [34] and 3D models

[35]. Because our goal is to understand how cells interact with

collagen networks with various collagen densities and different

connectivity and geometry conditions, neither atomic molecular

dynamics, nor continuous models will work.

To build a computational model of collagen networks that help

us to understand the properties collagen at the cell scale, we have

developed a 3D off-lattice, elastic fiber network model. This model

is similar to that of Stein et al. [30], who extracted the connectivity

and geometry feature of a collagen fiber network from actual

microscopy images, and modeled crosslinker as a torsional spring

between fibers with one single parameter. In order to easily alter

the fiber network connectivity and geometry conditions, we

generate random fiber networks with each crosslinker as explicit

elastic springs connecting fibers. Conceivably, the crosslinkers are

a combination of covalent and non-covalent interactions. Covalent

chemical bonds between fibers are strong, short-ranged, and non-

breakable under the type of external forcing we consider. Non-

covalent interactions, including van der Waals interactions and

viscous drag between fibers, are longer-ranged but diminish at

long distance, a.k.a. the bonds would break when the fibers are

further apart. Hence our elastic treatment is a reasonable first

order approximation for the combined effect of both covalent and

non-covalent bonds. Assuming that the crosslinker strength and

density do not change as collagen changes density, we can fit for

crosslinker strength and density using the same experimental shear

data from Stein et al. [30]. We then simulate various fiber network

connectivity structures with different parameter conditions. The

model allows us to investigate how local deformation propagates

through the fiber network.

Results

Computational model of collagen network based on
experimental fiber-scale parameters and gel-scale
structure

Figure 1A shows a scanning electron microscopy image of the

intertwined collagen fibers forming a network in vivo. From such

images, we measured the length and width distribution of the

collagen fibers using ImageJ (data not shown), which informed us

the choices of the fiber dimensions. We used second harmonic

imaging techniques to visualize the fiber network structure. The

initially random fiber orientation of the 2 mg/ml collagen gel

(figure 1B) becomes aligned in the direction of the external force

(figure 1C), after 30% strain. Figure 1D shows a schematic

illustration of our elastic bead-and-spring fiber network model.

Black lines represent collagen fibers and red lines represent

crosslinkers. Black dots are beads, which can have elastic

interaction with other beads. The bead-bead distance, or the

length of springs, should correspond to the persistence length of

the collagen fiber. Increasing the number of beads per fiber can

simulate more realistic spatial configuration but exponentially

increases simulation time. Because the main characteristic of

individual collagen fibers is elasticity [25–27], we modeled

individual collagen fibers as elastic springs. Between beads on

different fibers, we added elastic springs to model inter-fiber

crosslinking interactions. We also allowed multiple crosslinkers to

connect the same bead, as shown in figure 1D. Therefore, the

crosslinkers in our model have two adjustable parameters: the

crosslinker density and the crosslinker strength. The crosslinker

density is in the unit of total number of collagen fibers (N). When

we add the same number of crosslinkers as the total number of

collagen fibers, the crosslinker density is 1N. This way we can

build fiber networks from sparsely crosslinked to densely cross-

linked by varying the density parameter. The crosslinker strength

parameter corresponds to the crosslinker stiffness. In addition, to

examine how fiber geometry alters the network mechanical

properties, we examined two different geometrical structures of

collagen fibers: randomly oriented fibers (figure 1E) and pre-

aligned fibers uniformly in the vertical direction (figure 1F).

For simplicity, we specify that collagen fibers have homoge-

neous length and thickness. Collagen type I fibers are the most

abundant collagen in ECM, typically 20 mm–200 mm in length

and 200 nm–350 nm in thickness [18]. We first fixed collagen size

parameters, 100 mm in length and 0.3 mm in diameter, based on

the quantitative analysis of SEM images of collagen in mouse

mammary glands (figure 1A). Given that the molecular weight of a

single collagen fibril is 8.056105, and the typical single fibril is

300 nm in length and 1.5 nm in diameter [17], we calculated the

total number of fibers in the simulation box for different collagen

densities (1–4 mg/ml). The bead number per a fiber is 5, for

feasible computing cost. We set the maximum available cross-

linker-binding number per bead to 10 and the initial available

crosslinker-binding distance is from 0.45 mm to 50 mm. After

generating the initial fiber configuration in a simulation box, we

connect crosslinkers randomly between two beads on different
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fibers. We vary four different collagen densities (1, 2, 3, 4 mg/ml),

two different geometries (random vs. prealigned), 16 different

crosslinker strengths (50–800 KPa, with a 50 KPa increment), and

eight different crosslinker densities (2–16N, with 2N increments)

for shear tests, with 5 independent runs for each parameter set.

The simulation box is 200 mm (length)6200 mm (width)6300 mm

(height). Fibers within the top and bottom 50 mm in the simulation

box are anchored, as illustrated in figure 2A, which is based on

our simulation tests for various anchored depths in figure S1. In

the shear tests, all beads in the bottom anchor region are fixed in

space, while all beads in the top anchor region are fixed in relative

positions and are moved as a ‘solid’ without deformation for each

strain step, in the direction of y-axis. For the tensile test, all beads

in the top and bottom anchor regions are fixed as ‘solids’ and

move in the opposite directions along z-axis by half of the strain

step size. The network stress computation considers the center,

unfixed simulation box only. Fibers have no interaction with the

simulation box. Figure 2B shows the initial and the quasi-

equilibrium states of a 2 mg/ml random fiber network at 0.1

shear strain.

The fiber network is described by its total elastic potential

energy:

U~
X

i~all fiber segments

kfiber

2
DL2

i z
X

j~all crosslinkers

kcrosslinker

2
DL2

j ð1Þ

The elastic interaction between beads follows Hooke’s law and

the spring constant (k) is calculated by the Young’s modulus of a

collagen fiber (E), the fiber cross-sectional area (A), and the fiber

segment length (L): k = EA/L. DL is the deformed length of either

fiber or crosslinker. The Young’s modulus of a collagen fibril in

wet condition has been measured to be between 30 and 800 MPa

[19,36]. We use the fiber Young’s modulus of 32 MPa based on

the atomic force microscopy experiments [19]. The crosslinker in

our model is the main parameter to adjust the whole fiber network

connectivity and stiffness. Similar to the collagen fiber, the

crosslinker is represented as purely elastic, and its strength is

adjusted by altering the Young’s modulus, while we set the cross-

sectional area of a crosslinker to the same as that of the collagen

fiber. Fixed and varying model parameters are shown in Table 1.

We use the conjugate gradient method to search for the next

fiber network structure with a lowest total potential energy. This

method is an efficient alternative to Langevin dynamic simula-

tions, which calculate the forces on each bead and integrate the

equation of motion for each bead with small time steps, using

either explicit [37] or implicit [38] integration methods. Langevin

dynamics, while providing the realistic dynamics, is computation-

ally expensive because the typical integration time step is very

small from 1 ms to 1 ns, depending on the Young’s modulus of a

collagen fiber, the minimum fiber segment length, crosslinker

strength, and the minimum crosslinker length. The conjugate

gradient method, on the other hand, calculates the conjugate

vector on each bead to quickly find the minimum energy state; it is

an approach commonly used in molecular dynamics simulations to

estimate a three dimensional folded protein structure [39]. We

assume that the fiber network reaches the quasi-equilibrium state

when the maximum force of fiber-bead system is reduced by five

orders of magnitude of that in the strained state. In addition, we

perform 5 replica simulations, each from a different initial fiber

configuration, for each run, to ensure that our simulation of the

fiber network is not trapped in a local energy minimum far from

the global minimum.

Identification of model parameters using shear tests in
the small strain region

Collagen gel is a viscoelastic material, which has both elastic

(strain-rate independent) and viscous (strain-rate dependent)

features. This viscoelasticity is confirmed by in vitro collagen

tensile stretching tests, which show that tensile modulus is strongly

Figure 1. Collagen fibers. (A) SEM image of collagen fibers from a normal mouse mammary gland. (B) Representative SHG images of in vitro 2 mg/
ml collagen gel under 3% strain (B) and 30% strain (C). (D) Schematic illustration of a bead-and-spring collagen fiber network model. Black lines
represent collagen fibers, and red lines represent crosslinkers. Black dots represent beads, which have elastic connection with other beads.
Constructed fiber network model with 1 mg/ml density and 26 total number of fibers [N] crosslinker density, random network (E) and prealigned
network (F).
doi:10.1371/journal.pone.0111896.g001
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dependent on the strain rate [40–42]. Most in vitro experiments

have used rather fast strain rates, 0.1–10 mm/min, compared with

strain rates that are likely to be generated by mechanical

interaction with migrating cells. Based on in vivo cell migration

velocities of 0.01–0.1 mm/min [43], and lamellipodial extension

rates of 1–10 mm/min [44], cell-collagen interactions should lead

to a strain rate that is 3-5 orders of magnitude slower than those

used in the tensile tests. For such slow strain rates, we can safely

ignore the viscous aspects of collagen fiber networks. Thus, a

purely elastic network model should be a reasonable approxima-

tion for our purpose. Because purely elastic moduli can be

extracted from shear data, we used data from shear tests to

parameterize our elastic model. We then used the parameterized

model to predict tensile test results at zero strain rate and validated

the result by comparing with experimental data at various strain

rates. Our predicted Young’s moduli for various collagen densities

at a zero strain rate are very closed to those of fitted values at slow

strain rates based on experimental data, validating our model.

Stein et al. [30] showed that collagen gels are softer in small

strain regions (,0.1), but becomes increasingly stiffer as the strain

region is larger than 0.1 using shear experiments for six different

collagen densities (0.5, 1, 2, 3, 4, 5 mg/ml). The elastic modulus

(G9) is constant for the small strain region and keeps increasing for

larger strain [30]. Assuming that the viscous effect of collagen gels

is negligible in the slow strain rate region that is relevant to cell

migration, we focus on the elastic effect of collagen gels using our

elastic fiber network model. We simulated shear tests for a small

strain region from 0.01 strain to 0.1 strain as 0.01 strain step

increment (Figure 2). Figure 2C shows the maximum force value

during the shear simulation in figure 2B.

In order to find the crosslinker parameters using experimental

shear test data, we performed shear simulations on random fibers

networks of 512 parameter combinations (4 collagen densities, 16

Figure 2. Shear simulation test using elastic fiber network model. (A) The simulation box is 200 mm (length) 6200 mm (width) 6300 mm
(height). The bottom 50 mm and top 50 mm of the box are anchored region. The beads in the bottom anchored region are fixed and the beads in the
top anchored region are deformed to y-axis. (B) Snapshot images for initial and quasi-equilibrium state of 0.1 shear strain with 2 mg/ml collagen
density, 8N crosslinker density, 400 KPa crosslinker strength, and random fiber network. The shear strain step size is 0.01 (2 mm) and total ten shear
strains are applied to the simulation box. (C) Maximum force of ten shear strain test from 0.01 strain to 0.1 strain, assuming that the fiber network
reaches the quasi-equilibrium state when the maximum force decreases the below of 1025 of the maximum value at each deformed state.
doi:10.1371/journal.pone.0111896.g002

Table 1. Parameters for elastic collagen fiber network simulations.

Fixed Fiber Parameters Varied Parameters

Fiber length 100 mm [18] Collagen density (mg/ml) 1, 2, 3, 4

Fiber diameter 0.3 mm [18] Crosslinker density (x N) 2, 4, …, 16 (increment 2)

Fiber Young’s modulus 32 MPa [19] Crosslinker strength (KPa) 50, 100, …, 800 (increment 50 KPa)

Bead per fiber 5 Network structure Random vs. Prealigned

doi:10.1371/journal.pone.0111896.t001
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crosslinker strengths, and 8 different crosslinker densities) as

previously described. We did 5 independent simulations for each

parameter combination by generating different random initial

fiber networks. To show the effect of crosslinker density on gel

properties, we plotted the stress-strain curves of four different

crosslinker densities (4, 8, 12, 16N) for fixed 400 KPa crosslinker

strength and 2 mg/ml collagen in figure 3A. To show the effect of

crosslinker strength, we plotted the stress-strain curves of four

different crosslinker strengths (200, 400, 600, 800 KPa) for fixed

8N crosslinker density and 2 mg/ml collagen in figure 3B. To

determine how collagen fiber density affects stiffness properties of

the network, we plotted the stress-strain curves of four different

collagen densities (1, 2, 3, 4 mg/ml) for fixed 8N crosslinker

density and 400 KPa crosslinker strength in figure 3C. From these

stress-strain curves, it is clear that denser and stiffer crosslinkers

increase the mechanical stiffness of the whole fiber network.

Figure 3D shows that the shear modulus of the fiber network

increases linearly as a function of the crosslinker strength, but

increases nonlinearly as a function of the crosslinker density. We

see a transition from a liquid like gel (shear modulus ,0 Pa) to a

linear elastic material at a crosslinker density around 8N.

Furthermore, in regions with dense crosslinkers (.8N), the shear

modulus depends linearly on the collagen density, as similarly

occurs in experiments [30].

Assuming that the crosslinker characteristics remain the same

when we change the collagen density alone, we can fit for their

values using experimental data. We searched for the optimal

crosslinker parameter values by minimizing the difference between

simulation data and experimental data. The elastic modulus of

shear experiments is 3.03 Pa for 1 mg/ml, 44.50 Pa for 2 mg/ml,

97.38 Pa for 3 mg/ml, and 123.5 Pa for 4 mg/ml from experi-

mental data [30]. Figure 4A shows the sum of squared residuals

(SSR) between the simulated and experimental shear moduli using

4 collagen densities, as a surface in the two independent variable

space of crosslinker density and crosslinker strength. The cross-

linker density and strength parameter at the minimum SSR value

corresponds to the optimal parameter value. We performed

iterative spline interpolation by halving the crosslinker parameter

intervals. Figure 4B shows an intermediate, smoother interpolated

SSR surface plot. Figure 4C shows the intersection lines between

simulated shear modulus surfaces and experimental elastic

modulus data of 4 collagen densities. These lines correspond to

the constraints on the crosslinker parameters that could produce

the experimental shear moduli. The iterative spline interpolation

built an estimated surface plot of the SSR after the 7th

interpolation. Figure 4D shows the zoomed-in contour plot of

SSR near the minimum, from which we compared 5 points. P1 is

one SSR minimum, where crosslinker strength is less than

400 KPa, P5 is another SSR minimum, where crosslinker strength

is larger than 700 KPa, and P3 is the lowest SSR point over all

queried crosslinker parameter space. P2 and P4 are transition

points in between these local minima, where crosslinker strength is

400 KPa and 700 KPa, respectively. Figure 4E showed the SSR

value from both estimated values by spline interpolation and

calculated value by simulations of the five selected crosslinker

parameter values. P3 corresponds to the lowest SSR for both

estimated and calculated values, and thus we used this crosslinker

strength (634.38 KPa) and crosslinker density (11.18N) combina-

tion as the best-fit crosslinker parameters. As both increasing the

crosslinker strength and density increases the network modulus, it

is expected that the crosslinker strength and density have a

reciprocal relationship, which is reflected in the shape of the

contour plot in Figure 4D.

Shear and tensile tests in small strain regions for various
collagen densities validate the model

Using these best-fit crosslinker parameter values, we simulated

shear and tensile stretching tests for seven different collagen

densities (1–4 mg/ml, 0.5 mg/ml increment) in a small strain

region (0–0.1 strain, 0.01 strain step size). Figure 5A compares

simulated shear moduli with the experimental elastic moduli (G9)

of shear tests [30], showing a good agreement in the middle

collagen densities (2 and 3 mg/ml). The difference between

simulations and experiments increases at high collagen density and

low collagen density. In figure 5B, we compiled all in vitro tensile

moduli for various collagen densities with different strain rates that

we could find in the literature [40–42] and from our experiments

[24]. In addition, we also added the predicted tensile modulus

using a power-law fitting [42]. Not surprisingly, from the

experimental data, we see a significantly decrease in the tensile

moduli at lower strain rates, where the viscous effects are weak.

Recall that we built our fiber network model under the ideal elastic

assumption and that we determined the crosslinker parameters

with elastic modulus of shear data. It therefore comes as no

surprise that the simulated tensile moduli are lower than

experimental tensile measurements, but in good agreement with

the predicted value of a very low strain rate of 0.0001/min [42].

These results suggest that our model is functioning in a realistic

manner for small strain rate regimes, which should resemble cell-

fiber strain in vivo conditions.

Shear and tensile tests in larger strain regimes suggest
the key role of network geometries

The typical textbook illustration of a complete tensile stress-

strain curve for a collagen network consists of a small strain toe

region with little stress change, a medium strain linear region, a

large strain plastic region, and finally the failure region when the

network breaks (figure 6A). To clearly illustrate differences

between shear and tensile experiments in the transition between

the small and large strain response regions, we used a simple

schematic fiber network model, two collagen fibers with one

crosslinker (Figure 6: A1–A6). Figures A1–A3 illustrate a shear

test, where the light blue bead at the bottom is anchored and the

top bead is moved to the right. From the initial relaxed state at

zero strain (A1), the fibers rotate and displace at low strain (A2),

then the fiber network becomes aligned in the large shear strain

(A3). Figures A4–A6 illustrate a tensile test, from the initial relaxed

state at zero strain (A4), the fibers also rotate and displace at low

strain (A5), to completely align at larger strain (A6). Figure 6A

illustrates our understanding of how the transition from toe to

linear region occurs in the elastic fiber network model: the small

strain toe region is where the applied force rotates and aligns the

fibers in the network (from A1 to A2 in the shear test and from A4

to A5 in the tensile test); the medium strain linear region is when

the fiber network is completely aligned; fiber and crosslinker

stretching then is responsible for the network response (from A2 to

A3 in the shear test and from A5 to A6 in the tensile test); the large

strain plastic region is where individual fibers are damaged

irreversibly, and the last failure region is where either the collagen

fibers or the crosslinkers are broken. In the shear test, the fibers do

not align with the direction of the external force, but in the tensile

test the fibers align with the direction of the force. This difference

is the reason for a longer toe region in the shear test because the

fibers, even when they are aligned, can still rotate under external

force.

Using the best-fit crosslinker parameter values, we examined the

fiber network in larger strain regions, and simulated both shear

A 3D Computational Model of Collagen Network Mechanics
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and tensile tests by applying strain from 0.01 to 0.5, with 0.01

strain step increment. We compared two different network

geometries (random vs. prealigned) for two different collagen

densities (1 and 4 mg/ml). Figure 6B and 6C show the stress-strain

curves for shear and tensile tests (corresponding movies S1–S6). In

shear tests, the stress-strain curves of the prealigned network and

the random network are quite similar at the small strain toe region,

while at the larger strain region the prealigned network is much

stiffer than the random network. In tensile tests, the prealigned

fiber networks are stiffer than the random fiber network in both

the small strain and larger strain regions. The fiber network

geometry and applied force direction are the key factor to alter the

transition from toe to linear region.

We also calculated Poisson’s ratio for tensile tests in figure 6C

by the ratio of lateral strain to longitudinal strain. To calculate the

lateral strain, we sampled 9 different z-axis points (50, 75, 100,

125, 150, 175, 200, 225, 250 mm in height), and fitted a

rectangular lateral strain box by averaging fibers located at the

simulation box boundary area, which is 2.5% of the total number

of fibers. Figure 6D presented Poisson’s ratio of four different

tensile tests in figure 6C from 0.01 strain to 0.5 strain. The ratio

started around 0.36 at the small strain (0.01) for all four different

test cases, and then reaches 0.38 for random fiber network and

0.25 for prealigned fiber network at the large strain (0.5). The

network geometrical structure strongly alters Poisson’s ratio, while

collagen density weakly alters Poisson’s ratio. To clearly address

each parameter effect on Poisson’s ratio further, we simulated 7

different crosslinker strength values (200, 300, 400, 500, 600, 700,

800 KPa), 8 different crosslinker density values (2, 4, 6, 8, 10, 12,

14, 16N), 2 different collagen densities (1, 2 mg/ml), and 2

different fiber network structures (random, prealigned) for tensile

test, which is total 224 different test conditions. In each condition,

we run 5 independent simulation runs from 0.01 to 0.5 strain.

Figure S2 shows contour plot of Poisson’s ratio for four different

parameter effects, collagen density, fiber network structure,

crosslinker density, and crosslinker strength. Network geometrical

Figure 3. Shear simulation results. We simulated 8 different crosslinker densities (2, 4, …, 16N, 2N increment), 16 different crosslinker strengths
(50, 100, …, 800 KPa, 50 KPa increment), and 4 different collagen densities (1, 2, 3, 4 mg/ml) for random fiber networks, which is total 512 different
parameter sets. Shear stress - shear strain curves for ten strains using a 0.01 strain step size are shown in various crosslinker densities with fixed
400 KPa crosslinker strength (A) of 2 mg/ml collagen density case, various crosslinker strengths with fixed 8N crosslinker density (B) of 2 mg/ml
collagen density case, and various collagen densities with fixed 400 KPa crosslinker strength and fixed 8N crosslinker density (C). Five independent
runs were conducted for each parameter set. Only four curves for each varied parameter are shown for the better visualization. (D) Shear modulus
surface plot for four different collagen densities, 8 different crosslinker densities and 16 different crosslinker strength. Each modulus value was
calculated from the regression line slope of the stress-strain curve.
doi:10.1371/journal.pone.0111896.g003
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structure and crosslinker density strongly alter Poisson’s ratio,

while collagen density and crosslinker strength weakly influence

Poisson’s ratio.

Local deformation simulation shows quantitative rapid
stress and deformation propagation in the fiber network

To study the effect of a local force such as might be exerted by a

migrating cell in the collagen network, we performed a local

Figure 4. Finding the best-fit crosslinker parameter values. (A) The sum of squared residuals (SSR) between the shear elastic moduli data from
Stein et al. [30] and our simulations (figure 3D), for four different collagen densities. (B) The spline interpolation of (A) using the half of the prior
parameter intervals provides smoother surface of the sum of squared residuals. (C) Intersection lines of experimental data plane with simulation
surfaces of figure 3D. (D) Zoomed-in contour plot of the 7th spline interpolation of the SSR around the minimum value to the two times of the
minimum value. Five points were selected for comparison: P1 (290.23 KPa for crosslinker strength, 15.19N for crosslinker density), P2 (400 KPa,
13.27N), P3 (634.38 KPa, 11.28N), P4 (700 KPa, 10.89N), and P5 (775.39 KPa, 10.58N). (E) Validation for the best-fit crosslinker parameter values. We
have compared spline interpolated SSR estimation values with calculated SSR value using simulation results for these 5 selected crosslinker
parameter points. 30 independent simulations were run to calculate SSR values. The P3 crosslinker parameter values were chosen as the best-fit value
because both spline estimated SSR and calculated SSR using simulation are the lowest value.
doi:10.1371/journal.pone.0111896.g004
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deformation test. From an initial state, we anchored and fixed all

beads in the outer-layer of the simulation box within 50 mm from

the top, bottom and sides of the 30063006300 mm3 simulation

box. We picked a 20620620 mm3 test cube, located at the center

of the simulation box, and displaced the cube 60 mm in the z-

direction in 2 mm steps (figure 7A). Figures 7B–D are the averaged

force measurements for the text box, the anchored layer beads,

and the interior beads. Note the averaged force for the anchored

beads is in the order of nN, while that for interior beads is in order

of pN. To demonstrate how a local force is propagated to the

whole network, we plotted force vectors in time, by assuming

adiabatic displacement of the test box in the z-direction (movie

S7). Figure 7E–G show the force vectors after energy minimiza-

tion, illustrating the distribution of the local deformation through

the network. Figures 7H–J show the histogram of force values of

all beads in the test box, anchored beads, and the interior beads of

the simulation box. We see that stress generated by local

deformation starts around the test box and quickly spreads

through the neighboring fibers and across the fiber network. This

result agrees with the 3D traction measurements by Legant et al.

[45], where traction forces of NIH 3T3 fibroblast in a 3D elastic

hydrogel matrix were in the range of 100–5000 Pa. On the leading

surface of our test box in the local deformation simulation, this

force is equal to 40–2000 nN, whereas the force in our simulation

was in the order of 100 nN. This agreement supports that our

collagen model mechanics is in the range of a migrating cell.

Discussion

We have developed an elastic fiber network model (beads-and-

spring) of aligned and random collagen networks that contains

explicit elastic inter-fiber crosslinkers. The phenomenological

crosslinker model allows us to adjust the fiber network connectivity

and strength, so that we can quantitatively examine the effect of

diverse crosslinker parameters on the mechanical properties of

fiber network system. We used experimental single fiber param-

eters and elastic modulus data in shear experiments to find the

best-fit crosslinker parameter values by assuming that the viscous

effect of collagen fiber network is negligible at the time scale of cell

migration. Using these parameters, we performed further shear

and tensile simulations to validate the model, and demonstrate the

model potential in responding to local deformations. Overall our

3D mechanical elastic fiber collagen model is a useful tool to

identify network outcomes of different matrix properties and for

future interface with cell and tumor 3D models.

One interesting result of our simulations is the clear demon-

stration that network property depends more sensitively on the

network structure than other parameters, such as collagen density.

Thus, the initial fiber orientation (prealigned vs random) strongly

influences the mechanical property of the fiber network, directly

related to the strain direction and fiber realignment. Our elastic

fiber network model can capture strain stiffening, including the

transition from toe to linear response regions. This observation is

in good agreement with the experimental stress-strain curves

[40,46]. It also recapitulates the strain-stiffening characteristic of

non-affine fiber networks [28,30].

Real collagen gels would eventually break in rheometry tests, at

around 0.6 strain in nonsinusoidal stress-strain tests of 2 mg/ml

collagen [40], and at around 0.2 strain in sinusoidal stress-strain

tests of 0.9 mg/ml collagen [46]. To capture this mechanical

property, we should allow the crosslinkers or the fibers in our

model to break. Buehler et al. [47] showed the mechanical

properties and breakage points of intra-fiber (or inter-fibril)

crosslinkers in collagen type I, and how the breakage strain point

varies by inter-fibril crosslinker densities, up to 0.45 strain. We

could extend our model to incorporate this feature of collagen

fibers. Presently the goal for our model is as a building block for

integration with mechanical cell models (e.g. [48]). The amount of

strain by migrating cells in a tissue is relatively small, not in the

failure region of the stress-strain curve but rather in the small

strain region [24]. Our model is compatible with the spatiotem-

poral scale of collagen remodeling resulting from a migrating cell.

Our model shows that local stress propagates and decays

through the fiber network. In Münster et al. [46], a collagen fiber

network reaches the quasi-equilibrium state almost instantaneously

in the rheology measurement. Therefore, we can use the quasi-

Figure 5. Validation of the best-fit crosslinker parameter values. (A) Shear modulus of simulation results (Sim) using the best-fit crosslinker
parameter values and elastic modulus (G9) in shear experiments (Exp) from Stein et al. [30]. 5 independent runs were simulated for seven different
collagen densities (1, 1.5, …, 4 mg/ml using a 0.5 mg/ml increment). (B) Tensile modulus of various strain rate experiments, experiments from
Provenzano et al. [41], Roeder et al. [40], Riching et al. [24], Lopez-Garcia et al. [42], predicted values (Pre) using a power-law fitting from Lopez-Garcia
et al. [42], and simulation results using the best-fit crosslinker parameter values. Inset figure is magnified view of our experimental data of 2 mg/ml
collagen gels at very slow train rate of 0.046/min.
doi:10.1371/journal.pone.0111896.g005
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equilibrium state of the elastic fiber network model as an

instantaneous mechanical response of a local deformation by a

protruding or migrating cell. Interestingly we see that the

distribution of the stress is not homogeneous, resembling the

stress distribution on other inhomogeneous media, e.g., stress in

granular media or in earth rocks. Furthermore, even when the

fiber network has reached the quasi-equilibrium state, there is still

residual stress, albeit small, near the initial deformation. We have

further demonstrated that repeated local deformation results in

accumulation of stress in the fiber network. These results suggest

that more deformation, such as might occur with collective cellular

migration or growth of multicellular tumors, a significant amount

of stress would accumulate in the fiber network, leading to a large

scale alignment of the fiber network.

Lastly, although much of the ECM in the breast is collagen type

I, a real ECM is a complex mixture of different ECM protein

fibers. Even a collagen matrix can be a mixture of different

collagen types, including type I, type IV, type V and others. For

example, it has been shown that network stiffness significantly

decreases in matrices containing more collagen type V [49]. This

difference could be due to altered non-covalent interactions in

collagen mixtures. Our modeling method would still work well by

Figure 6. Stress-strain curves from small strain toe region to medium strain linear region. (A) Schematic stress-strain curve to illustrate
toe, linear, plastic, and failure region. A collagen fiber network is soft at the small deformation state, but stiff at the large deformation state because
realigning fibers through crosslinkers play a pivotal role in the strain stiffening. Realignment illustration of fiber network model for shear test (A1: zero
strain, A2: small strain, A3: medium strain) and tensile test (A4: zero strain, A5: small strain, A6: medium strain). Black solid lines represent collagen
fibers and red solid lines are crosslinkers. Black dots represent beads which can have elastic connection with other beads. Light blue solid arrows
represent force vectors, and a light blue dot represents anchored fixed beads for shear test. Simulated stress-strain curves of shear test (B) and tensile
test (C) for two different collagen densities: 1, 4 mg/ml and two different network geometries: prealigned network and random network using the
best-fit crosslinker parameter values. The errorbars are standard deviation from the mean in 5 independent simulations. We simulated up to 0.5 strain
with a 0.01 strain step size. (D) Poisson’s ratio of tensile tests in (C) for both random and prealigned networks.
doi:10.1371/journal.pone.0111896.g006
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fitting for the equivalent crosslinker parameters. Also collagen fiber

networks of in vitro or in vivo condition are heterogeneous, and

the typical diameter of a fiber increases as the collagen density

increases [49]. Many other physical and chemical factors also

contribute to the mechanical properties of collagen fiber network,

such as gel thickness [50] and pH [40]. Our elastic fiber network

model is a simple and generic model that allows for expansion and

inclusion of more complicated parameters and conditions to

simulate more realistic ECM environment, including heteroge-

neous fiber length and thickness. Even the most carefully

controlled protocol for generating in vitro collagen would generate

a gel with a distribution of collagen fiber width and length. As fiber

width would change the fiber modulus, our model network of

fibers with identical length and width might be a factor

contributing to the discrepancy between our calibrate model and

experimental data. Despite this, the model serves as an efficient

and accurate starting point to simulate how fiber network and

connectivity parameters interact with cell rheology parameters,

how locally deformed fibers alter the global fiber network

structure, and how the realigned and deformed fiber networks

influence on invasive cellular behaviors.

Methods

Collagen gel preparation and second harmonic imaging
Collagen gels were prepared as previously described [51] and

cast in a dogbone-shaped mold with dimensions described in

Roeder et al. [40]. Gels were allowed to polymerize at 37uC
overnight. To generate aligned collagen, gels were removed from

the mold, and mechanically strained to 30% using a custom

fabricated device. This device was also designed to fit the stage of a

multiphoton microscope to facilitate second harmonic generation

(SHG) imaging of collagen following the application of strain.

Images of collagen gels were acquired with WiscScan software and

Figure 7. Simulation of a local deformation test using the calibrated collagen model of 2 mg/ml. (A) A cubic test box
(20 mm620 mm620 mm) is located at the center of the simulation box (300 mm6300 mm6300 mm). All beads in the test box are anchored and
displaced by 60 mm in the z-direction (black arrow) with a 2 mm displacement step size for 30 steps. Beads in the outer layer of the simulation box
(within 50 mm of all the box sides) are anchored. All fiber-beads are initially at equilibrium before the test box is displaced. Average force value was
calculated at the quasi-equilibrium state after each displacement step. Average force value of all beads in the test box (B), anchored layer (C), and
internal box (D) over 30 displacement steps. Force vectors at the quasi-equilibrium state of 60 mm displacement in the test box (E), anchored layer (F),
and internal box (G). Each colorbar shows force scale in the figure. Force histogram at the quasi-equilibrium state of 60 mm displacement in the test
box (H), anchored layer (I), and internal box (J). Inset images of figure I and J are magnified views to illustrate the tails of distribution at larger force
values.
doi:10.1371/journal.pone.0111896.g007
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a Nikon 406 Apo water immersion lens (Numerical Aperture,

N.A. 1.15 and Working Distance, W.D. 0.61).

Collagen fiber network simulations
The three dimensional off-lattice collagen fiber network model

was implemented by C++ programing language and compiled by

gnu C++ compiler. All simulations were run on Euler cluster at the

Wisconsin Applied Computing Center. Analyses of simulation

data and making of simulation movies were done using MATLAB

2013b. Prototype code was implemented by both Matlab and C++
language and was tested on Octan and Carina clusters at Georgia

State University.

Supporting Information

Figure S1 Anchored depth effect on shear simulation
tests of 1 mg/ml collagen density, 100 KPa crosslinker
strength, eight different crosslinker densities (2, …,
16N), and five different anchored depths (10, 20, 50, 100,
200 mm), corresponding to the simulation box size
200 mm (length) 6200 mm (width) 6220, 240, 300, 400,
600 mm (height). Shear modulus was calculated from the stress-

strain curve in small strain region (0–0.1strain, 0.01 strain step

increment). Three independent runs were simulated and then

averaged. The half of collagen fiber length (50 mm) is the

minimum enough anchored depth, and any larger depths did

not significantly different from 50 mm depth case. However, the

smaller anchored depth than 50 mm showed reduced shear

modulus, meaning less number of fibers anchored for the given

collagen density.

(TIF)

Figure S2 Contour plot of Poisson’s ratio for tensile
tests at 0.5 strain. Random fiber network for (A) 1 mg/ml, (B)

2 mg/ml, Prealigned fiber network for (C) 1 mg/ml, (D) 2 mg/ml.

Simulation box is 200 mm (length) 6200 mm (width) 6300 mm

(height) with the anchored top 50 mm and bottom 50 mm. We

simulated 7 different crosslinker strength values (200, 300, 400,

500, 600, 700, 800 KPa), 8 different crosslinker density values (2,

4, 6, 8, 10, 12, 14, 16N), two different collagen densities (1, 2 mg/

ml), and two different fiber network structures (random and

prealigned) for tensile test, which correspond to 224 different test

conditions. In each condition, we run 5 independent simulation

runs from 0.01 to 0.5 strain with 0.01 strain step size.

(TIF)

Movie S1 Shear test simulation movie for two different
collagen fiber network geometries: random fiber net-
work vs. prealigned fiber network. The collagen density for

this test simulation is 1 mg/ml and deformed the simulation box

from 0 strain to 0.5 strain, using a 0.01 strain step increment.

Simulation box size is 200 mm (length)6200 mm (width)6300 mm

(height). The top 50 mm and bottom 50 mm of the box is anchored

area. All fiber-beads in the anchored area are fixed and then the

top anchored area is deformed to y-direction. Each snapshot

image in the movie is taken at the quasi-equilibrium state after

each 0.01 strain step (2 mm) was applied.

(MP4)

Movie S2 Force distribution movie for the 1 mg/ml
shear simulation in movie S1. In each quasi-equilibrium

state, forces of anchored fiber-beads and forces of internal

deformable fiber-beads were presented by vectors. Note the stress

for anchored beads is in the order of nN, while the stress for the

internal beads is in the order of pN. We plot the force vectors of

anchored beads twice as thick as those of internal beads. The

histograms plot force distribution in anchored and internal beads.

(MP4)

Movie S3 Shear test simulation movie for two different
collagen densities: 1 mg/ml vs. 4 mg/ml. The collagen

fiber geometry for this test simulation is random fiber network and

deformed the simulation box from 0 strain to 0.5 strain, using a

0.01 strain step increment. Simulation box size is 200 mm (length)

6200 mm (width) 6300 mm (height). The top 50 mm and bottom

50 mm of the box is anchored area. All fiber-beads in the anchored

area are fixed and then the top anchored area is deformed to y-

direction. Each snapshot image in the movie is taken at the quasi-

equilibrium state after each 0.01 strain step (2 mm) was applied.

(MP4)

Movie S4 Tensile test simulation movie for two differ-
ent collagen fiber network geometries: random fiber
network vs. prealigned fiber network. The collagen density

for this test simulation is 1 mg/ml and deformed the simulation

box from 0 strain to 0.5 strain, using a 0.01 strain step increment.

Simulation box size is 200 mm (length)6200 mm (width)6300 mm

(height). The top 50 mm and bottom 50 mm of the box is anchored

area. All fiber-beads in the anchored area are fixed. Each snapshot

image in the movie is taken at the quasi-equilibrium state after

each 0.01 strain step (1 mm to z at the top and 1 mm to -z at the

bottom) was applied.

(MP4)

Movie S5 Force distribution movie for the 1 mg/ml
tensile simulation in movie S4. In each quasi-equilibrium

state, forces of anchored fiber-beads and forces of internal

deformable fiber-beads were presented by force vectors. Note

the stress for anchored beads is in the order of nN, while the stress

for the internal beads is in the order of pN. We plot the force

vectors of anchored beads twice as thick as those of internal beads.

The histograms plot force distribution in anchored and internal

beads.

(MP4)

Movie S6 Tensile test simulation movie for two differ-
ent collagen densities: 1 mg/ml vs. 4 mg/ml. The

collagen fiber geometry for this test simulation is random fiber

network and deformed the simulation box from 0 strain to 0.5

strain, using a 0.01 strain step increment. Simulation box size is

200 mm (length) 6200 mm (width) 6300 mm (height). The top

50 mm and bottom 50 mm of the box is anchored area. All fiber-

beads in the anchored area are fixed, and then the top anchored

area is deformed to z-direction and the bottom anchored area is

deformed to –z-direction. Each snapshot image in the movie is

taken at the quasi-equilibrium state after each 0.01 strain step

(1 mm to z at the top and 1 mm to -z at the bottom) was applied.

(MP4)

Movie S7 Local deformation simulation movie for a
random fiber network of 2 mg/ml (Figure 7). The test

local deformed box (20 mm620 mm620 mm) is located at the

center of the simulation box (300 mm6300 mm6300 mm). All

beads in the test box are anchored and displaced in the z-direction

with a 2 mm displacement step size for 30 steps. All beads are

anchored and fixed in the outer layer of the simulation box (within

50 mm of all the box sides). Force vectors in test box, anchored

layer, and internal box at quasi-equilibrium after each 2 mm

displacement are separately presented in the top row. Note that

the color bars indicate that the forces on anchored beads are in the

order of nN, and those for the interior beads are in the order of

pN. The bottom row shows the histograms of the forces in the test
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box, the anchored layer, and the internal box. Insets show

magnified view of the tails of distribution at larger force values.

(MP4)
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