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INTRODUCTION 
 

Head and neck malignancies are among the most 

common diseases known to affect millions of people 

worldwide with high mortality rates. The most 

common type of head and neck cancer is squamous 
cell carcinoma, which accounts for approximately 95% 

of all head and neck cancers [1, 2]. Despite great 

advances in diagnostic and treatment methods over the 

past few years, the average five-year survival rate for 

head and neck squamous cell carcinoma (HNSCC) has 

not changed significantly, remaining at 50% [3]. Most 

patients are already in the advanced stage when they 

are diagnosed, which may be the reason for the high 

mortality rate in HNSCC patients. The diagnosis of 

HNSCC mainly relies on histopathological analysis 

and imaging evaluation, which makes it difficult to 

achieve early detection [4]. Thus, it is requisite to 
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ABSTRACT 
 

Evidence shows that defects in RNA-binding proteins (RBPs) are closely related to the occurrence and 
development of HNSCC. We obtained 502 tumors and 44 normal samples from the TCGA database, among 
which 190 differentially expressed RBPs were screened. Finally, a prognostic model containing nine RBPs 
(CELF2, CPEB1, DDX39B, EIF3L, EZH2, KHDRBS3, RNASE10, RNASE3 and SIDT1) was produced. Further analysis 
showed that the overall survival rate in the high-risk group was lower than that in the low-risk group. The area 
under the ROC curve (AUC) in the training and testing groups was significant (3-year AUC, 0.735 vs 0.796; 5-year 
AUC, 0.821 vs 0.804). In addition, a comprehensive analysis of nine identified RBPs showed that most of them 
were related to the OS of HNSCC patients, and three of them (CELF2, EZH2, and SIDT1) were differentially 
expressed in HNSCC and control tissues at the protein level. In addition, our data revealed that the identified 
RBPs are highly interconnected, with high frequency copy number changes in HNSCC samples. GSEA indicated 
that the abnormal biological processes related to RNA and the activation of some classical tumor signaling 
pathways were important driving forces for the development of HNSCC. Our results provide novel insights into 
the pathogenesis of HNSCC, among which nine RBP markers have potential application value in clinical 
decision-making and individualized treatment of HNSCC. 
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explore novel diagnostic methods for the intervention 

and discovery of HNSCC. 

 

RNA-binding proteins (RBPs) are important members 

of posttranscriptional regulation. Recent studies 

revealed the regulatory role of RBPs in cell 

differentiation, proliferation, apoptosis, metabolism and 

other biological processes related to both the 

development and progression of cancer [5–7]. To date, 

1542 RBPs have been experimentally confirmed to 

exist in the human genome, accounting for 7.5% of 

protein-coding genes. RBPs involve almost all steps of 

the posttranscriptional regulatory layer. RBPs can 

regulate posttranscriptional mRNA stability, RNA 

processing, splicing, localization, translocation, 

monitoring, decay and translation by binding to target 

RNA [8]. Therefore, changes in RBP expression can 

affect many aspects of RNA metabolism. RBPs also 

play a significant role in the occurrence and 

development of cancer. Cancer is a complex and 

heterogeneous disease. Tumor cells can regulate 

protein expression levels by hijacking 

posttranscriptional regulation to make them better 

adapt to the microenvironment [9, 10]. It was found 

that RBPs were dysfunctional in different types of 

cancer, which affected the expression and function of 

tumor suppressor proteins and oncoproteins. For 

example, tristetraprolin (TTP) is an RNA-binding 

protein encoded by the zinc finger protein 36 (ZFP36) 

gene. Suswam et al. found that TTP was overexpressed 

in malignant glioma cells, significantly promoting the 

degradation of VEGF and IL-8 mRNA and inhibiting 

the growth and invasion of tumor cells [11]. Gebeshube 

et al found that miR-29A inhibited the expression of 

TTP and cooperated with Ras signaling to promote the 

development of breast cancer. Overexpression of TTP 

in human breast cancer cells can significantly inhibit 

the invasion, metastasis, and proliferation of breast 

cancer cells [12]. QKI-5 is a member of the RNA-

binding protein family. Studies have found that QKI-5 

mainly reduces MAPK/ERK signaling pathways and 

reduces the expression of p-ERK, thereby inhibiting the 

proliferation of kidney cancer cells [13]. Studies have 

discovered that RNA-binding protein 24 (RBM24) is 

oftentimes downregulated in nasopharyngeal 

carcinoma (NPC). The restoration of RBM24 

expression inhibited the migration, invasion and 

proliferation of NPC cells and hindered the transfer and 

colonization of mice [14]. Therefore, deciphering the 

intricate network of interactions between RBPs and 

their cancer-related RNA targets will offer a better 

understanding of tumor biology and may disclose novel 

cancer treatment targets. At present, research on RBPs 
and HNSCC is limited, and only a small portion of 

RBPs have been studied in depth and detected to play a 

vital role in head and neck cancer. 

In view of this situation, we tried to systematically 

analyze the potential value of RBPs in HNSCC by 

integrating a full set of RBPs and clinical information 

obtained from the TCGA database. Firstly we identified 

the differentially expressed RBPs (DERBPs) in HNSCC 

and constructed a risk prediction model of DERBPs. 

Then, Least absolute shrinkage and selection operator 

(LASSO) regression and Cox regression analyses were 

used to optimize the model, and DERBPs related to the 

OS rate was selected. We used these DERBPs to 

establish a Cox regression model and used ROC curve 

analysis to evaluate the sensitivity and specificity of the 

model. According to our data, this specific model can 

predict patients' prognosis accurately. These findings 

not only provide new insights into the pathogenesis of 

HNSCC, but also provide an effective biomarker-based 

multi-dimensional strategy for HNSCC patients' 

prognosis prediction. 

 

RESULTS 
 

Flow chart of our study 

 

Figure 1 shows the detailed workflow of the study. 

Firstly, DERBPs that are differentially expressed 

between normal samples and HNSCC are found. Then, 

we used the training group to construct a specific 

prognostic model. The prognostic model was further 

confirmed and optimized in the testing group. The 

prediction power of these models was checked using 

time-dependent ROC analysis. Then, the RBPs in the 

prognosis model were comprehensively verified. The 

prognostic value and key role of RBPs was analyzed by 

our study systematically in HNSCC. 

 

Differential expression and functional annotation 

analysis of RBPs in HNSCC 

 

The corresponding clinical data and mRNA expression 

data of 44 nontumor samples and 502 HNSCC tissue 

samples were downloaded from TCGA database (Table 

1). After abstracting 1495 RBP expression values, we 

acquired differentially expressed RBPs and showed the 

expression pattern of differentially expressed RBPs in 

HNSCC and non-tumor tissues by volcano map and 

thermogram. In HNSCC, 190 differentially expressed 

genes were obtained in tumour tissues, of which 109 

genes were upregulated and 81 genes were 

downregulated (Figure 2). Then, to understand the 

biological characteristics of these genes, we performed 

functional enrichment analysis on upregulated and 

downregulated RBPs. Figure 3 summarizes the GO terms 

and enriched KEGG pathways of these genes. In 

HNSCC, our results indicate that in the related biological 

processes, upregulated RBPs are significantly enriched in 

nucleic acid phosphodiester bond hydrolysis, RNA 
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catabolic process, negative regulation of viral genome 

replication, regulation of translation and DNA 

methylation or demethylation (Figure 3A), while 

downregulated RBPs are significantly enriched in the 

regulation of RNA splicing, regulation of the mRNA 

metabolic process, regulation of mRNA splicing via the 

spliceosome, regulation of mRNA processing, and 

regulation of cellular amide metabolic process (Figure 

3B). In terms of molecular function, upregulated RBPs 

were significantly enriched in acting on RNA, catalytic 

activity, double-stranded RNA binding, helicase activity, 

ribonuclease activity and nuclease activity (Figure 3A), 

while downregulated RBPs were significantly enriched in 

mRNA binding, mRNA 3' UTR binding, poly(A) 

binding, single-stranded RNA binding and mRNA 3' 

UTR AU-rich region binding (Figure 3B). Through cell 

composition (CC) analysis, we found that the upregulated 

RBPs were mainly enriched in ribonucleoprotein 

granules, cytoplasmic ribonucleoprotein granules, P-

bodies, spliceosomal complexes and P granules (Figure 

3A), while the downregulated RBPs were significantly 

enriched in cytoplasmic stress granules, cytoplasmic 

ribonucleoprotein granules, ribonucleoprotein granules, 

RNA cap binding complexes and mRNA cap binding 

complexes (Figure 3B). In addition, the results of KEGG 

pathway enrichment analysis of differentially expressed 

RBPs showed that the upregulated RBPs were enriched 

in the spliceosome, RNA transport, the mRNA 

surveillance pathway, the RIG-I-like receptor signaling 

pathway and microRNAs in cancer (Figure 3C), while 

the downregulated RBPs were enriched in RNA 

transport, the mRNA surveillance pathway, RNA 

degradation and progesterone-mediated oocyte 

maturation (Figure 3D). 

 

Construction of the PPI network and screening of 

key modules 

 

To better understand the potential molecular functions 

of these differentially expressed RBPs in HNSCC, a PPI 

network was constructed using the Cytoscape software 

and STRING database. The PPI network consists of 161 

nodes and 581 edges (Figure 4A). Then, we further 

analyzed the co-expression network and used the plug-

in pattern in Cytoscape to detect the potential key 

modules and determine the first three important 

modules (Figure 4B). Module 1 consists of 16 nodes 

and 113 edges, module 2 consists of 10 nodes and 45 

edges, and module 3 consists of 12 nodes and 35 edges. 

Functional enrichment showed that the genes of module 

1 were mainly enriched in the regulation of multi-

organism processes, RNA binding and nucleic acid 

binding. The genes of module 2 were significantly 

enriched in mRNA splicing, the spliceosome, and the 

mRNA surveillance pathway. However, the genes of 

module 3 were significantly enriched in rRNA 

processing, RNA processing, and translation 

(Supplementary Table 1). 

 

 
 

Figure 1. The Flowchart for identification the survival-related RBPs in HNSCC. RBPs: RNA binding proteins. HNSCC: Head and Neck 
Squamous Cell Carcinoma. 
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Table 1. Clinicopathological parameters of HNSCC patients in the 
TCGA database. 

Clinical parameters Variable Total (528) Percentages (%) 

Age <=65 345 65.3% 

 >65 182 34.5% 

 Unknow 1 0.2% 

Gender Female 142 26.9% 

 Male 386 73.1% 

Grade G1 63 11.9% 

 G2 311 58.9% 

 G3 125 23.7% 

 G4 7 1.3% 

 GX 22 4.2% 

Pathological stage Stage I 27 5.1% 

 Stage II 74 14.0% 

 Stage III 82 15.5% 

 Stage IV 270 51.1% 

 Unknow 75 14.2% 

T stage T0 1 0.2% 

 T1 49 9.3% 

 T2 140 26.5% 

 T3 101 19.1% 

 T4 175 33.1% 

 TX 62 11.7% 

M stage M0 191 36.2% 

 M1 1 0.2% 

 MX 336 63.6% 

N stage N0 180 34.1% 

 N1 68 12.9% 

 N2 172 32.6% 

 N3 8 1.5% 

 NX 100 18.9% 

Survival status Dead 199 37.7% 

 Alive 329 62.3% 

Abbreviations: T, Tumor; M, Metastasis; N, Node. 

 

Construction and verification of the HNSCC-specific 

predictive prognosis model 

 

A total of 161 key RBPs with differential expression 

were identified from the PPI network. In order to study 

the relationship between the expression of RBPs and the 

prognosis of HNSCC patients, we established the 
prognosis model of HNSCC patients in the training 

group. Univariate Cox regression analysis was initially 

executed to acquire genes that were significantly related 

to prognosis, and LASSO regression and multivariate 

Cox regression analyses were then used to create the 

final prognosis model (Table 2, and Figure 5A, 5B). 

After creating the prognosis model, the patients were 

divided into a low-risk group and a high-risk group, and 

Kaplan-Meier survival analysis was then carried out on 

the testing set and training set. The results demonstrated 
that the overall survival time of patients with high risk 

score was obviously poorer than those with low risk 

score in the HNSCC dataset (Figure 5C, 5D). In 
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HNSCC patients, a 9-gene model (CELF2, CPEB1, 
DDX39B, EIF3L, EZH2, KHDRBS3, RNASE10, 

RNASE3 and SIDT1) was successfully obtained. Using 

this model to anticipate the risk score of each patient, 

we found that CPEB1, EIF3L, KHDRBS3 and RNASE3 

are positive risk-related genes, whereas CELF2, 
DDX39B, EZH2, RNASE10 and SIDT1 are negative 

risk-related genes. The AUC (area under the ROC 

curve) in the training and testing groups was remarkable 

(3-year AUC, 0.752 vs. 0.669; 5-year AUC, 0.781 vs. 

0.687) (Figure 5E, 5F). The model can accurately 

predict the OS of HNSCC patients. Besides, we  

ranked all HNSCC patients according to risk score to 

analyze the survival rate distribution. From the scatter 

plot, we can see the survival status of patients with 

different risk score; the mortality rate of patients rises 

with increasing risk score. Heat maps show that the 

expression of RBPs is related to the increase of patient 

risk score (Figure 6A–6F). 

 

The prognosis model of HNSCC patients is 

independently associated with OS 

 

Cox regression analysis was used to analyze the 

correlation between OS and clinical parameters such 

as histological grade, age, risk score and pathological 

stage. Univariate Cox regression analysis 

demonstrated that the histological grade, age, 

pathological stage, and risk score of patients were 

associated with OS (P <0.05). However, by 

multivariate regression analysis, we found that only 

risk score, N stage and age were independent 

prognostic factors associated with OS (P <0.05) 

(Figure 7A, 7B). At the same time, to construct a 

quantitative model of the prognosis of HNSCC 

patients, we also combined 9 RBP markers to 

construct a nomogram (Figure 7C and Supplementary 

Figure 3). Based on multivariate Cox analysis, the 

point scale of the nomogram was used to assign points 

to each variable. We drew a horizontal line to 

determine the points of each variable, calculated the 

total points of each patient by summing the points of 

all variables, and then standardized the total points of 

each patient to a distribution of 0 to 100. By 

constructing a vertical line between each prognostic 

axis and total point axis, the estimated 1-, 3-, and 5-

year survival rates of HNSCC patients could be 

calculated, which may help relevant practitioners make 

clinical decisions for HNSCC patients. Our 

consequences suggest that the established specific 

prognostic models and genes can be used to predict the 

OS of HNSCC patients. 

 

Comprehensive analysis of genes in the RBP 

prognosis model 

 

From the prognosis model, we acquired 9 genes and 

then further assessed the prognosis value of these genes 

in other databases. Correlation analysis of picked genes 

in TIMER (Tumor Immune Estimation Resource) 

database showed that most genes were closely 

associated with mRNA expression (Supplementary 

Table 2 and Supplementary Figure 1). The genes were 

analyzed by the GEPIA (Gene Expression Profiling 

 

 
 

Figure 2. Differentially expressed RBPs in HNSCC and non-tumour samples. The volcano plot (A) and Clustered heatmap (B) of 
differentially expressed RBPs in HNSCC and normal tissues. 
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Interactive Analysis) database using Kaplan-Meier 

analysis. The results show that in HNSCC, CELF2, 

EZH2, RNASE10 and SIDT1 are positively correlated 

with OS, indicating that these highly expressed genes 

correlate with a good prognosis (Figure 8). All in all, 

the Kaplan-Meier analysis results agree with the 

univariate Cox analysis results, which means that most 

genes are infused into specific prognosis models and 

have a potent predictive capacity. Next, the protein 

expression pattern of genes in the prognosis model were 

analyzed by the HPA database (Figures 9, 10A–10C). 

The results demonstrated that the expression of the 

CELF2 protein was low in normal head and neck 

tissues, but this protein was not detected in HNSCC 

tissues (Figure 10A). The EZH2 protein was low 

expressed in normal tissues and moderately expressed 

in tumor tissues (Figure 10B). The SIDT1 protein was 

moderately expressed in normal head and neck tissues 

but was not detected in HNSCC tissues (Figure 10C). 

We then used the cBioPortal database to find out the 

 

 
 

Figure 3. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of the differentially expressed 
RBPs. Results of GO functional annotation analysis of up (A) and down (B) regulated differentially expressed RBPs; Results of KEGG pathways 

enrichment analyses of up (C) and down (D) regulated differentially expressed RBPs. The dot size represents the enriched gene number. 
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CNV (Copy number variations) and mRNA expression 

changes in these genes (Figure 10D). The results 

demonstrated that CNVs were associated with the 

mRNA expression changes in these genes. It is 

noteworthy that SIDT1 and KHDRBS3 demonstrated 

the highest mRNA expression changes and CNV in the 

entire analysis sample, which may suggest that CNVs 

are the leading driving forces for the mRNA expression 

changes in these genes. To verify our analysis, the 

relative mRNA expression of CELF2, EZH2 and SIDT1 

in HNSCC cell lines was evaluated by qRT-PCR. As 

shown in Figure 10E, compared with that in the human 

bronchial epithelial cell line HBE, the mRNA 

expression of the CELF2 gene was relatively lower in 

the laryngeal squamous carcinoma cell line Hep2 

(P<0.05) but showed no difference in that in the 

nasopharyngeal carcinoma cell line HK1 (P>0.05). The 

EZH2 mRNA expression was higher in both Hep2 and 

HK1 cells (P<0.01), and the SIDT1 mRNA expression 

was lower in both Hep2 and HK1 cells (P<0.01); these 

results are consistent with the protein expression 

patterns detected in HNSCC tissues in HPA database. 

Besides, EZH2 protein expression was higher in HK1 

and Hep2 than HBE cells which was verified by 

western blot assay as showed in Figure 10F. In 

addition, the clone forming ability of 2 tumor cell lines 

was significantly higher than that of the control cell 

lines (Figure 10G, 10H). Our results agreed with 

findings we have observed previously, which further 

verified the reliability of our experiment. The GSEA 

method was used to calculate the pathways and 

enriched features between low-risk and high-risk 

patients, as we found out that low-risk and high-risk 

patients have significant prognostic differences in OS. 

In the results of GSEA enrichment, we observed that 

the high-risk groups were enriched in response of 

EIF2AK4 GCN2 to amino acid deficiency, ribosome, 

SRP-dependent cotranslational protein targeting to 

membrane, rRNA modification in the nucleus and 

cytosol, Myc targets v1 and allograft rejection. 

(Supplementary Figure 2A–2F). The low-risk group 

was enriched in the transcriptional regulation by 

RUNX1, interferon signaling, signaling by Wnt, 

MAPK family signaling cascades, hallmark interferon 

gamma response and hallmark interferon alpha 

response (Supplementary Figure 2G–2L). Some studies 

have shown that these pathways are related to the 

development of HNSCC. In short, the GSEA results 

indicate that RBP-related signals are associated with 

the progression and development of HNSCC. 

 

DISCUSSION 
 

Head and neck squamous cell carcinoma is a very 

harmful disease. The 5-year survival rate of patients is 

low, only 50%; in addition, the disease also affects the 

 

 
 

Figure 4. Protein-protein interaction (PPI) network and modules analysis. (A) PPI network of differentially expressed RBPs; (B) 3 

critical modules from PPI network. The outer circle is critical module 1, the middle circle is critical module 2, and the inner circle is critical 
module 3. Red circles: up regulation RBPs; Green circles: down regulation RBPs. 
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Table 2. The nine selected RNA binding proteins. 

Id Coef HR HR.95L HR.95H P value 

CELF2 -0.8124 0.4438 0.2999 0.6567 0.0000 

CPEB1 0.5103 1.6658 0.863 3.2156 0.1283 

DDX39B -0.3808 0.6833 0.4723 0.9885 0.0432 

EIF3L 0.6228 1.8642 1.3168 2.6391 0.0004 

EZH2 -0.4283 0.6516 0.4477 0.9483 0.0253 

KHDRBS3 0.4804 1.6167 1.1194 2.3351 0.0104 

RNASE10 -0.2886 0.7493 0.6131 0.9159 0.0048 

RNASE3 3.3622 28.8515 3.3959 245.1251 0.0021 

SIDT1 -0.3783 0.685 0.4009 1.1705 0.1664 

Abbreviations: HR, hazard ratio; HR.95 L/H, 95 % confidence interval of the 
hazard ratio. 

 

patients' voice, hearing, vision, etc., resulting in poor 

quality of life and a great burden on patients and society 

[15]. In recent years, lots of diagnostic molecular 

markers that were related to HNSCC have been 

discovered, but it is hard to reach accurate early 

detection. This may be the most significant reason of 

high mortality in patients. Therefore, it is pressing to 

develop an effectual early detection and diagnosis 

method to improve the treatment of HNSCC. A large 

number of research have reported that RBPs are 

dysregulated in diverse human cancers. However, little 

is known about the function and expression pattern of 

RBPs in HNSCC. Here, we extracted corresponding 

clinical data and sequence data from the TCGA 

database, used a bioinformatics analysis method to 

determine RBPs that was related to prognosis, and 

constructed a model for the prognosis of HNSCC, 

which may be helpful to develop biomarkers for the 

diagnosis and prognosis of HNSCC. 

 

To our knowledge, this is the first time that an entire 

set of RBPs has been combined with HNSCC to 

explore and verify the potential value of RBPs in 

HNSCC. In our study, we searched for the expression 

of RBPs in HNSCC database to discover molecular 

biomarkers that associated with the diagnosis, 

treatment, and prognosis of HNSCC patients. We first 

screened RBPs that are differentially expressed 

between HNSCC and nontumor tissues, established a 

protein-protein interaction network of these RBPs, and 

obtained three key modules. Considering that these 

genes may be closely connected with the occurrence of 

HNSCC, we performed GO and KEGG analyses of 

these genes. Analysis of the PPI network modules 

showed that RBPs with different expression levels 

were highly enriched in the process of RNA 

catabolism, DNA methylation or demethylation, 

regulation of RNA splicing, regulation of RNA 

transport and mRNA monitoring. RNA plays an 

important role in the evolution of organisms and plays 

an important role in the translation of genetic 

information, gene expression and cell function. Studies 

have shown that the abnormal regulation of RNA 

transport, processing, translation and catabolism 

processes is related to the occurrence and development 

of various diseases [16, 17]. Epigenetics refers to 

changes in the expression of genetic genes unrelated to 

changes in the DNA sequence. DNA methylation is the 

most common epigenetic change. Abnormal DNA 

methylation can result in the activation of proto-

oncogenes and the inactivation of tumor suppressor 

genes. The occurrence of tumors is the result of many 

factors, among which the activation of proto-

oncogenes and the inactivation of tumor suppressor 

genes play vital roles. Studies have found that in many 

studies of head and neck tumors, methylation is often 

found in genes such as p16, MGM T, and DAP-kinase, 

and is related to the inactivation of gene expression 

[18, 19]. Methylation may affect the occurrence and 

development of head and neck tumors through the 

regulation of multiple genes. Splicing factors are 

RNA-binding proteins that affect exon selection and 

splicing site selection by recognizing cis regulatory 

elements in pre-mRNA [20]. Changes in the 

expression of SF may lead to an overall change in 

certain cancer-specific alternative splicing events, 

thereby affecting the occurrence and development of 

cancer. For example, the splicing factor SAM68 can 

promote the expression of BCL-XS and induce the 

apoptosis of leukemia cells [21]. These results indicate 

that RBPs affect the growth of tumor cells by 

regulating various biological processes, such as RNA 

transport, DNA methylation or demethylation, and 

RNA splicing. 
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Figure 5. Construction and validation of the prognostic risk model in HNSCC patients. (A) Screening of optimal parameter (lambda) 
at which the dotted vertical lines were drawn. (B) Lasso coefficient profiles of the candidate RBPs with non-zero coefficients determined by 
the optimal lambda. Kaplan-Meier plot of the high-risk (red) and low-risk (blue) HNSCC patients in the training group (C) and testing group 
(D). The 3-year (red) and 5-year (blue) ROC curves in the training group (E) and testing group (F) of HNSCC patients. 
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We then constructed the model by univariate Cox 

regression and LASSO regression analyses and 

ultimately identified 9 OS-related risk genes (CELF2, 

CPEB1, DDX39B, EIF3L, EZH2, KHDRBS3, 

RNASE10, RNASE3 and SIDT1). We further created a 

specific prognosis model (OS model) and demonstrated 

that this model can provide accurate predictions for the 

prognosis of HNSCC patients in the training and the 

testing group. Besides, multivariate Cox regression 

analysis of the prognosis model and other clinical 

parameters demonstrated that the model can predict 

patients' prognosis independently. Moreover, GSEA of 

this model found that ribosomes and rRNA 

modifications in the nucleus and cytosol and Myc and 

other related signaling pathways were excessively 

activated in high-risk patients. It has been shown that 

ribosomal proteins are abnormally expressed in various 

tumors and affect aging, growth, apoptosis, invasion, 

drug resistance and radiotherapy resistance of tumor 

cells through various mechanisms. The proliferation of 

tumor cells is positively correlated with protein 

synthesis [22]. Some tumor suppressors indirectly 

regulate cell proliferation by interfering with ribosome 

synthesis. The inactivation of ribosomal proteins or the 

p53 gene promotes the synthesis of ribosomal protein 

in tumors and leads to cell proliferation [23]. The 

mutation of RPS20 affects the maturity of 18S rRNA 

by affecting various rRNAs and hinders the synthesis 

of ribosomes [24]. Carcinogenic factors can promote 

cell proliferation by promoting the synthesis of 

ribosomal proteins. In the process of tumor 

progression, tumor suppressors and carcinogens jointly 

regulate the synthesis of ribosomal proteins, which 

determines the direction of cell development. The 

nuclear oncogene Myc gene family mainly encodes 

proteins, and their activation and mutation can lead to 

cell carcinogenesis. At present, research on Myc 

oncogenes shows that the abnormal expression of the 

Myc oncoprotein is closely related to the occurrence 

and development of head and neck tumors [25, 26]. 

Low-risk group enrichment analysis showed that the 

enrichment of classic tumor signaling pathways such as 

the transcriptional regulation of RUNX1, interferon 

signal, Wnt and MAPK [27, 28]. RUNX1 is a 

transcription factor that can directly or indirectly 

regulate signal transduction pathways, such as the 

TGF-β signaling pathway, Wnt signaling pathway, and 

bone morphogenetic protein (BMP) signaling pathway 

[29–31]. With an increasing number of studies in 

different fields, RUNX1 plays different roles in various 

 

 
 

Figure 6. RBPs-related prognostic characteristics in patients with HNSCC. Risk score distribution of HNSCC patients with different 
risks in the training group (A) and testing group (B) (low, green; high, red). Dot plots showing the survival time and risk score in training group 
(C) and testing group (D). The heatmap of the 9 key genes expression profiles in the training group (E) and testing group (F) (low, blue; high, 
red). 
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solid tumors. RUNX1 plays an anticancer role in 

esophageal cancer and gastric cancer but plays a role in 

promoting cancer in non-small cell lung cancer, 

endometrial cancer, and oral and head neck squamous 

cell carcinoma and plays a different role, by either 

inhibiting or promoting cancer, in different types of 

breast cancer [32]. 

In summary, on the basis of comprehensive analysis of 

corresponding clinical features and RBP expression 

profiles, a specific prognosis model of RBPs was 

determined. The genes in these models provide new 

targets for the treatment and intervention of HNSCC. 

The main limitation of this study is that the data applied 

in our research were acquired from several public 

 

 
 

Figure 7. The prognostic value of different clinical parameters. Univariate (A) and multivariate (B) Cox regression analyses of OS in 
HNSCC. (C) Nomogram for predicting 1-, 3-, and 5-year OS of HNSCC patients. 
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databases. These findings need to be verified in future 

clinical trials. Besides, due to the limitations of the 

existing IHC images in the HPA (Human Protein Atlas) 

database, it is difficult to use statistical methods to 

detect the differential expression of these proteins. 

Future work will use local clinical specimens to detect 

the protein expression of selected proteins. The 

mechanism by which RBPs regulate the occurrence and 

development of HNSCC needs to be studied further. In 

conclusion, our research shows that differentially 

expressed RBPs have good diagnostic and prognostic 

value as biomarkers and therapeutic targets for HNSCC. 

Further investigations are needed to confirm our 

findings. Validating these models in the local clinical 

cohort is also important to improve the accuracy of 

these predictions. 

 

 
 

Figure 8. Kaplan-Meier analyses of ARGs in prognostic model. Kaplan-Meier analyses of (A) CELF2, (B) EZH2, (C) RNASE10 and (D) 

SIDT1. The statistical significance was determined by Log-rank test. 
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Figure 9. Survival associated RBPs expression in the human protein atlas database (HPA). Kaplan-Meier curves of survival 
associated (A) CELF2, (B) EZH2, (C) RNASE10 and (D) SIDT1 for HNSCC patients. Pink line indicates high expression group while blue line 
indicates low expression group. 
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Figure 10. Immunohistochemistry (IHC), mutations and verification results in the prognosis-related RBPs. The protein levels of 

(A) CELF2, (B) EZH2 and (C) SIDT1 were determined by immunohistochemistry using indicated antibodies in HPA database, the staining 
strengths were annotated as Not detected, Low, Medium and High. The bar plots indicating the number of samples with different staining 
strength in HPA database. (D) OncoPrint showing the copy number alterations and mRNA expression alterations of 9 RBPs in prognostic 
model. (E) The mRNA expression levels of CELF2, EZH2 and SIDT1 in HNSCC cell lines were determined by qRT-PCR, GAPDH was verified as a 
housekeeping gene. (F) Western blot was conducted to evaluate the protein expression of EZH2 in HNSCC cell. (G, H) Colony-forming assay 
was conducted to evaluate the growth of HNSCC cell lines. 
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MATERIALS AND METHODS 
 

Data preprocessing and screening of differentially 

expressed RBPs 

 

RNA sequencing data and corresponding clinical data 

of 502 HNSCC and 44 normal head and neck tissue 

specimens were acquired from the TCGA database 

(https://portal.gdc.cancer.gov/) (Supplementary Table 

3). A total of 1542 RNA-binding proteins that have 

been confirmed to exist in the human genome were 

extracted from the literature. See Supplementary Table 

4 for details. To ensure a unified standard, the RNA 

sequencing results (FPKM) of HNSCC were 

transformed and standardized by the formula log2 

(x+1). The Wilcox test in R (version 4.0.0, 

https://www.r-project.org/) was used to calculate the 

differential expression of RBPs between HNSCC and 

control samples. The genes with at least 1.5-fold 

alteration and corresponding P value less than 0.05 were 

chosen as the differentially expressed RBPs (DERBPs). 

 

Gene enrichment analysis and PPI network 

construction and module selection 

 

The main biological characteristics of these RBPs were 

detected by GO enrichment and KEGG pathway 

analysis. Go analysis terms include biological process 

(BP), molecular function (MF) and cell composition 

(CC). Then differently expressed RBPs are submitted to 

the STRING database (http://www.STRING-db.org/) to 

identify protein-protein interaction information. The PPI 

network is further constructed and visualized by using 

the software of Cytoscape 3.6.1. The important modules 

and genes were screened out in PPI network by using 

molecular complex detection (mcode) plug-in. The 

MCODE scores and the number of nodes are both 

greater than 5. Statistically significant differences 

P<0.05 are denoted as starred values. 

 

Construction and verification of prognosis model in 

HNSCC 

 

We first integrated the expression data of DERBPs with 

the corresponding clinical information, selected RBPs 

co-expressed in the PPI network, and then randomly 

divided the data into a testing group and a training 

group for following verification. Univariate Cox 

regression analysis was used to analyze the expression 

data of RBPs in the training group, and RBPs that were 

significantly related to survival were obtained (P 

<0.05). Finally, we used lasso regression and 

multivariate Cox regression analysis to constructed a 

prognosis model. In the training group and the testing 

group, the risk score of each patient was calculated 

according to the regression coefficient and expression 

value of each gene in the model. The calculation 

formula is: β1 * Exp1 + β2 * exp2 + βi * EXPi, in 

which β represents coefficient value and exp represents 

gene expression level. The risk score is an indicator to 

measure the prognostic risk of each HNSCC patient. 

We used the median risk score to draw a Kaplan-Meier 

survival curve and generated receiver operating 

characteristic (ROC) curves to determine the accuracy 

of the prediction model. Finally, the rms R package was 

used to analyze the nomogram plot and predict the 

possibility of OS. P <0.05 is a significant difference. 

 

Comprehensive analysis of RBPs in HNSCC 

prognosis model 

 

Correlation analysis was performed on the selected 

RBPs in the TIMER database, and the Pearson 

correlation coefficient between each gene pair was 

calculated. Then use the GEPIA2 database 

(http://gepia.cancer-pku.cn/) to perform Kaplen-Meier 

analysis on the RBPs in the risk-specific model, and use 

the log-rank test to determine the statistical significance. 

The expression of RBPs at translation level was 

analyzed by comparing the immunohistochemical 

staging images in HPA database (http://www.protein. 

atlas.org/). On the basis of the staining intensity, it is 

marked as high, medium, low and undetected. The 

cbioProtal database (http://www.cbioportal.org/) was 

used to further analyze the nine RBPs in the risk-

specific model to evaluate alterations in mRNA 

expression and copy number. Last, GSEA (gene set 

enrichment analysis) was executed to examine the ways 

and characteristics of enrichment in the predicted low-

risk and high-risk population. Using GSEA, this 

research studied whether the characteristics of 

activation/inhibition genes were abundant in low-risk 

and high-risk patients. The standardized enrichment 

score (NES) and standardized P value are used to 

calculate the enrichment of the Hallmarks and canonical 

pathways. Terms with | NES |> 1 and P <0.05 are 

considered significantly rich. 

 

Verification of screened RBPs by qRT-PCR 

 

The human bronchial epithelial cell line HBE, laryngeal 

squamous carcinoma cell Hep2 and nasopharyngeal 

carcinoma cell line HK1 were obtained from the 

Shanghai Zhong Qiao Xin Zhou Biotechnology. Hep2 

and HK1 cells were maintained at 37° C in a 5% CO2 

incubator in Dulbecco’s modified Eagle’s medium 

(DMEM) with 10% fetal bovine serum (FBS) 

(Biological Industries, Kibbutz Beit Haemek, Israel) 

and 1% penicillin–streptomycin (Keygen Biotech, 
Nanjing, China). HBE cells were cultured with specific 

keratinocyte medium supplemented with 1% 

keratinocyte growth factor and 1% penicillin–

https://portal.gdc.cancer.gov/
https://www.r-project.org/
http://www.string-db.org/
http://gepia.cancer-pku.cn/
http://www.protein.atlas.org/
http://www.protein.atlas.org/
http://www.cbioportal.org/
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streptomycin (Zhong Qiao Xin Zhou Biotech, Shanghai, 

China). For quantitative analyses of screened RBPs, 

total RNA was extracted using TrizoL (Life 

Technologies, Carlsbad), and cDNA was prepared using 

High Capacity cDNA Reverse Transcription Kit 

(Thermo Fisher, MA) and qPCR were performed with 

NovoStart® SYBR qPCR SuperMix Plus (Novoprotein, 

Shanghai, China). The qPCR primer sequences of 

EZH2 gene were 5’-CCCGCTGAGGATGTGGATAC-

3’ and 5’-CATGGTTAGAGGAGCCGTCC-3’, primer 

sequences of SIDT1 were 5’-AGCCCCTCTCAACCTC 

AGTA-3’ and 5’-GCAGCTTTCTTGGTCATGGA-3’, 

primer sequences of CELF2 were 5’-CAGCACCAATG 

CAAACCCTC and TCCCGAGAGAGGTCAAGGAG-

3’, which were designed by Primer Premier 5. 

 

The quality of cDNA samples was verified using 

GAPDH as a housekeeping gene. 

 

Verification of screened RBPs by western blot 

 

Protein lysates were prepared using RIPA lysis buffer 

(0.1% SDS, 1% NP-40, 1 mM EDTA, 50 mM Tris PH 

7.5, 150 mM NaCl, 0.25% deoxycholate) with protease 

and phosphatase inhibitors (Roche, Welwyn Garden 

City, UK). Protein concentration was determined using 

BCA Protein Assay Kit (Beyotime, Shanghai, China). 

Following 10% SDS gel electrophoresis and subsequent 

immunoblotting, bound anti-EZH2 antibody (1:1000), 

protein expression was detected by ECL 

Chemiluminescence substrate (Biosharp, Shanghai, 

China). 

 

Verification of screened RBPs by colony-forming 

assay 

 

HBE, HK1 and Hep2 cells were diluted and plated into 

six-well plates in triplicate to execute a colony-

formation assay (CFA). Inoculate 200 cells into each 

well of a 6-well plate, change the medium every 3 

days, and culture for 2 weeks. After that, the colonies 

containing more than 100 cells were fixed by 

methanol, stained using 0.3% crystal violet (Sigma, 

USA) and counted manually. And the colony 

formation rate was reckoned using formula as below: 

colony formation rate = (number of colonies / number 

of seeded cells) × 100%. 

 

Abbreviations 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The relationship between the expression of RBPs in prognostic model. Cor: Correlation coefficient. The 

value range of correlation coefficient is (- 1, 0) or (0, 1). When the value range is (- 1, 0), it means negative correlation, when the value range 
is (0, 1), it means positive correlation. 
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Supplementary Figure 2. Gene set enrichment analysis (GSEA) of curated genesets and hallmark genesets in high-risk and 
low-risk patients with HNSCC. (A–F) GSEA results in high-risk group, (G–L) GSEA results in low-risk group. 
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Supplementary Figure 3. Nomogram for predicting 1-, 3-, and 5-year OS of HNSCC patients. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3, 4. 

 

Supplementary Table 1. The results of GO and KEGG analysis in 3 modules. 
 

Supplementary Table 2. Correlation analysis of RBPs in 
prognosis model. 

var X var Y Cor P value 

CELF2 CELF2 1 0 

CELF2 CPEB1 0.549586 1.57E-42 

CELF2 SIDT1 0.524933 2.65E-38 

CELF2 RNASE3 0.351555 1.25E-16 

CELF2 KHDRBS3 0.331097 8.06E-15 

CELF2 EIF3L 0.275659 1.48E-10 

CELF2 EZH2 0.250421 6.62E-09 

CELF2 RNASE10 -0.07367 0.092696 

CPEB1 CPEB1 1 0 

CPEB1 CELF2 0.549586 1.57E-42 

CPEB1 KHDRBS3 0.510051 6.47E-36 

CPEB1 EIF3L 0.324573 2.86E-14 

CPEB1 SIDT1 0.311356 3.38E-13 

CPEB1 EZH2 0.241256 2.38E-08 

CPEB1 RNASE3 0.189666 1.29E-05 

CPEB1 RNASE10 -0.06186 0.158187 

EIF3L EIF3L 1 0 

EIF3L KHDRBS3 0.448004 0 

EIF3L EZH2 0.345825 4.96E-16 

EIF3L CPEB1 0.324573 2.86E-14 

EIF3L CELF2 0.275659 1.48E-10 

EIF3L RNASE3 0.064712 0.139812 

EIF3L RNASE10 -0.04887 0.265031 

EIF3L SIDT1 0.024124 0.582364 

EZH2 EZH2 1 0 

EZH2 EIF3L 0.345825 4.96E-16 

EZH2 CELF2 0.250421 6.62E-09 

EZH2 KHDRBS3 0.243148 2.04E-08 

EZH2 CPEB1 0.241256 2.38E-08 

EZH2 SIDT1 0.232025 8.24E-08 

EZH2 RNASE10 -0.13339 0.002258 

EZH2 RNASE3 0.086188 0.049055 

KHDRBS3 EIF3L 0.448004 0 

KHDRBS3 KHDRBS3 1 0 

KHDRBS3 CPEB1 0.510051 6.47E-36 

KHDRBS3 CELF2 0.331097 8.06E-15 

KHDRBS3 EZH2 0.243148 2.04E-08 

KHDRBS3 SIDT1 0.133576 0.002226 

KHDRBS3 RNASE3 0.106858 0.014583 

KHDRBS3 RNASE10 -0.01227 0.77979 

RNASE10 RNASE10 1 0 
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RNASE10 EZH2 -0.13339 0.002258 

RNASE10 RNASE3 -0.09274 0.034139 

RNASE10 CELF2 -0.07367 0.092696 

RNASE10 CPEB1 -0.06186 0.158187 

RNASE10 EIF3L -0.04887 0.265031 

RNASE10 SIDT1 -0.04534 0.301168 

RNASE10 KHDRBS3 -0.01227 0.77979 

RNASE3 RNASE3 1 0 

RNASE3 CELF2 0.351555 1.25E-16 

RNASE3 SIDT1 0.255608 3.13E-09 

RNASE3 CPEB1 0.189666 1.29E-05 

RNASE3 KHDRBS3 0.106858 0.014583 

RNASE3 RNASE10 -0.09274 0.034139 

RNASE3 EZH2 0.086188 0.049055 

RNASE3 EIF3L 0.064712 0.139812 

SIDT1 SIDT1 1 0 

SIDT1 CELF2 0.524933 2.65E-38 

SIDT1 CPEB1 0.311356 3.38E-13 

SIDT1 RNASE3 0.255608 3.13E-09 

SIDT1 EZH2 0.232025 8.24E-08 

SIDT1 KHDRBS3 0.133576 0.002226 

SIDT1 RNASE10 -0.04534 0.301168 

SIDT1 EIF3L 0.024124 0.582364 

 

Supplementary Table 3. Clinicopathological parameters of all patients in HNSCC. 
 

Supplementary Table 4. RNA binding proteins list. 


