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Abstract  
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and 
processes leading to cognitive decline. This process represents the major risk factor for aging-related 
diseases such as Alzheimer’s disease, Parkinson’s disease, and ischemic stroke. The incidence of all 
these pathologies increases exponentially with age. Research on aging biology has currently focused 
on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive 
deficit and neurodegeneration, common features of aging-related pathologies, are related to the 
alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic 
factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that 
modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration 
and promoting neural regeneration in several neurological diseases. Those treatments include both 
the direct administration of neurotrophic factors and the induced expression with viral vectors, 
neurotrophins’ binding with biomaterials or other molecules to increase their bioavailability but also 
cell-based therapies. Considering neurotrophins’ crucial role in aging pathologies, here we discuss the 
involvement of several neurotrophic factors in the most common brain aging-related diseases and the 
most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Key Words: Alzheimer’s disease; brain; brain-derived neurotrophic factor; glial cell-derived 
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Introduction 
Neurotrophic factors and their receptors
Neurotrophins (NTs) exert a pivotal role in the central and peripheral nervous 
systems in controlling homeostasis and neuronal survival and also synaptic 
plasticity processes (Duan et al., 2022). 

NTs are first synthesized as proforms (pro-neurotrophins) that are processed 
by proteolytic cleavage to the mature secreted forms. For example, pro-brain 
derived neurotrophic factor (proBDNF) and pro-nerve growth factor (proNGF) 
can be cleaved either intracellularly by the action of furin or proconvertase, 
or extracellularly by the action of plasmin and matrix metalloproteinases. 
Notably, pro-neurotrophins elicit activities opposite to those of their mature 
counterparts.

Nerve growth factor (NGF) is the first discovered neurotrophin (Levi-
Montalcini, 1964; Lorenzini et al., 2021). Moreover, the family includes brain 
derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), and neurotrophin 
4/5 (NT4/5) (Skaper, 2018). Neurotrophins were described for the first time 
for their activity in neuronal development, but it has been shown that these 
molecules can exert multiple functions such as participating in neuronal 
differentiation, growth of axons and dendrites, and synaptic plasticity 
(Kowiański et al., 2018). 

Neurotrophins are a part of the neurotrophic factors that include also 
neurokines and glial cell-derived neurotrophic factor (GDNF) family ligands. 
GDNF is expressed by neurons and, interestingly, it has been shown that it 
can also derive from a single neuronal subpopulation. Belonging to the same 
GDNF family, neurturin (NRTN), artemin (ARTN), and persephin (PSPN) are 
other crucial factors that regulate neuronal survival and function (Saarma 
and Sariola, 1999; Duarte Azevedo et al., 2020). NRTN together with ARTN 
and PSPN acts to support multiple neuronal populations in the central 
nervous system (CNS) such as midbrain dopamine neurons and motoneurons 
(Sariola and Saarma, 2003). Additionally, GDNF, NRTN, and ARTN support the 
survival and regulate the differentiation of several peripheral neurons, such 
as sympathetic, parasympathetic, sensory, and enteric neurons (Airaksinen 
and Saarma, 2002). Furthermore, NRTN, ARTN, and PSPN have domains that 
are very similar in sequence to those of the transforming growth factor beta 
family, dimerize through the equivalent cysteine, and have similar structures 
(Wang et al., 2006; Morel et al., 2020).

NTs bind with different receptors: a related member of the tropomyosin 
receptor kinase (Trk) receptor tyrosine kinase family and the mutual p75 

neurotrophin receptor (p75NTR) part of the tumor necrosis factor receptors 
(Sajanti et al., 2020), which regulates cell survival/death but it can also 
regulate neurite outgrowth. Moreover, p75NTR can also contribute to neuronal 
differentiation and cell cycle exit (Underwood and Coulson, 2008). 

Trk receptors represent a family of receptor tyrosine kinases that present an 
extracellular domain for NT binding, a unique transmembrane domain, and 
an intracellular domain with tyrosine kinase action. In mammals, there are 
three different Trks: TrkA, TrkB, and TrkC. NTs bind with the same affinity to 
p75NTR, nevertheless, the NTs are more specific for their interaction with the 
Trk receptors; NGF usually binds TrkA, BDNF and NT4/5 are favored ligand for 
TrkB and NT3 for TrkC. This specification is not total and NT3 can also bind 
TrkA and TrkB. Moreover, the activity of slice variants receptors containing 
deletions in the extracellular domain and truncations in the intracellular 
region (kinase domain included) has been described. TrkB splice variants, 
described as T1 and T2, are mostly present in the mature brain (Cao et al., 
2020).

NTs, in their mature form, generate homodimers that can bind together two 
receptor molecules. Moreover, Trk receptors can form homodimers that can 
concurrently bind two ligands or can associate with p75NTR (Figure 1). For 
this reason, a neurotrophic dimer can concurrently bind a Trk dimer or a 
Trk:p75NTR complex (Conroy and Coulson, 2022). The presence of Trk:p75NTR 
complex allows lower concentrations of NTs to start signaling via the Trk 
pathway than in Trk receptors alone (Conroy and Coulson, 2022). Sortilin, a 
co-receptor able to bind the Trk receptors, is involved in TrkA anterograde 
transport along axons enhancing neurotrophins signals. Moreover, in multiple 
human cell lines, low sortilin levels might affect neurotrophin trafficking and 
release. Sortilin interacts also with p75NTR forming a heteromeric complex 
at cell surface levels then triggering the pro-neurotrophin cell death signals 
(Bothwell, 2019).

However, p75NTR signaling inhibits axon growth and dendritic complexity via 
the GTPase RhoA (Schmidt et al., 2022). Furthermore, whereas Trk receptors 
bind only mature NTs, p75NTR can also bind pro-neurotrophins generating 
more elaborate signaling. NGF pro form can induce cell death through a 
p75NTR and sortilin complex (Figure 1). Moreover, pro-BDNF produces axon 
pruning of cultured neurons from the hippocampus (Meeker and Williams, 
2015; Camuso et al., 2022). Trk signaling comprises survival and differentiation 
pathways while p75NTR activity depends on the cells state and the formation 
of complexes in association with several co-receptors and ligands, such as 
sortilin, as mentioned above, for apoptosis and Nogo/Lingo-1/NgR for axonal 
pruning (Vilar and Mira, 2016). 
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For what concerns p75NTR, after shedding and receptor intramembrane 
proteolysis, the intracellular domain is released, and it can perform 
intracellular activities relevant to migration, proliferation, and transcriptional 
modulation (Wislet et al., 2018). 

p75NTR-dependent death signaling is mediated via one or more of the 
receptor’s intracellular co-receptors, leading to c-jun kinase activation, and 
then p53, Bax-like proteins, and caspases activation. Activation of these 
pathways has been shown in multiple experimental conditions to be ligand-
dependent. p75NTR regulation of neurite outgrowth is Rho A-dependent, in 
some cases following activation by myelin proteins together with the Nogo66 
receptor. Moreover, it can also facilitate neuronal differentiation and cell cycle 
exit (Becker et al., 2018).

Regarding GDNF family ligands, all of them bind to the receptor tyrosine 
kinase RET that acts as their common signaling receptor. The factors binding-
specificity is due to GDNF family receptor (GFR) α proteins. Specifically, 
GDNF family ligands form a high-affinity complex with each GFRα protein. 
GDNF, NRTN, ARTN, and PSPN bind to GFRα1, GFRα2, GFRα3, and GFRα4, 
respectively. The complex formation leads to the transphosphorylation of 
two RET molecules at the specific tyrosine residues in their tyrosine kinase 
domains triggering intracellular signaling (Donnelly and Pierchala, 2020). 
At this point, RET can activate multiple pathways such as the mitogen-
activated protein kinase pathway, which regulates neurite outgrowth and the 
phosphoinositide 3-kinase (PI3K) pathway that modulate cell survival. The 
phospholipase Cγ signaling affects the intracellular level of calcium ions by 
increasing the level of inositol (1,4,5)-trisphosphate. GDNF signaling activates 
Src-family kinases, which also lead to neurite outgrowth and neuronal survival 
(Cintrón-Colón et al., 2020; Figure 1).

The therapeutic potential of neurotrophic factors has been shown for years, 
with clinical trials in neurodegenerative pathologies extending back at least 
25 years.

Neurotrophic factors were able to enhance the activity of the dopamine 
system improving innervation and increasing cell survival in Parkinson’s 
disease (PD) individuals (Chmielarz and Saarma, 2020). 

For example, the long-term effects of adeno-associated virus (AAV)-NRTN 
injections in a post-mortem study after 8–10 years from the virus injection 
in the putamen and substantia nigra were recently described. Notably, in the 
areas of NRTN expression, dopaminergic innervation was ameliorated and 
dopamine cell markers were increased, thus showing the long-term benefits 
of this neurotrophic factor-based treatment (Chu et al., 2020). 

The first NGF-gene therapy trial for AD was performed on mild diagnosis 
patients (Tuszynski et al., 2005). In this study, the NGF gene was administered 
through genetically manipulated autologous fibroblasts and then introduced 
into the basal forebrain. Results showed a significant increase in glucose 
uptake in multiple brain regions and improved cognitive tests (Tuszynski et 
al., 2015). Moreover, also for AD, AAV-based gene delivery was used to treat 
symptoms and progression of this pathology (Rafii et al., 2014). Recently, a 
phase II clinical trial using AAV vectors expressing human NGF showed that 
this treatment was well-tolerated over 2 years but with no effects on clinical 
outcomes (Rafii et al., 2018).

Another technique used to deliver neurotrophic factors directly to the brain 
regions of interest is the encapsulated cell biodelivery system. In encapsulated 
cell biodelivery-NGF clinical studies, AD patients were treated at the same 
time with cholinesterase inhibitors for the long term (Hampel et al., 2018). 

Currently, there is only one clinical study on Stroke for the evaluation of the 
effects of the central administration of neurotrophic factors (NCT03686163). 
In this trial, 106 patients were daily treated with intranasal NGF for 2 weeks 
beginning at least 72 hours post-stroke. Moreover, in different clinical trials 
the effects of agents that have the potential to influence BDNF levels such as 
memantine in stroke recovery were evaluated (NCT02144584). In addition to 
pharmacological treatments, different interventions comprising exercise or 

motor therapy were able to increase neurotrophin levels (Małczyńska-Sims et 
al., 2020). In the next paragraphs, we will describe the role of neurotrophic 
factors in a healthy brain and in age-related disorders such as PD, AD, and 
stroke and the therapeutic potential of neurotrophin-based approaches in 
these diseases.

The role of neurotrophic factors in the adult brain
Recent evidence showed that NTs and their receptors represent crucial 
regulators in adult neurogenesis (Leal-Galicia et al., 2021). Notably, due to 
the presence of a niche of neural stem cells (NSCs) in the subependymal or 
subventricular zone (SVZ) near the lateral ventricles, and the subgranular zone 
(SGZ) of the dentate gyrus in the hippocampus, that maintain the ability to 
proliferate and differentiate in neurons through intermediate progenitor cells, 
neurons production continues throughout life (Leal-Galicia et al., 2021). 

It is now clear the involvement of BDNF/TrkB in adult hippocampal 
neurogenesis. It has been shown that neurogenesis is attenuated by BDNF 
knockdown in vivo in the dentate gyrus using lentiviral-mediated RNAi but 
increased after BDNF administration (Taliaz et al., 2010). TrkB receptor is 
crucial for normal proliferation and neurogenesis in the SGZ even though 
conflicting evidence has been reported (Shohayeb et al., 2018).

Conditional deletion of TrkB in neural stem cells in the hippocampus 
decreased SGZ proliferation in post-natal day 15 animals and in adults, 
without any effect on cell survival (Li et al., 2008). An alteration in TrkB 
activation in vivo (TrkB-T1-overexpressing mice) showed an increased 
proliferation and a decrease in cell survival (Sairanen, 2005). Moreover, BDNF 
promotes the proliferation of hippocampal neural progenitor cell culture via 
TrkB (Li et al., 2008).

The p75NTR is also involved in the regulation of adult neurogenesis (Meier 
et al., 2019). In the knock-out animals for p75NTR that only express the short 
p75NTR isoform,  a reduction in the number of neuroblasts and newborn 
neurons was observed together with an increase in neurodegeneration and 
altered hippocampal-mediated behavior (Catts et al., 2008). Nevertheless, 
in knockout mice that lack both the long and short isoforms of p75NTR, an 
increase in the number and complexity of cholinergic newborn neurons and a 
decrease in cell death were reported (Poser et al., 2015). 

The post-natal neurogenesis in the mammalian brain represents a unique 
form of plasticity that can have the potential to create new connections 
and modify existing neuronal circuits. Consequently, adult neurogenesis 
is implicated in hippocampal modulation in terms of both structure and 
function. High neurogenesis events positively impact processes such as 
learning, memory, and cognitive flexibility (Cushman et al., 2021).

Moreover, NSCs can also generate glial cells (Doetsch, 2003) and, in turn, 
they are modulated by signals from different cell types for example astrocytes 
and endothelial cells in both the SVZ and SGZ (David-Bercholz et al., 2021). 
Moreover, due to SVZ-NSCs contact with the ventricular lumen, their activity 
is controlled by molecules inside the cerebral spinal fluid, and by signals from 
ependymal cells (Alonso and Gato, 2018; Kaneko and Sawamoto, 2018).

Overall, neurotrophins have a crucial role in the adult CNS, generating 
trophic signals that preserve target innervation, sustain cell survival, 
plasticity mechanisms, and axonal pruning, modulate neurotransmitter 
levels and neuronal excitability, and facilitate regeneration and sprouting as a 
consequence of neuronal damage. 

It has been widely shown both in vivo and in vitro that a neurotrophin 
reduction can determine cell alterations, and the treatment with 
neurotrophins can modulate these events (Miranda et al., 2019). For example, 
humans with a BDNF-gene polymorphism showed a decreased volume in the 
hippocampus due to a decreased wiring of the neurons (Miranda et al., 2019).

Low levels of functional NGF, BDNF, and NT3 genes resulted in severe 
neuronal deficits and in early post-natal death. BDNF is one of the crucial 
factors leading to the increase of dendrites length and spine densities in 

Figure 1 ｜ Neurotrophic factors and receptors: neurotrophic factors interaction with receptors, the implication of co-receptors, and their main activities in the brain.
BDNF: Brain-derived neurotrophic factor; ECS: extracellular space; GDNF: glial cell-derived neurotrophic factor; GFRα1/2: GDNF family receptor alpha-1/2; ICS: intracellular space; 
NGF: nerve growth factor; NRTN: neurturin; NT-3/4: neurotrophin-3/4; Trk: tropomyosin receptor kinase receptors. 
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the CA1 area in the hippocampus (De Vincenti et al., 2019). Long-term 
depression can decrease spine densities and this event is modulated by 
stress, environment, age, and neurotrophic support (Pinar et al., 2017; Kaul 
et al., 2020). It has been shown that treatment with BDNF can decrease long-
term depression mechanisms in the hippocampus (von Bohlen und Halbach 
and von Bohlen und Halbach, 2018).

BDNF is a crucial player involved in the modulation of long-lasting effects 
induced by neuronal plasticity. This would further imply that BDNF action can 
be implicated in antidepressant action (Castrén and Monteggia, 2021). 

The specific action of neurotrophins in different subsets of neurons, always 
suggested a connection with selective neuronal alterations in specific 
diseases, explaining the possibility that a particular neurotrophin can be 
used therapeutically to target a specific neuronal subset under pathological 
conditions (Bahlakeh et al., 2021; Nordvall et al, 2022). 

The aim of this review is to present the most recent advances in neurotrophin-
based pharmacological approaches in the most common aging-related CNS 
diseases. 

Neurotrophic factors administration and half-life
When neurotrophic factors are used in pre-clinical as well as in clinical studies, 
the biodistribution features of these molecules must be taken into account.

For example, to stimulate BDNF-TrkB signaling as a treatment to translate 
in clinics, the main problem is to overpass the blood-brain barrier (BBB) but 
also the modest bioavailability of BDNF due to its chemical characteristics 
(Houlton et al., 2019). It has a plasma half-life of a few minutes in rats and 
a few hours in sheep. BDNF metabolisms occur primarily in the liver due 
to its basic isoelectric pH. For these reasons, chemical modifications of the 
BDNF molecule can be considered to obtain mutants with higher stability, 
neutral isoelectric pH, and enhanced brain penetration (Wang et al., 2019). 
Interestingly, the stimulation mediated by physical exercise can increase its 
bioavailability (Małczyńska-Sims et al., 2020; Palasz et al., 2020). 

Also, NGF does not normally pass through the BBB (Liu et al., 2014). 
Moreover, it must be considered that its direct injection can have serious 
peripheral side effects in patients (Barker et al., 2020).

Invasive administration procedures are more effective such as using a 
catheter, pumps, or through treatment with biodegradable polyethylene 
glycol hydrogel inclosing poly(lactic-co-glycolic acid) particles BDNF-enriched 
(López-Cano et al., 2021). However, these technologies are not applicable 
to chronic neurological disease patients. Non-invasive approaches comprise 
nanoparticle, Trojan horse technology, and nose-mediated delivery. Trojan 
horse technology consists of binding BDNF to molecules that can easily cross 
the BBB (Boado et al., 2007). These molecules can be for example ligands that 
bind endothelial cell receptors or antibodies targeting those receptors (Kim 
et al., 2021). Notably, it has been proven that BDNF can be conjugated to a 
monoclonal antibody against insulin receptors resulting in ten-fold growth in 
BDNF brain levels and a hundred-fold increase in the mean residence time of 
BDNF in the blood without modifying the glycemia. Comparable effects were 
obtained by binding BDNF to an antibody anti-transferrin receptor, lipoprotein 
receptor-related protein 1, or diphtheria toxin receptor (Jones and Shusta, 
2007). A different delivery method for neurotrophins is the intranasal delivery 
(IND) method. The intranasal route is another way to carry macromolecules 
into the brain parenchyma (Erdő et al., 2018).

IND is a non-invasive method that allows a rapid absorption delivering the 
drug directly into the brain overpassing the obstacles of systemic delivery of 
both oral and parenteral drug routes (Tashima, 2020; Crowe and Hsu, 2022). 
Moreover, it allows not only a rapid transport to the brain but also slight 
general exposure to the drug and the opportunity for recurring treatments. 
IND of BDNF determined both a growth in brain tissue levels in ~30 minutes 
and triggered the activity of TrkB and its associated PI3K-AKT signaling (Chen 
et al., 2016).

Data Sources
Extensive bibliographic research was conducted using the PubMed National 
Library of Medicine (NIH), Web of Science platform, Google Scholar, and 
Clinical Key databases. Examples of the search terms used were ‘‘Parkinson’s 
disease’’, ‘‘Alzheimer’s disease’’, ‘‘Stroke’’, ‘‘neurotrophic factors’’, “BDNF”, 
“NGF”, “GDNF”, “therapeutic approach”, ‘‘in vitro’’, ‘‘in vivo,’’, ‘‘clinics’’, 
“experimental studies”. For screening, a restriction was made to those papers 
published in the last 10 years and preferably in English. Priority was given to 
prospective studies and reviews with adequate methodological quality. In 
addition, a secondary search of the bibliography of the papers finally selected 
was carried out to detect possible omissions. For the analysis of all relevant 
publications, consensus meetings were held with all the authors.

Neurotrophic Factors and Alzheimer’s Disease
AD is characterized by structural changes in the CNS, in particular a loss of 
synapses that contact the hippocampus and cortex was reported (Kocahan 
and Doğan, 2017; Kashyap et al., 2019). AD is diagnosed by the formation of 
amyloid-β protein aggregates (formed by β-cleavage of amyloid precursor 
protein) generating extracellular and over-phosphorylated aggregates of tau 
protein (Chen et al., 2017). Neuronal alterations and degeneration occur 
early in the pathogenesis and mostly in the cholinergic neurons of the basal 

forebrain (ChBF), together with a reduced choline acetyltransferase activity 
(Henjum et al., 2022). Choline acetyltransferase activity impairment leads to 
the development of dementia and it is the main cause of AD memory loss. In 
1981, it has been proposed a hypothesis for a common cause of amyotrophic 
lateral sclerosis, Parkinsonism, and AD (Appel, 1981). The hypothesis is 
that these pathologies were caused by the lack of a specific neurotrophic 
hormone. The two candidates for this neuroprotective role were NGF and 
BDNF. Regarding AD, the lack of these specific factors involved in cholinergic 
survival seems to be involved, which led to an insufficient release by target 
areas such as the hippocampus, resulting in neuronal loss. Following Appel 
hypothesis (Appel, 1981), it has been shown that in the region innervated by 
ChBF of rat brains, such as the hippocampus, and in the regions containing the 
soma of these neurons, high levels of NGF are expressed, thus suggesting that 
NGF is a crucial trophic factor for cholinergic neurons (Korsching et al., 1985). 
Moreover, upon the inoculation of radiolabelled NGF into rats’ hippocampus 
or cerebral cortex, NGF is retrogradely transported from the terminals of 
ChBF to their somas (Seiler and Schwab, 1984). NGF binds both with p75NTR 
and TrkA on the surface of the cholinergic neurons of mice, rats, and humans 
(Fahnestock et al., 2001). Notably, over 80% of cholinergic neurons are p75NTR 
positive. A reduction in the number of TrkA-expressing neurons in the basal 
forebrain in AD patients (around 56%) concerning normal brain (Mufson et 
al., 2000) has been associated with cognitive impairment (Ginsberg et al., 
2006a, b). Moreover, through single-cell mRNA analysis in ChBF neurons, a 
decrease in TrkA, TrkB, and TrkC levels during the development of AD was 
reported. In contrast, p75NTR mRNA levels stayed stable even in the last stage 
of the pathology. Overall, the cholinergic system is damaged by multiple 
mechanisms including impaired NGF maturation, altered TrkA/p75 receptor 
fraction, ineffective axonal transport and signaling, amyloid-β-dependent 
modulation of NGF receptors, suboptimal Acetylcholine innervation-mediated 
inflammatory reaction, and amyloid-β-induced cytotoxicity. During the initial 
state and development of AD, the decreased activity of cholinergic synapse 
formation in the cortex and hippocampus is dependent on an ineffective 
maturation of NGF. Moreover, these effects are accompanied by a lack of 
plasmin machinery and increased matrix metallopeptidase 9 activity, leading 
to elevated brain levels of proNGF (Fahnestock et al., 2001; Fabbro and 
Seeds, 2009; Mroczko et al., 2013). Increased proNGF levels determine the 
instauration of a pro-apoptotic signaling and also affect both the mNGF 
binding with its receptor and its axonal transport. Thus resulting in retrograde 
degeneration of ChBF (Ioannou and Fahnestock, 2017; Allard et al., 2018). 
Pro-NGF-induced apoptosis is modulated by the relative expression of TrkA 
and p75 and is fostered by a reduced ratio of TrkA/p75 that is another feature 
of AD (Masoudi et al., 2009). These changes in AD rodent models were 
observed (Tiveron et al., 2013). Notably, in AD11 transgenic mice (expressing 
a recombinant version of the monoclonal antibody mAb αD11 that specifically 
recognizes and neutralizes NGF only in the brain) the reduction of mNGF 
determined primary inflammation and AD-associated neuronal death (Capsoni 
et al., 2011). Interestingly, NGF was observed to directly modulate microglial 
cells dampening inflammation (Rizzi et al., 2018). 

Neurotrophin-based approaches for Alzheimer’s disease 
Currently, the only available treatments for AD are cholinesterase inhibitors 
such as donepezil, rivastigmine, and galantamine and glutamate receptor 
antagonists such as memantine. Unfortunately, these drugs are effective only 
on AD symptoms and can only momentarily stabilize cognitive functions, with 
no effect on disease evolution or gravity (Deardorff et al., 2015; Marucci et 
al., 2021). 

Among neurotrophins, BDNF has been considered a treatment for AD because 
of its role in regulating synapse formation. Emerging in vivo and in vitro 
evidence supported the pro-survival activity of BDNF underlies numerous 
pathologies. In AD, it has also been observed a specific impairment of GFRα1, 
which can play a role in glutamatergic neurotransmission, thus suggesting the 
development of therapeutics for AD that can modulate GFRα1 expression. 
In normal control human neurons in culture, GDNF was able to enhance the 
expression of GFRα1, but not the other three subtypes (GFRα2, GFRα3, and 
GFRα4), whereas GDNF failed to induce GFRα1 expression in AD patient-
derived cultured cortical neurons (Konishi et al., 2014). In contrast, in an in 
vivo study (Gdnf hypermorphic mice, Gdnfwt/hyper), a two-fold increase in 
endogenous GDNF counteracted the overall age-associated decline in the 
cholinergic index observed in the brain of control animals. Moreover, the 
biochemical analysis showed increased levels of NFG in several brain areas of 
old Gdnfwt/hyper mice. These results suggesting the involvement of GDNF in 
the modulation of cholinergic pathways upon aging were also confirmed by 
gene expression analysis (Mitra et al., 2021). Furthermore, it has been shown 
that some compounds that are commonly used to treat AD can modulate 
both BDNF expression and the activation of BDNF signaling (Miranda et al., 
2019). For example, memantine can increase BDNF levels in the limbic cortex 
in in vivo models. Nevertheless, the rise in BDNF levels was only detected at a 
high dose (50 mg/kg). However, this dose is expected to be clinically toxic, and 
the effect was minimal at a lower dose (Marvanová et al., 2001). Notably, it 
has been reported that acetylcholinesterase inhibitors such as donepezil and 
galantamine, commonly used to treat cognitive impairment in early AD, can 
increase serum BDNF levels, while it remains uncertain if they can increase 
BDNF brain levels (Ng et al., 2019). Overall, these molecules can activate 
the AKT pathway, however without affecting the mitogen-activated protein 
kinase pathway that is essential in promoting synaptic growth. Consequently, 
numerous factors must be taken into consideration when administrating 
molecules that can trigger endogenous BDNF production. In particular, 
the molecule must work at a non-toxic dose and generate a sufficient 
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concentration of extracellular BDNF to activate TrkB signaling (Santos TB dos 
et al., 2021). The activation of TrkB signaling is important in the induction of 
synaptic growth. Ultimately, the molecule should have synaptogenic effects: 
specifically, facilitating long-term potentiation, stimulating dendritic spine 
pruning, and improving synaptic protein levels. Every existing pharmacological 
agent with these characteristics could be taken into account for AD treatment 
(Zagrebelsky et al., 2020).

Among the neurotrophins, also NGF has been included in clinical trials for 
multiple diseases such as peripheral neuropathies, human immunodeficiency 
virus infections, and AD (Aloe et al., 2012). 

For example, in a preclinical study on Sprague-Dawley rat model, 
intracerebroventricular injection of NGF into the adult brain was shown to 
determine axonal sprouting of mature, intact axons in association with the 
intradural segment of the internal carotid artery (Isaacson et al., 1990). 
Notably, in treated-animals, after NGF treatment, a three-fold increase in the 
overall number of axons accompanying the vessel wall was observed when in 
comparison to control animals (Isaacson et al., 1990).

To administer NGF into rodents’ brains, IND method was used (Cattaneo 
et al., 2008). Furthermore, the efficiency of this administration route has 
been shown in the AD11 anti-NGF transgenic mice model, determining a 
decreased cognitive loss in AD11 mice (De Rosa et al., 2005). Another way 
of administration to target cholinergic markers in the basal forebrain in 
rats is the ocular surface route (Lambiase et al., 2007). Moreover, ocular 
administration of NGF in adult rats was able to induce cell proliferation in the 
sub-ventricular zone shown by an increased number of Ki67 expressing cells 
(indicating cells that can proliferate) which co-express also p75NTR (Tirassa, 
2011). 

Another tool to target tissues and organs of interest is using stem cells as 
carriers of therapies. Nowadays, cell therapy represents the essential core 
of regenerative medicine. These cells can deliver neurotrophins in damaged 
areas of the brain, modulating events such as synaptic plasticity and increasing 
neuronal survival. For example, NSCs can express high levels of BDNF and 
NGF (Marsh and Blurton-Jones, 2017). Notably, in transgenic animal models 
of AD, increased synaptic density in the hippocampus, memory impairment, 
and neurodegeneration after NSCs transplantation were reported (Blurton-
Jones et al., 2009; Kim et al., 2010). Furthermore, viral vector-mediated gene 
transfer procedures (i.e., those mediated by lentiviruses) showed some useful 
features in association with cell therapy applications. Recently, it has been 
shown that infection by a lentiviral vector overexpressing NGF led to effective 
production of NGF in rat monocytes (Hohsfield et al., 2013).

Nagahara et al. (2009) successfully delivered the lentivirus NGF gene into 
the cholinergic basal forebrain for a 1-year period in adult monkeys without 
any systemic leakage of NGF or development of anti-NGF antibodies, nor 
the presence of brain inflammatory molecules, the development of pain or 
weight loss. 

The first clinical study was performed in individuals with mild AD, treated 
with genetically manipulated autologous fibroblasts expressing the NGF gene. 
Fibroblasts were implanted into the patient’s basal forebrain (Tuszynski et al., 
2005). This study demonstrated a huge increase in glucose uptake in multiple 
cortical regions and cognitive tests produced data that were alleviated 
or weakened at a slower percentage compared with normal pathological 
conditions (Tuszynski et al., 2005). Moreover, also AAV-based NGF gene 
intracerebral supply was applied clinically to AD patients (Rafii et al., 2014). 
In this case, AAV-NGF delivery was well-accepted for over 2 years but without 
clinical consequences (Rafii et al., 2018). The main limitation of gene therapy 
is the permanent genetic modification of patients’ neurons. To overcome this 
problem, self-inactivating viral vectors can be used to express transgenes with 
minimum invasiveness and can also be switched off (Schambach et al., 2007; 
Thornhill et al., 2008).

On the other hand, among available technological tools, the use of a simian 
immunodeficiency virus for long-term delivery of proteins for therapeutic 
purposes would be challenging (Munis, 2020).

Neurotrophic Factors and Parkinson’s Disease
PD is an age-associated neurodegenerative pathology, as a consequence 
of the degeneration of dopaminergic neurons in the substantia nigra pars 
compacta (SNc). Dopaminergic neuronal loss and the consequent reduction 
of striatal dopamine levels lead to the major symptoms of PD that are tremor, 
rigidity, and slowness of movements. Another PD feature is the presence of 
eosinophilic cytoplasmic intracellular inclusions called Lewy bodies, whose 
main constituent is aberrantly folded α-synuclein protein clusters (Pramanik 
et al., 2017; Hayes, 2019).

Emerging evidence showed that neurotrophins can play a role in PD 
pathogenesis. It has been suggested that Lewy bodies formation can 
modulate GDNF and BDNF levels resulting in the lack of BDNF expression and 
altering neuronal BDNF transport (Pramanik et al., 2017; Miller et al., 2021). 
Furthermore, since 1999, several post-mortem studies indicated decreased 
BDNF levels in SNc and striatal cell bodies (caudate and putamen) of PD-
affected individuals (Nagatsu and Sawada, 2007). Notably, in situ hybridization 
studies showed a strong reduction of BDNF expression in dopaminergic 
neurons in PD patients’ substantia nigra in contrast with healthy subjects that 
express high levels of this neurotrophin (Howells et al., 2000). The interplay 
between low BDNF levels and PD development was confirmed also by a 

(123) I-PE2I single-photon emission computer tomography study explaining a 
positive association between circulating BDNF levels and striatal dopaminergic 
transporters accessibility in PD individuals (Ziebell et al., 2012). 

GDNF was also connected to dopaminergic depletion during PD pathogenesis. 
Indeed, in PD patients, a reduction of GDNF in SNc compared to other 
neurotrophins was revealed, thus suggesting GDNF is the most vulnerable 
factor and the earliest affected in survived substantia nigra neurons (Mesa-
Infante et al., 2022). 

In vitro studies suggested that GDNF exerts its effect on dopaminergic 
neurons through the activation of mitogen-activated protein kinase and PI3K 
intracellular pathways (Onyango et al., 2005). GDNF signaling also involves 
Proto-oncogene tyrosine-protein kinase c-Src to promote neurite outgrowth. 
Although the GFRα1/Ret complex is the most studied GDNF receptor, it is 
known that this trophic factor can also bind to the alternative signaling system 
such as neural cell adhesion molecules (Paratcha et al., 2003).

Mice that present a partial deletion of Gfrα1 (heterozygous) showed 
decreased tyrosine hydroxylase (TH) fiber density in the striatum (STR) 
together with a lower number of TH+ neurons in the substantia nigra. 
Furthermore, these mice showed increased sensitivity of nigrostriatal 
dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
toxicity (Boger et al., 2008). Overall, these observations suggested that GDNF 
exerts a crucial role in trophic protection and in counteracting toxic damage 
(d’Anglemont de Tassigny et al., 2015). 

Interestingly, numerous PD in vivo models showed lower BDNF levels 
explaining a downregulation of neurotrophin expression with results that 
were not constant in whole agreement, maybe due to different experimental 
conditions. Notably, BDNF gene silencing led to the loss of dopaminergic 
neurons and motor signs, confirming the association of BDNF with motor 
and cognitive impairment in PD, safeguarding neurodegeneration (Baker et 
al., 2005; Baquet, 2005). Nevertheless, divisive results were obtained from 
multiple in vivo PD models.

Neurotrophin-based approaches for Parkinson’s disease
To date, there are only treatments that can act in alleviating PD-associated 
symptoms such as levodopa preparations, dopamine agonists, and 
monoamine oxidase-B inhibitors but unfortunately, there is no cure to 
counteract the onset and progression of this pathology (Carrarini et al., 2019).
Advanced treatments comprise deep brain stimulation, and MRI-guided 
focused ultrasound for patients that show medication-resistant tremors and 
dyskinesias (Ito et al., 2018).  

Therapeutic effects of neurotrophins in PD were widely investigated in 
neurotoxin-induced in vivo models of PD [6-hydroxydopamine (6-OHDA) and 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine] both in mice and rats and in 
non-human primates (Tenenbaum and Humbert-Claude, 2017).

Numerous in vitro studies on rat mesencephalic cultures showed the potential 
of BDNF in rescuing dopaminergic neurons, promoting their rescue in the 
ventral tegmental area and medial SNc and supporting their differentiation 
into dopaminergic neurons (Murer et al., 1999; Baquet, 2005). BDNF is crucial 
not only for its neuroprotective properties but also can counteract apoptosis, 
oxidation mechanisms, and autophagy, thus leading to mitochondrial 
alteration (Zuccato and Cattaneo, 2009; Miller et al., 2021).

For example, Hernandez-Chan and his group (Hernandez et al., 2000), used 
a delivery technology called neurotensin-polyplex that uses neurotensin 
receptors for the incorporation of nanovesicles exclusively in dopaminergic 
cells. BDNF treatment after 6-OHDA injection in vivo generated a substantial 
improvement in PD symptoms due to the protection of striatal dopaminergic 
neurons. Furthermore, the sprouting of dopaminergic fibers without the 
rescue of dopamine levels and the increased amount of TH-positive cells were 
reported (Hernandez et al., 2000).

Overall, these results suggest that BDNF in the substantia nigra was not able 
to stimulate neurogenesis but it could improve neurogenesis both in the 
substantia nigra and STR, in line with preceding works (Somoza et al., 2010).

As described for AD, numerous studies in PD reported that some treatments 
exert neuroprotective effects modulating BDNF expression in the brain (Palasz 
et al., 2020). These approaches include the use of probiotic formulations, 
such as SLAB51 that significantly increased BDNF levels in a 6-OHDA model of 
PD both in vitro and in vivo (Castelli et al., 2020). 

In another work, mesenchymal stem cells’ secretome was injected into the 
SNc and STR of 6-OHDA rats, characterizing the behavioral functioning and 
influencing histological parameters of inoculated animals versus control 
groups. Secretome injection increased the number of TH-positive cells and 
neuronal terminals in SNc and STR respectively, thus ameliorating motor 
performance (Teixeira et al., 2020). Moreover, from the proteomic analysis, it 
has been observed that these cells can release BDNF (Teixeira et al., 2020).

Cerri et al. (2015) supported the secretome effect, demonstrating that 
after the injection of mesenchymal stem cells, functional activity of the 
dopaminergic system was restored and the authors attributed those effects to 
an in situ release of BDNF by mesenchymal stem cells.

Apart from BDNF, the role of other neurotrophins was also widely explored, 
including GDNF and its family member NRTN. GDNF is present only in the 
dorsal and ventral STR, the anteroventral nucleus of the thalamus, septum, 
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and subcommissural organ (Pascual et al., 2011). Notably, GDNF receptors are 
not expressed in the STR, but they are widely present in the substantia nigra 
cells (Trupp et al., 1997), thus proposing a specific activity on SNc neurons.

Moreover, physical exercise (Palasz et al., 2019a) was able to mobilize 
neurotrophic factors such as BDNF and GDNF leading to a neuroprotective 
and anti-inflammatory action in animal models of parkinsonism (Palasz et al., 
2019b).

Notably, GDNF was more effective compared to BDNF in counteracting 
dopaminergic neurodegeneration of SNc in the brain of lesioned PD in vivo 
models (Rosenblad et al., 2000; Sun et al., 2005). It has been reported that 
GDNF can also trigger axonal sprouting of damaged SNc neurons, but it is 
less effective in inducing reinnervation in the STR or dopaminergic neurons 
activity rescue in the 6-OHDA model (Rosenblad et al., 2000). 

In vitro studies indicated that GDNF was able to counteract cell death of 
embryonic and post-natal dopaminergic neurons. Furthermore, in vivo, 
repeated injection of GDNF into the intrastriatal nigral grafts increased the 
survival and fiber outgrowth of dopaminergic neurons. It has also been 
observed that repeated infusions of GDNF using an osmotic pump for 2 
weeks or from implanted polymer-encapsulated genetically modified cells for 
6 weeks resulted in an increased survival from 200 % to 1300% (Brundin et 
al., 2000; Ridet et al., 2000).

NRTN showed a neuroprotective effect both on the neurodegeneration of 
SNc dopaminergic neurons in in vivo model of PD and on cultured ventral 
mesencephalic dopaminergic neurons (Fjord-Larsen et al., 2005). NRTN 
biodistribution is less efficient compared with GDNF due to its high affinity 
with heparin (Hadaczek et al., 2010; Runeberg-Roos et al., 2016). For this 
reason, modified NRTNs with a lower affinity to heparin were produced and 
resulted to have increased chemical stability and biodistribution as well as to 
be more effective in a 6-OHDA rat model (Runeberg-Roos et al., 2016).

As previously described for NGF, the injection of genetically modified human 
fibroblasts, protected by a semipermeable polymer capsule, generated the 
release of GDNF in the STR of a 6-OHDA-lesioned rodent model, leading to a 
significant progress of motor signs related to the reinnervation of TH-positive 
axons in STR (Sajadi et al., 2006). 

An innovative strategy is to transplant hematopoietic stem cells 
taking advantage of the propensity of these cells to migrate to sites of 
neurodegeneration. A research group observed macrophage-mediated GDNF 
delivery rescued dopaminergic neurodegeneration and safeguarded against 
both motor and non-motor symptoms in a rodent PD model (Chen et al., 
2020)

Furthermore, the use of viral vectors allows a specific expression only in 
selected cells mimicking a more natural tissue ligand distribution. Notably, 
for PD, GDNF expression through viral vectors allows a temporal and amount 
control of GDNF expression to inhibit compensatory activities on dopamine 
homeostasis such as impairments in TH production (Georgievska, 2002). 

Depression is another common aspect of PD patients and impacts 
numerous other clinical aspects of the pathology. Moreover, depressive 
disorders negatively impact the quality of life, motor and cognitive deficits, 
functional disability, and other psychiatric comorbidities. Recently, it has 
been demonstrated that sigma receptors, especially the sigma-1 receptor 
subtype can regulate ER stress sensors, the activation of transcription 
factors, and BDNF expression. The combination of these processes could 
explain the activity of sigma-1 receptors-targeting drugs in the regulation 
of neuronal survival in target areas of the brain and the development of 
antidepressant action (Voronin et al., 2020; Ren et al., 2022). Underlying this 
link, pharmacological stimulation of sigma receptors in particular sigma 1 
showed neurorestorative and protective effects in experimental models of 
PD, possibly increasing levels of BDNF or other neurotrophic factors that are 
compromised in neurological disorders (Francardo et al., 2014; Nguyen et al., 
2017).

Neurotrophic Factors and Stroke
Stroke, the most common serious consequence of the cerebrovascular 
disease, is the major cause of severe disability and of hospitalization for 
neurological disease. It represents a destructive disease that it is generated 
when a blood vessel that targets the brain either bursts or it is blocked 
by a clot (Herpich and Rincon, 2020). Nowadays, the only Food and Drug 
Administration-approved treatment for stroke is the tissue plasminogen 
activator administered within 3 hours of an acute attack. For this reason, it 
represents a treatment for only a small group of patients (2–5%) (Barthels 
and Das, 2020). 

Thus, so far, current therapeutics mostly focused on rescuing neurons from 
the injury at the acute phase after the stroke, which is both a challenging 
method to improve stroke signs and represents a problem for the affected 
individuals to obtain actual treatments early enough. Unfortunately, these 
neuroprotective treatments were not successful in humans, probably due 
to the contribution of intricate mechanisms leading to neurodegeneration 
during a stroke (Barthels and Das, 2020; Liu et al., 2020).

BDNF is crucial in the prognosis, pathogenesis, and rehabilitation of stroke. 
It is now well known that a small amount of systemic BDNF is connected 
with an elevated risk of stroke and reduced rescue (Eyileten et al., 2021). 

Neuroplasticity is the main event in post-stroke rehabilitation and the crucial 
role of BDNF in this mechanism has been studied through works that focused 
on the post-stroke treatment of aphasia and motor activities impairment (Su 
and Xu, 2020). Those are events that are mostly regulated by the process of 
neuroplasticity. Emerging evidence on rat ischemia models showed that when 
BDNF synthesis was ablated, the benefits on the recovery were predominantly 
blocked, while intravenous injection of BDNF increased the functional motor 
recovery in contrast with untreated individuals (Ploughman et al., 2009). 
Other kinds of therapies both behavioral and physical, for example, physical 
exercise, transcranial direct current stimulation, and extremely low-frequency 
electromagnetic field therapy are all able to impact both BDNF systemic and 
brain amount (Moya Gómez et al., 2021; Zettin et al., 2021). Furthermore, 
BDNF-dependent learning memory can also have a role in the post-stroke 
restoration of motor function and language relearning (Ploughman et al., 
2009; Szelenberger et al., 2020).

Cerebral ischemia can modulate the expression of factors involved in GDNF 
signaling. Both expression and protein levels of GDNF are upregulated in in 
vivo models of transient focal and global ischemia. Furthermore, increased 
expression of GFRα1 was detected in injured brain spots after transient 
middle cerebral artery occlusion (MCAO), an in vivo model of focal ischemia 
(Mokhtari et al., 2017; Zhang et al., 2021).

Neurotrophin-based approaches for stroke
In clinics, promising results have been shown by introducing multiple stroke 
treatments modulating BDNF levels, such as the administration of hormones 
and neurotransmitter-modulating molecules, stem cell injection, and 
modulation of different correlated genes (Miranda et al., 2019).

Due to the CNS’s limited capability to regenerate, usually stroke patients 
recover poorly. For this reason, research is focused on investigating neuronal 
mechanisms of regeneration and repair to restore and improve lost function 
after a stroke event. Most of the work has been focused on the research 
of exogenous-administered neurotrophins to protect injured brain tissue 
through its ability to modulate neuronal growth and survival (Houlton et al., 
2019).

Among all neurotrophins, BDNF has been defined as a principal factor 
participating in rehabilitation-mediated recovery after stroke (Ploughman et 
al., 2009). Furthermore, high levels of BDNF induced by activity can accelerate 
motor recuperation after stroke (Fritsch et al., 2010; Clarkson et al., 2011).

As mentioned above, the recovering action of neurotrophin-based treatments 
was already proved in in vivo models of neurodegenerative pathologies. 
Notably, it has been shown that the direct infusion of BDNF, NGF, and NT-3 
can promote neurite outgrowth, neurogenesis, and functional rescue in in 
vivo models of stroke (Schäbitz et al., 2004, 2007).

Nevertheless, the effects of BDNF and other neurotrophins have been 
previously studied in several stroke models showing a solid regenerative 
activity (Berretta et al., 2014). BDNF effects can be explained through several 
mechanisms in vivo such as the beneficial effects against acute ischemic injury 
(Schäbitz et al., 2004), improved angiogenesis (Kermani and Hempstead, 
2007), neurogenesis (Schäbitz et al., 2007), and neural repair (Mamounas 
et al., 2000), together with boosted synaptic plasticity (Waterhouse and 
Xu, 2009; Clarkson et al., 2011). In stroke patients, positive results after 
the administration of several treatments that influence BDNF levels were 
observed, such as hormones and neurotransmitter-targeting molecules, stem 
cell transplants, and the regulation of BDNF-related genes (Liu et al., 2020).

Nowadays, the use of biomaterials represents an effective delivery tool 
that modifies the pharmacological properties of neurotrophins offering an 
instrument to cross the BBB and target the ischemic brain with an effective 
concentration of the specific compound (González-Nieto et al., 2020).

In particular, hydrogels and their property to expand and fill uneven damaged 
spots in circumstances such as stroke were recognized as enormously useful 
for neurotrophin delivery.

The use of BDNF-embedded hydrogels showed great results in repairing 
the brain after ischemia and supporting functional rescue (Clarkson et al., 
2015; Cook et al., 2017). Notably, it has been investigated in two mouse 
models of photothrombotic stroke (strains C57Bl/6, DBA) the effect after the 
administration of a BDNF-enriched hyaluronan-based hydrogel that was cross-
linked with polyethylene glycol (Cook et al., 2017). In both in vivo models, 
this post-stroke treatment was able to lead to significant axonal sprouting 
inside cortical and cortico-striatal regions. Moreover, those animals showed 
improved neuroblasts migration in the region of the peri-infarct cortex and 
ameliorated functional rescue of forelimb activity. Interestingly, this BDNF-
loaded hydrogel regenerative activity was reported also in aged mice after 
photothrombotic strokes, however, the level of recovery was minor than the 
one observed in younger animals (Clarkson et al., 2015). 

Notably, in a recent study on rats, the IND of NGF ameliorated the 
neurological outcome and decreased infarct volume after 7 days following 
the injury. NGF treatment improved angiogenesis in the peri-infarct regions, 
elevated the circulating amount of the vascular-endothelial growth factor 
and stromal cell-derived factor 1, and increased the number of serum levels 
of endothelial progenitor cells (Li et al., 2018). Furthermore, NGF increased 
capillary-like tube creation by rat brain microvascular endothelial cells in 
culture, additionally validating its angiogenic influence. This angiogenic effect 
probably occurs through PI3K/Akt pathway (Li et al., 2018).
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PI3K/Akt pathway and mitogen-activated protein kinase/extracellular signal-
regulated kinase pathway participate in neuronal protection from apoptosis 
mediated by BDNF. Apoptosis is recognized as the main event leading to 
neuronal cell death and brain damage during stroke. Interestingly, the 
neuroprotective activities exerted by sex hormones and antioxidants in 
stroke may be triggered through these two pathways. In a rodent model of 
MCAO, post-stroke treatment with progesterone improved BDNF production, 
mitigated apoptosis, and attenuated neuronal injury via the PI3K/Akt pathway 
(Jiang et al., 2016). Notably, it has been observed that progesterone and 
vitamin D administered together safeguarded neuronal cells from ischemia/
reperfusion-mediated cell death by rising B-cell leukemia/lymphoma 2 
production and inhibiting caspase-3 cleavage through the BDNF-TrkB-
extracellular signal-regulated kinase pathway (Atif et al., 2013).

BDNF-based therapies for stroke were the most studied, mainly in 
rodent models. In an MCAO rodent model of stroke, pre-treatment with 
intraventricular or intravenous BDNF resulted in an important reduction of 
infarct size and the amount of neurodegeneration. This treatment was also 
able to stimulate neurogenesis, promote sensorimotor recovery, and induce 
plasticity mechanisms (Zhang et al., 2018).

Cell-based approaches resulted efficient also for stroke treatment. In a recent 
study, the effects of human amniotic fluid stem cells-derived secretome on 
an ischemia-reperfusion in vitro model were reported (Castelli et al., 2021). 
Human amniotic fluid stem cells-derived conditioned media, containing high 
levels of mature BDNF, was able to activate pro-survival and anti-apoptotic 
pathways (Castelli et al., 2021). 

The implantation of BDNF-overproducing fibroblasts in the medial part of 
the somatosensory cortex in vivo reduced the amount of DNA damage and 
increased the amount of mature TrkB in the penumbra. In contrast, the 
inhibition of BDNF expression impaired post-ischemia recovery (Deng et al., 
2016).

Furthermore, for immuno-mediated cell-based therapies against stroke, again, 
BDNF resulted an optimal target. Intravenous injection of a human microglial 
cell line into rodent brains 48 hours after MCAO determined the increase of 
multiple neurotrophins, including BDNF, and anti-inflammatory mediators, 
which lead to the post-ischemic functional rescue (Kurozumi et al., 2004).

Ultimately, GDNF intrastriatal infusion after stroke promoted striatal 
neurogenesis in adult rats. The GDNF treatment determined an increase 
in SVZ cell proliferation and neuroblast recruitment in the striatum. When 
administered for 2 weeks after the formation of striatal neuroblasts, GDNF 
promotes an increase in the number of new mature neurons (Kobayashi et al., 
2006).

GDNF can positively act also as a pre-treatment before MCAO when 
administered intracerebroventricularly or intraparenchymally, topically to 
the cortical surface, or into the hippocampus reducing cerebral infarction. 
Systemic administration of TAT proteins linked to GDNF (able to cross the BBB) 
reduced caspase-3 and DNA fragmentation and increased neuronal survival 
in adult stroke animals. This protective effect was also observed in neonatal 
rats reducing the incidence and severity of brain injury induced by hypoxia/
ischemia (Kilic et al., 2003).

Conclusions
Neurodegenerative diseases such as AD, PD, and stroke represent the leading 
cause of elderly death. With the increase in the aging population, these 
pathologies are more frequent and nowadays there is a growing interest 
in the development of pharmacological approaches that can counteract 
neurological degeneration and ameliorate functional recovery (Erkkinen et al., 
2018). 

Neurotrophins are molecules able to not only regulate the development 
and maintenance of the vertebrate nervous system but also have a great 
influence on the adult nervous system affecting crucial processes such as 
neuronal survival, synaptic function, and plasticity. Neurotrophins can bind 
two different receptors. All these molecules can bind p75NTR, and each also 
binds to one of a family of Trk receptors (Haddad et al., 2017). Neurotrophin-
induced cellular pathways are activated by Trk receptors dimerization and 
consequent trans-phosphorylation of the intracellular domain. Our deep 
understanding of neurotrophins and their receptor’s activity should now 
be translated into the development of disease-modifying therapies for age-
related disorders of the nervous system (Cai et al., 2014; Wang et al., 2020).

In this review, we discussed neurotrophic factors’ role in three major age-
related pathologies and how neurotrophin-based treatments can counteract 
the progression of those pathologies that at present are still incurable. 
Neurotrophic factors resulted great modulators of the adult injured brain by 
promoting functional recovery in preclinical models of neurodegenerative 
diseases, such as AD and PD but also in stroke-induced models (Figure 2). 

Nevertheless, the clinical efficacy of these treatments was not already 
completely observed because of the difficulties of neurotrophins in crossing 
the BBB, their short half-life, and the lack of sufficient amount for clinical 
use (Bahlakeh et al., 2021). Thus, researchers worldwide are focusing 
their attention on finding optimal delivery systems that can modify the 
neurotrophins pharmacokinetic profile leading to a better penetration 
across the BBB and the delivery of the drug at a proper concentration in the 
target area. With the recent findings in neurotrophin structure and their 

Figure 2 ｜ Neurotrophic factors and age-related disorders: implication of each 
different neurotrophic factor with neurological disorders. 
BDNF: Brain-derived neurotrophic factor; GDNF: glial cell-derived neurotrophic factor; 
NGF: nerve growth factor; NRTN: neurturin. 

receptors binding, it is now possible to develop molecules that mimic their 
activities with much ameliorated pharmacotherapeutic profiles (Teleanu et 
al., 2022). Moreover, recent preclinical studies showed great promise using 
several delivery systems such as micropumps, viral vectors, conjugated-
neurotrophins, and biomaterials. Moreover, cells such as genetically modified 
fibroblasts for the expression of neurotrophins as well as NSCs can express 
high levels of BDNF and NGF (Wang et al., 2021). Finally, the efficacy of some 
pharmacological approaches for neurodegenerative diseases can be explained 
by the modulation of neurotrophin levels such as BDNF (Camuso and 
Canterini, 2023). However, further studies devoted to testing neurotrophins in 
clinics are necessary to better define their potential in neurological disorders 
and age-related diseases.
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