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Abstract 

Background: Immune cells have essential auxiliary functions and influence clinical outcomes in cancer, 
with high immune infiltration being associated with improved clinical outcomes and better response to 
treatment in breast cancer (BC). However, studies to date have not fully considered the 
tumor-infiltrating immune cell (TIIC) landscape in tumors. This study investigated potential biomarkers 
based on TIICs to improve prognosis and treatment effect in BC. 
Results: We enrolled 5112 patients for analysis and used cell type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT), a new computational algorithm, to quantify 22 TIICs in 
primary BC. From the results of univariate Cox regression, 12 immune cells were determined to be 
significantly related to the overall survival (OS) of BC patients. Furthermore, least absolute shrinkage and 
selection operator (LASSO) and multivariate Cox regression analyses were applied to construct an 
immune prognostic model based on six potential biomarkers. By dividing patients into low- and high-risk 
groups, a significant distinction in OS was found in the training cohort, with 20-year survival rates of 
42.6% and 26.3%, respectively. Applying a similar protocol to validation and test cohorts, we found that 
OS was significantly shorter in the high-risk group than in the low-risk group, regardless of the molecular 
subtype of BC. Using the immune score model to predict the effect of BC patients to chemotherapy, the 
survival advantage for the low-risk group was evident among those who received chemotherapy, 
regardless of the chemotherapy regimen. In evaluating the predictive value of the nomogram, a decision 
curve showed better predictive accuracy than the standard tumor-node-metastasis (TNM) staging 
system. 
Conclusion: The immune cell infiltration-based immune score model can be effectively and efficiently 
used to predict the prognosis of BC patients as well as the effect of chemotherapy. 
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Introduction 
Tumor progression is a complex process that 

requires interaction between cancer cells, the micro-
environment, and the immune system, influencing 
both tumor initiation and progression [1]. Recent 
research suggests that immune system cells have an 
essential accessory role of preserving tissue integrity 
and function during homeostasis, infection, and non-
infectious perturbations by eliminating pathogens, 
exerting some influence on the clinical outcomes of 
tumors [2, 3]. Many studies have also demonstrated 
that high immune infiltration is associated with 
improved clinical outcomes and better response to 
treatment in breast cancer (BC) [4-11]. 

Tumor-infiltrating lymphocytes (TILs) comprise 
a considerable part of tumor-infiltrating immune cells 
(TIICs). It has been shown that TILs inhibit tumor 
growth and correlate with improved clinical 
outcomes in melanoma [12, 13], colorectal cancer 
[14-16], and ovarian cancer [17, 18]. Additionally, 
higher levels of TILs are associated with better 
disease-free survival (DFS) and overall survival (OS) 
in human epidermal growth factor receptor 2-positive 
(HER2+) and triple-negative primary breast cancer 
(TNBC) [19], leading to clinical trials of several 
immunotherapeutic agents in TNBC [20]. Moreover, 
in patients with HER2-positive tumors and TNBC, 
TILs are also associated with a higher pathological 
complete response (pCR) rate following neoadjuvant 
therapy [9, 21]. 

TIICs also differentiate into tumor-associated 
macrophages (TAMs) and tumor-infiltrating dendritic 
cells (TIDCs), which can promote tumor growth and 
metastasis [22-24]. Therefore, it is not surprising that 
higher levels of TAMs and TIDCs are strongly 
associated with poor outcomes in BC [24-26]. 
However, as the immune microenvironment is 
complex and characterized by many immune cell 
networks, studies have not taken full account of the 
entire TIIC landscape in tumors. Accordingly, it is 
imperative to find potential biomarkers based on the 
complete TIIC landscape to improve prognosis 
prediction and treatment effect in BC. 

Cell type identification by estimating relative 
subsets of RNA transcripts (CIBERSORT) is a new 
computational algorithm for enumerating immune 
cell subsets using bulk gene expression data [27]. In 
this study, we employed CIBERSORT to quantify 22 
TIICs in primary BC. Moreover, using least absolute 
shrinkage and selection operator (LASSO) regression 
and multivariate regression analysis, we established a 
novel immune-based model to provide a powerful 
means for predicting the survival and benefits of 
chemotherapy in patients with BC. We further 

validated the prognostic model using 175 BC tumor 
samples based on RNA sequencing data. 

Results 
Gene expression profile database selection 
according to enrollment criteria 

The study workflow design is depicted in Figure 
1. The following databases were selected to obtain 
gene expression profiles of BC tissues: (1) The Cancer 
Genome Atlas (TCGA, https://portal.gdc. 
cancer.gov/), (2) Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/), (3) Array-
Express (https://www.ebi.ac.uk/arrayexpress/), (4) 
International Cancer Genome Consortium (ICGC, 
https://icgc.org/), and (5) Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC, 
the data were downloaded from cBioPortal website: 
http://www.cbioportal.org/). We systematically 
searched these databases with the term “breast 
cancer”. The enrollment criteria for the prognostic 
model were as follows: datasets containing more than 
50 human primary BC samples, series presented with 
OS time and survival status, and transcriptome 
profiling as the experiment type. As indicated in 
Figure 1, 29 series (6,844 BC samples in total) were 
ultimately included for constructing the prognostic 
model. The studies obtained from each of the 
databases are summarized together with accession 
numbers in Table S1. 

Establishment of the prognostic immune score 
model 

To explore the prognostic value of tumor- 
infiltrating immune cells, stratified sampling was 
used to divide 5,038 samples into a training cohort (N 
= 3,526, Table S2) and a validation cohort (N = 1,512, 
Table S2) in a ratio of 7:3. Figure 2A shows a forest 
plot of the associations between each immune cell 
subset and OS in the training cohort. According to the 
results of the univariate Cox hazard model, 
eosinophils (p = 0.015), resting dendritic cells (p < 
0.0001), gamma-delta T cells (p < 0.0001), resting and 
activated CD4+ T cells (p < 0.0001; p = 0.0005), resting 
mast cells (p < 0.0001), M0 and M1 macrophages (p < 
0.0001; p = 0.004), memory B cells (p = 0.013), activated 
NK cells (p < 0.0001), monocytes (p < 0.0001), and 
regulatory T cells (p < 0.0001) were significantly 
related to OS in BC patients. Subsequently, we 
performed LASSO Cox regression to select highly 
relevant variables from among the 12 (univariate Cox 
regression: p < 0.05), obtaining results of Lambda.min 
= 0.00115 [log (Lambda.min) = -6.766], lambda.1se = 
0.0395 [log (Lambda.1se) = -3.231] (Figure 2B). Resting 
CD4+ T cells, regulatory T cells, gamma-delta T cells, 
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activated NK cells, monocytes, and M0 macrophages 
were included when log (Lambda.1se) = -3.231 
(Figure 2C). Multiple Cox regression was performed 
to further identify independent predictors and 
calculate the prognostic index. We established the 
formula for the prognostic immune score model 
according to multiple Cox regression (Risk score = 
regulatory T cells * 2.526 - resting CD4 T cells * 1.761 – 
gamma-delta T cells * 2.334 + activated NK cells * 
3.408 + monocytes * 2.645 + M0 macrophages * 1.591) 
(Table S3), with the immune score of each sample 
from the training cohort calculated according to this 
model. Subsequently, all samples from the training 
cohort were divided into high- or low-risk groups 
using the cutoff of 0.374 [28], as determined by the 
OptimalCutpoints package in R. To evaluate the OS of 
these low- and high-risk patients, Kaplan-Meier 
curves were generated, and a significant distinction 
was observed in the training cohort (Figure 3A), 
regardless of the molecular subtype of BC (Figure S1). 
The 20-year survival rates were 37.8% and 20.0% for 
the low- and high-risk groups, respectively [hazard 

ratio (HR): 2.72, 95% confidence interval (95%CI): 
2.40-3.08, p < 0.0001] (Table 1). 

Validation of the prognostic immune score 
model 

To evaluate the effect of this prognostic model, 
the same formula and prognostic immune score 
model were applied to the validation cohort, the test 
cohort (cases from hospitals in China), and the 
combination of the validation and test cohorts. 
Patients from the validation and test cohorts were 
grouped by the cutoff value calculated from the 
training set (0.374), and Kaplan-Meier curves were 
generated for the cohorts. Based on the results, OS 
was significantly shorter in the high-risk group than 
in the low-risk group in the validation cohort (Figure 
3B), test cohort (Figure 3C), and mixed cohort (Figure 
3D), regardless of the molecular type of BC (Figure 
S2). In addition, the 20-year survival rates were 47.8% 
and 30.1% for the low- and high-risk groups, 
respectively, (HR: 2.10, 95%CI: 1.74-2.53, p < 0.0001) in 
the combined validation and test cohorts (Table 1). 

 

 
Figure 1. Flow chart of the study design. In total, 6,844 breast cancer samples from 29 public data series were used to perform CIBERSORT. Six immune markers were 
ultimately screened from LM22 to construct a prognostic immune model. The training (N = 3,526) and validation (N = 1,512) cohorts used were derived these public datasets. 
Another test cohort (N = 74) was from hospitals in China. Part 1. Inclusion criteria were as follows (prognostic model): (1) datasets containing more than 50 human primary BC 
samples; (2) series providing overall survival time and survival status; (3) transcriptome profiling as the experimental method. Part 2. Enrollment criteria were as follows: (1) 
pathology confirmed as primary BC following surgery; (2) complete clinical records and follow-up information available; (3) no history of other tumors; (4) informed consent. 
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Figure 2. Construction of the prognostic immune model in the training cohort. (A) Forest plots of the univariate Cox hazard model for overall survival. Unadjusted 
HRs are shown with 95% confidence intervals. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. The direction indicating less hazard favors better survival, whereas the direction 
indicating greater hazard favors lower survival. (B) Partial likelihood deviance for LASSO coefficient profiles. The red dots represent the partial likelihood values, the gray lines 
represent the standard error (SE), and the vertical dotted line is shown at the optimal values by 1 – s.e. (C) Least absolute shrinkage and selection operator (LASSO) coefficient 
profiles of 12 immune cells. Immune cell types: 1. memory B cell; 2. CD4 memory resting T cells; 3. memory activated T cell; 4. regulatory T cell (Treg); 5. gamma delta T cell; 
6. activated NK cell; 7. monocyte; 8. M0 macrophage; 9. M1 macrophage; 10. resting dendritic cell; 11. resting mast cell; 12. eosinophil. 

 

The prognostic immune score model 
predicted the effect of chemotherapy 

As neoadjuvant chemotherapy (neo-ACT), as 
well as adjuvant chemotherapy (ACT), has been 
reported to be related to immune infiltration [29], we 
further evaluated whether the application of 
chemotherapy (CT) would influence the prognosis of 
BC. According to the NCCN Guidelines in Oncology 
(National Comprehensive Cancer Network, Clinical 
Practice Guidelines in Oncology, Breast Cancer, 
Version 5, 2020 https://www.nccn.org/ 
professionals/physician_gls/default.aspx), anthra-

cycline + cyclophosphamide (AC), AC followed by 
taxane (AC-T) and taxane + cyclophosphamide (TC) 
are major chemotherapy regimens. Information 
regarding the administration of CT was collected from 
TCGA and METABRIC datasets and hospitals in 
China. To evaluate the relationship between the 
immune score and chemotherapy effect, the same 
formula was applied to the cohorts from TCGA, the 
hospitals in China, and METABRIC. The patients of 
these three cohorts were divided by the cutoff value 
(0.374) into low- and high-risk groups, and the DFS 
advantage for the low-risk group was evident in all 
three cohorts, regardless of whether they received 
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chemotherapy (Figure 3E-F, Figure S3). Detailed 
information on ACT was documented only for the 
cohort from TCGA. Compared with patients who did 
not undergo chemotherapy in the low-risk group, the 
survival advantage was evident in patients who 
received AC and AC-T chemotherapy schemes (p < 
0.05; p < 0.001). In contrast, the chemotherapy benefit 
in the high-risk group was only observed with the 
AC-T chemotherapy scheme (p < 0.05, Figure 3G). 
More importantly, further evaluation of subgroup 
interaction showed that low-risk patients obtained 
better chemotherapy effects, regardless of the 
chemotherapy regimen (AC: p < 0.01; AC-T: p < 0.05; 
TC: p < 0.05; Figure 3G). Furthermore, we used data 
from the test cohort of neo-ACT to assess the 
association between the immune prognostic model 
and the effect on chemotherapy. As illustrated in 
Figure S4, there was a tendency toward a higher 
immune score in the neo-ACT-sensitive group (pCR 
status) than in the neo-ACT-resistant group (non-pCR 
status), though no significant difference was observed 
(p = 0.129). 

The nomogram system improved the 
prognostic immune score model 

Univariable Cox regression analysis was 
performed to select independent clinicopathologically 
prognostic factors for OS, and the results showed 
significant relationships for age, tumor grade and 
tumor-node-metastasis (TNM) stage (Table 1). 
Subsequent multivariable Cox regression analysis 
showed that risk score, age, tumor grade, and TNM 
stage were independent prognostic factors for OS 
(Table 2). To create a quantitative method to predict 
OS, we integrated the immune score and independent 
clinicopathological prognostic factors, including age, 
tumor grade, and TNM stage, to construct a 
nomogram (Figure 4A). 

 

Table 1. Results of Univariable Cox regression analysis 

Univariable Cox Regression Analysis 
Variables Training cohort Validation & Test cohort 

HR (95%CI) P-value HR (95%CI) P-value 
Risk score* 2.72 (2.40-3.08) <0.0001 2.10 (1.74-2.53) <0.0001 
Age (>60 vs ≤60) 1.71 (1.51-1.95) <0.0001 1.45 (1.19-1.76) 0.0002 
Grade (High vs Low) 1.67 (1.45-1.92) <0.0001 1.69 (1.36-2.08) <0.0001 
Stage (vs stage I)     
II 1.38 (1.13-1.68) 0.001 2.16 (1.51-3.08) <0.0001 
III 2.47 (1.94-3.15) <0.0001 3.24 (2.18-4.80) <0.0001 
IV 6.83 (5.30-8.81) <0.0001 8.69 (5.70-13.24) <0.0001 
Subtype (vs basal-like)    
HER2 1.22 (1.02-1.46) 0.03 1.25 (0.95-1.63) 0.11 
Lum A 0.55 (0.46-0.66) <0.0001 0.71 (0.54-0.93) 0.01 
Lum B 0.99 (0.84-1.16) 0.86 0.99 (0.77-1.26) 0.93 
Normal like 1.13 (0.85-1.50) 0.39 0.93 (0.60-1.44) 0.74 
*Continuous variable. 

 
 

Table 2. Results of Multivariable Cox regression analysis 

Multivariable Cox Regression Analysis 
Variables Training cohort Validation & Test cohort 

HR (95%CI) P-value HR (95%CI) P-value 
Risk score* 1.62 (1.24-2.11) 0.0004 1.40 (1.02-1.91) 0.04 
Age (≥60 vs <60) 1.49 (1.24-1.80) <0.0001 1.82 (1.35-2.46) 0.0001 
Grade (High vs Low) 1.30 (1.06-1.60) 0.01 1.43 (1.04-1.98) 0.03 
Stage (vs stage I)     
II 1.27 (1.02-1.60) 0.03 1.98 (1.31-2.98) 0.001 
III 2.86 (2.06-3.98) <0.0001  2.80 (1.66-4.69) 0.0001 
IV 3.40 (2.26-5.12)  <0.0001  5.25 (2.76-9.98) <0.0001 
Subtype (vs 
basal-like) 

    

HER2 1.31 (0.99-1.74) 0.05 1.44 (0.97-2.14) 0.07 
LumA 0.97 (0.73-1.30) 0.86 1.40 (0.88-2.23) 0.15 
LumB 1.14 (0.88-1.49) 0.32 1.17 (0.79-1.73) 0.44 
Normal like 1.19 (0.77-1.83) 0.43 1.17 (0.64-2.14) 0.60 
*Continuous variable. 

 
 

Table 3. Harrell’s concordance indexes of TNM stage and 
nomogram system 

Cohort C-index (95%CI) 
TNM stage Nomogram 

Training 0.630 (0.619-0.640) 0.665 (0.653-0.677) 
Validation 0.674 (0.657-0.691) 0.691 (0.663-0.719) 
Test 0.512 (0.466-0.557) 0.885 (0.823-0.947) 

 
 
To evaluate the predictive value of the 

nomogram, we compared Harrell’s concordance 
index (C-index) of the nomogram with standard TNM 
staging in the training, validation, and test cohorts, 
and as shown in Table 3, the nomogram system 
improved the prognostic model of BC in all. Based on 
calibration plots, the predicted 5-, 10-, and 20-year 
survival probabilities of the nomogram performed 
well in both the training and validation cohorts 
(Figure 4B). Similarly, the decision curve showed 
better predictive accuracy than the standard TNM 
staging system (Figure 4C). 

The prognostic immune score model 
predicted the clinical characteristics of breast 
cancer patients 

The relationship between the prognostic 
immune score and clinical characteristics was further 
investigated in the training and validation cohorts. In 
the former, the grade level (p < 0.0001), TNM stage (p 
< 0.0001), M category (p < 0.0001) and molecular 
subtype of BC (p < 0.0001) were significantly related to 
immune score, whereas age, T category and N 
category were not (Figure 5A). In the validation 
cohort (Figure 5B), a high immune score was 
positively associated with tumor grade (p < 0.0001), 
TNM stage (p < 0.0001), M category (p < 0.0001), N 
category (p < 0.01) and molecular subtype of BC (p < 
0.0001). 
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Figure 3. Kaplan-Meier curves of survival for low- and high-risk patients. (A) Overall survival (OS) in the training cohort. (B) OS in the validation cohort. (C) OS in 
the test cohort. (D) OS in the combination of validation and test cohorts. (E) Subgroup analysis of adjuvant chemotherapy (ACT) benefit for disease-free survival (DFS) of low- 
and high-risk patients in the TCGA database. (F) Survival analysis of neoadjuvant chemotherapy response (pCR, pathologic complete response; no pCR, including pathologic 
partial response, pathologic stable disease, and pathologic progression of the disease) among patients with different risk stratifications (test cohort). (G) Forest plot showing ACT 
benefit for DFS of low- and high-risk patients with different chemotherapy regimens in TCGA. Hazard ratios, with 95% confidence intervals, are shown for patients with ACT 
compared with no ACT treatment in each different risk group. ACT vs no ACT: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Low risk vs high risk: #p < 0.05, ##p < 0.01, 
###p < 0.001, ####p < 0.0001. AC-T, anthracycline plus cyclophosphamide followed by taxane; AC, anthracycline, and cyclophosphamide; TC, taxane, and cyclophosphamide. 

 

The prognostic immune score model 
predicted differential expression of genes 
involved in T-cell signal transduction, immune 
checkpoint, inflammation and EMT 

The immune score of 836 TCGA samples was 
determined using the prognostic immune formula. 

All the samples were classified into low- and high-risk 
groups using the cutoff of 0.374. Gene-set enrichment 
analysis (GSEA) indicated that the low-risk group was 
highly enriched in activation of the T cell receptor 
signaling pathway, antigen receptor-mediated 
signaling pathway, immunoglobulin production, and 
activation of the immune response (Figure 6A). 
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Figure 4. Construction of the nomogram system. (A) Nomogram predicting 5-, 10-, and 20-year overall survival for breast cancer patients in the training cohort based on 
immune score and other clinicopathological parameters. (B) The calibration curves of nomograms between predicted and observed 5-, 10- and 20-year OS in the training cohort. 
The dashed line of 45° represents the perfect prediction of the nomogram. (C) Decision curves of nomogram and TNM stage for 5-, 10- and 20-year outcome in the training 
cohort. 

 
Figure 5. Stratified analysis of clinical characteristics for the immune score of the immune prognostic model. (A) Training cohort. (B) Validation cohort. 
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Figure 6. Bioinformatics analysis of the characteristics and signaling pathways among patients in different risk groups. (A) Gene set enrichment analysis 
(GSEA) for biological pathways and processes correlated with immune score values in the cohort from TCGA. NES, normalized enrichment score; NOM p: Nominal p-value. (B) 
PD-1, PD-L1, and CTLA4 mRNA expression between the low- and high-risk groups in the cohort from TCGA. (C) Volcano plot showing differentially expressed genes between 
the low- and high-risk groups in the cohort from TCGA. Genes labeled in red or green are significantly differentially up- or downregulated, respectively. FC: fold change; FDR: 
false discovery rate. (D) Gene Ontology analysis of the differentially expressed genes (DEGs). ECM: extracellular matrix; ECS: extracellular structure. GPCR: G Protein-Coupled 
Receptors. 

 
Immune checkpoint blockade with immuno-

therapies, such as CTLA-4, PD-1, and PD-L1, has been 
proposed to be a promising approach to treat a variety 
of malignancies [38]. Thus, we determined the 
expression level of several key immune checkpoint 

regulators as well as inflammatory mediators. As 
presented in Figure 6B, CTLA-4, PD-1, and PD-L1 
expression was significantly higher in the low-risk 
group (p < 0.0001). In addition, other important 
immunomodulators or inflammatory mediators were 



Theranostics 2020, Vol. 10, Issue 26 
 

 
http://www.thno.org 

11946 

increased in the low-risk group, including LAG3 (p < 
0.0001), IL12A (p < 0.01), IL12B (p < 0.0001), IL6 (p < 
0.05), IFNG (p < 0.0001), IDO1 (p < 0.0001), GZMB (p < 
0.0001), and CD47 (p < 0.01) (Figure S5). 

As a significant correlation between the M stage 
and immune score was observed in the training 
(Figure 5A) and validation (Figure 5B) cohorts, we 
further analyzed differentially expressed genes 
(DEGs) between the low- and high-risk groups in the 
cohort from TCGA. A total of 218 DEGs (38 
upregulated and 180 downregulated genes, FDR 
p-value <0.05, Table S4) were identified in the 
high-risk group compared with the low-risk group. 
Among them, epithelial-mesenchymal transformation 
(EMT) markers such as MMP9, SPP1, MMP12, 
MMP13, and MMP1 were significantly overexpressed 
in the high-risk group (FDR p-value < 0.05, log FC>0.5, 
Figure 6C). Furthermore, according to Gene Ontology 
(GO) enrichment analysis, the genes in the high-risk 
group are mainly involved in extracellular matrix 
organization, extracellular structure organization, 
collagen catabolic process, collagen metabolic process, 
and extracellular matrix disassembly (Figure 6D). 

Discussion 
The immune environment that surrounds cancer 

tissues can detect these tissues and inhibit their 
growth [30]. In BC in particular, it has been reported 
that high levels of immune infiltration are associated 
with good clinical outcomes [4]. In this study, we used 
CIBERSORT, which uses algorithm that well 
accommodates a large number of tumor samples that 
have been profiled by RNA sequencing, to estimate 
the proportion of immune cells in BC. This approach 
provides an alternative to flow or mass cytometry- 
based methods, and the cumbersome techniques of 
immunostaining are circumvented. CIBERSORT can 
also utilize archived RNA and cellular samples [27]. 
Previous studies have validated the efficacy of the 
CIBERSORT technique in identifying a specific 
immune subset, which is a vast improvement over 
other techniques with very limited abilities [31-33]. 
Additionally, LASSO regression was applied to 
construct an immune cell infiltration score model, a 
model capable of predicting near accurate survival 
times, as used in previous studies [34, 35]. This 
immune score model is a novel prognostic tool 
designed to improve survival prediction after BC 
diagnosis. In this study, the immune score model was 
based on 22 immune cells, of which 12 showed a 
significant hazard ratio. 

Moreover, the prognostic value of the immune 
score model was confirmed in training and validation 
cohorts. Our results showed a distinct separation of 
OS curves between patients who had high and low 

immune scores. In addition, the immune score was 
able to predict survival in the groups of patients, 
similar to TNM staging, indicating that such a model 
can be used for prognosis and may complement the 
existing TNM staging method. 

Sufficient correlation between the immune score 
and expression of known inflammatory mediators 
such as PD-L1, CTLA-4, and LAG3 further supports 
its potential value [36, 37]. The survival probability in 
the training, validation and test cohorts revealed 
significantly decreased survival. It has been observed 
that the immune score’s predictive value may be 
suitable for large-scale data, and statistical 
significance was observed when the validation and 
test cohorts were combined. 

According to the nomogram that included the 
immune score with TNM stage, a significant 
prognostic value was obtained by the combination 
compared to TNM stage alone. This is an indication 
that for prognosis, the immune score might be used to 
reinforce the prognostic ability of the TNM method. 
Indeed, the immune score value was verified in the 
nonoverlapping, validation cohort and in the test 
cohort, an indication of its utility in BC. 

Adjuvant or neo-ACT is now regarded as the 
gold standard for the treatment of patients with stage 
II or III BC [38, 39]. Nonetheless, candidates still face 
the challenge as to the selection criteria that are likely 
to be beneficial, and this remains a controversy. Many 
studies have assessed the connection between TILs 
and how efficient they are with ACT [40-42]. Another 
study emphasized that high infiltration of immune 
cells contributes to an increased response to neo-ACT 
and ACT, and the use of chemotherapy to stimulate 
an anticancer immune response has been reported 
[43]. Recently, a clinical trial found that the induction 
of chemotherapy in TNBC causes a favorable tumor 
immunologic microenvironment and increases 
sensitivity to PD-1 blockade [44]. In another study by 
Wesolowski et al., the authors concluded that 
neo-ACT influences the immune microenvironment 
by downregulating CD4+ and upregulating CD8+ 
cells, which leads to a reduction in the number of TILs 
and CD8+ T cells in breast cancer samples [45]. These 
reports are consistent with our present observations, 
as we observed a statistically significant potential link 
with chemotherapy for the METABRIC cohort. In 
contrast, no statistical significance was detected for 
the test cohort, which may be due to the small sample 
size as well as the difficulty in setting an optimum 
cutoff value. Previous studies have reported that 
chemotherapy sensitivity may be related to levels of 
lymphocyte infiltration into the tumor [46, 47]. A 
possible mechanism involves the secretion of 
interferons by lymphocytes, which can sensitize cells 
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to chemotherapy [48]. In this study, levels of 
inflammatory mediators such as CTLA-4, PD-1, and 
PD-L1 were significantly higher in the lower-risk 
group. Some studies have, however, reported 
contrary results, whereby an increase in CTLA-4, 
PD-1, and PD-L1 has been associated with worse 
outcomes in cancer [49, 50]. It is therefore important to 
verify this observation in a much broader database 
and in clinical samples. A similar trend for other 
critical immunomodulators or inflammatory 
mediators, such as LAG3, IL12A, IL12B, IL6, IFNG, 
IFNA1, IFNA2, IDO1, GZMB and CD47, was 
observed, with significantly higher expression in the 
low-risk group. This finding supports that interferon 
secretion might participate in the biological process of 
chemotherapy sensitization in BC patients with a low 
immune score. Innate and adaptive immunity may 
also be activated by immunogenic tumor cell death 
[51]. 

Although this study provides important 
evidence on the use of the immune score model in the 
prognosis of BC, it has some shortcomings. The study 
relied on retrospective data and might have missed 
some important information for each patient. For 
instance, anti-inflammatory drug use and the possible 
presence of any immune disorder that has a 
significant effect on the progression of the disease 
might have been examined, which hitherto have been 
excluded [52, 53]. There is also difficulty in using a 
standardized cutoff for interpreting immune 
infiltration. Another important shortcoming is that 
the test cohort involved primary tumor tissues, 
whereas a good proportion of patients from publicly 
available gene expression datasets are analyzed with 
regard to metastatic sites, introducing some level of 
heterogeneity in the data and affecting the 
applicability of the nomogram in clinical practice. 
When considering the role of lymph nodes in the 
metastasis of BC, there is a need to consider the 
margin of a possible invasion of cancer in analyses. 
The gene expression profiles utilized were derived 
from a sample of the tumor tissues, with an associated 
impossibility of accounting for the location of immune 
cells, which should be considered in the model of the 
immune score. More data need to be collected 
prospectively to further validate these outcomes. 
Nevertheless, understanding the tumor immune 
microenvironment using the immune score provides 
important insight that will improve the diagnosis and 
prognosis of patients with BC. 

Methods 
Study population and gene expression profiling 

The specimens for the test cohort were collected 

with the approval of hospitals in China. A total of 183 
patients with BC who underwent synchronous 
neoadjuvant radiotherapy and chemotherapy 
(anthracycline + cyclophosphamide followed by 
taxane, AC-T) followed by mastectomy between 2002 
and 2012 were included based on the following 
criteria: (1) pathology confirmed as primary BC 
following surgery; (2) complete clinical records and 
follow-up information available; (3) no history of 
other tumors; and (4) written informed consent. The 
exclusion criteria were insufficient breast tissue and 
insufficient clinical data regarding outcomes. We used 
the International Union against Cancer TNM 
classification system (5th and 6th editions) to classify 
resected tissues [54]. Histological grades were 
classified as well-differentiated, moderately 
differentiated, and poorly differentiated. Clinical data 
were used for analysis based on ER, PR, HER2, and 
Ki67 expression levels. In our case, the staff members 
processing the clinical data were blinded to the details 
of the study. All patients provided written informed 
consent before enrolling in the study. The follow-up 
end date was September 30th, 2018, and the median 
follow-up time was 31 months. 

A total of 130 core biopsy specimens and 53 
surgical samples were immersed into RNAlaterTM 

solution (Qiagen, Germantown, MD, USA) and stored 
at -80 ºC until further analysis. 
Estimation of immune cell type fractions 

Processed gene expression data were down-
loaded from public databases or obtained from raw 
files using the MAS5.0 algorithm and normalized 
using the limma package in R software (version 3.5.2) 
[55]. To quantify the abundance of 22 TIICs in BC 
specimens, we applied CIBERSORT, an analytical 
tool, to provide an estimation of the proportions of 
cell types in a mixed cell population using normalized 
data [27]. To run CIBERSORT, the following packages 
are required in R software: “e1071”, “parallel”, and 
“preprocessCore”. A file called “LM22.txt”, which 
contains a “signature matrix” of 547 genes, in R 
(obtained under Menu > Download from CIBERSORT 
web: https://cibersort.stanford.edu/download.php) 
is also required [56]. The 22 types of infiltrating 
immune cells inferred by CIBERSORT include B cells, 
T cells, natural killer cells, macrophages, dendritic 
cells, eosinophils, and neutrophils. CIBERSORT 
derives a p-value for the deconvolution of each 
sample using Monte Carlo sampling, providing a 
measure of confidence in the results. At a threshold of 
p < 0.05, 5,038 samples of the inferred fractions of 
immune cell populations produced by CIBERSORT 
were considered accurate [10]. The proportions of 
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immune cells were predicted in each dataset 
separately. 
Sampling method 

To improve the precision and accuracy of the 
prognostic model, the 5,038 samples were separated 
into training and validation sets in a ratio of 7:3 using 
stratified random sampling. Important clinical 
covariates, including age, molecular subtype, grade, 
TNM stage, and survival status, were taken into 
consideration to ensure equal distributions in the 
training and validation sets. 

GSEA 
The transcriptome data of 836 BCs from TCGA 

were selected for GSEA analysis. For the cohort from 
TCGA, GSEA 4.0.3 software (downloaded from 
https://www.gsea-msigdb.org/gsea/downlodas.jsp) 
was used to identify GO terms enriched between the 
low- and high-risk groups in the c5 GO database 
(c5.all.v6.2.symbols). The significance threshold was 
set at p < 0.05. 
Statistical analysis 

The Mann-Whitney U test was utilized to 
compare two groups and the Kruskal-Wallis test to 
compare multiple groups. Univariate, LASSO, and 
multivariate Cox regression analyses were applied to 
identify the most significant immune cells to build a 
prognostic model. Immune cells were considered 
significant when the p-value was <0.05 in univariate 
Cox regression analysis. Subsequently, we used 
LASSO-penalized Cox regression to filter out less 
relevant factors. Finally, multivariate Cox regression 
analysis was applied to optimize the model. The 
optimal cutoff values were calculated based on the 
association between OS and cell fraction in the 
training cohort using the survminer package in R. 
Kaplan-Meier analysis and the log-rank test were 
employed to evaluate correlations between the 
proportion of immune cells and OS. The prognostic 
value of the nomogram for 5, 10, and 20 years was 
evaluated by the c-index [57]. Results with two-sided 
p-values of <0.05 were considered to be statistically 
significant. The statistical analyses were conducted 
using SPSS version 25 (IBM, New York, USA) and R 
software (3.5.2). 
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