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Abstract: ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) are a family
of multidomain extracellular protease enzymes with 19 members. A growing number of ADAMTS
family gene variants have been identified in patients with various hereditary diseases. To understand
the genomic landscape and mutational spectrum of ADAMTS family genes, we evaluated all
reported variants in the ClinVar database and Human Gene Mutation Database (HGMD), as well
as recent literature on Mendelian hereditary disorders associated with ADAMTS family genes.
Among 1089 variants in 14 genes reported in public databases, 307 variants previously suggested for
pathogenicity in Mendelian diseases were comprehensively re-evaluated using the American College
of Medical Genetics and Genomics (ACMG) 2015 guideline. A total of eight autosomal recessive
genes were annotated as being strongly associated with specific Mendelian diseases, including two
recently discovered genes (ADAMTS9 and ADAMTS19) for their causality in congenital diseases
(nephronophthisis-related ciliopathy and nonsyndromic heart valve disease, respectively). Clinical
symptoms and affected organs were extremely heterogeneous among hereditary diseases caused by
ADAMTS family genes, indicating phenotypic heterogeneity despite their structural and functional
similarity. ADAMTS6 was suggested as presenting undiscovered pathogenic mutations responsible
for novel Mendelian disorders. Our study is the first to highlight the genomic landscape of ADAMTS
family genes, providing an appropriate genetic approach for clinical use.
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1. Introduction

ADAMTS proteases, a superfamily of 19 secreted molecules, are zinc metalloendopeptidases;
most ADAMTS protease substrates are extracellular matrix components including procollagen, von
Willebrand factor, aggrecan, versican, brevican, and neurocan [1]. Since ADAMTS genes share similar
structure and catalytic activity, ADAMTS proteins are known to participate in common biological
processes, such as skin and cardiac development, connective tissue maintenance, and hemostasis [2].
While various perspectives of ADAMTS family genes have been studied for their clinical significance [3–
5], a clinical genetic study focusing on their causality in Mendelian disorders is lacking [6].

As high throughput genomic technologies have revolutionized clinical practices, the scope of
medical decision making has become broader, with the promise of personalized precision healthcare
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based on individual genotypes [7]. Genes that were uninvestigated before the next-generation
sequencing era appear to possess numerous variants in clinical cases when compared to reference
sequences from population databases. Neither underestimation nor overestimation of gene-disease
association is helpful for clinical practices or even basic genomic research [8]. Thus, a systematic
evaluation with a comprehensive review of up-to-date evidence is essential for accurate and appropriate
genetic understanding to enhance the clinical usefulness of genomic studies.

With the help of technological advancements in ADAMTS studies, growing evidence for the
association of ADAMTS genes with unique Mendelian disorders raises the need for an accurate
and comprehensive evaluation, especially from the genetic perspective. In this study, we evaluate
all reported variants in the ClinVar and HGMD mutation databases, as well as recent literature on
Mendelian disorders associated with ADAMTS family genes. The information provided in this study
demonstrates that the clinical interpretation of all reported mutations in ADAMTS genes requires
careful professional curation and application of the latest information to suggest the possibility of
ADAMTS gene involvement in novel Mendelian disorders.

2. Materials and Methods

2.1. Collection of Reported ADAMTS Family Gene Variants

All reported ADAMTS family gene variants suggested as being involved in disease were collected
from publicly available mutation databases, including the Human Gene Mutation Database (HGMD
version 2019.4) [9] and ClinVar (accessed 2019 Dec) [10] (Figure 1). For the HGMD database, variants
annotated as “DM” and “DM?” were included in the study since HGMD curators presumably
asserted the pathogenicity of these variants. For ClinVar, variants annotated as “pathogenic” or
“likely pathogenic”, including all small nucleotide variants and copy number variants, were compiled.
The annotation and nomenclature of the variants were confirmed using the Mutalyzer Name Checker
tool [11] based on clinically relevant transcripts with the longest transcript and exons in each gene.
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Figure 1. The overall workflow of the study. (a) ADAMTS family gene variants reported in public mutation
and control databases were compiled. A total of 1089 variants were deposited in the Human Gene Mutation
Database (HGMD) and ClinVar. Variants reported as “likely pathogenic” or “pathogenic” in ClinVar and as
“DM” or “DM?” in HGMD were further examined. Of the 1089 variants, 541 were reported in gnomAD
and KRGDB control datasets. (b) Systematic literature review in MEDLINE (PubMed), Embase, and the
Cochrane Database of Systematic Reviews electronic databases revealed 318 full-text articles as of January
2020. Only 68 studies fulfilled our criteria and were fully reviewed in depth by two independent authors.
(c) Variant classification, according to ACMG guidelines, along with mutation enriched region assessments
using two different algorithms, were performed. (d) Evaluation of gene–disease relationships based on
comprehensive evidence level interpretation were applied to all ADAMTS family genes.

2.2. Systematic Literature Review for ADAMTS Family Genes on Mendelian Disorders

A systematic online search was performed for publications using MEDLINE (PubMed) (www.
ncbi.nlm.nih.gov/pubmed), Embase (www.embase.com), and the Cochrane Database of Systematic
Reviews electronic databases (www.cochranelibrary.com). The search was performed from database
inception until 31 December 2019. Data for clinical and genomic information, as well as functional
studies on variants, were extracted from eligible publications. Two independent authors (J.H.R. and
Y.J.C.) assessed articles by title, abstract, and full text. A total of 68 studies that fulfilled the selection
criteria of (1) human mutation study (not mouse), (2) germline mutation study with single gene–disease
relationship (not association study), and (3) DNA mutation study (not epigenetic or proteomic) were
included for further evaluation.

2.3. Evaluating ADAMTS Family Gene Disease Associations

Evidence associating each gene with a specific Mendelian disorder was systematically assessed
based on a comprehensive analysis of various aspects, including gene ontology, protein functional
domain for mutation location, and expression patterns. The Online Mendelian Inheritance in Man
(OMIM) database [12] was used to confirm the currently validated disease associations and inheritance
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patterns in ADAMTS family genes. The Human Phenotype Ontology (HPO) database [13] was utilized
in the interpretation process for organ-specific symptoms of suggested Mendelian disorders. Gene
ontology (GO) [14] for ADAMTS family genes was searched using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) [15] and Ensembl Genome Browser [16]. Protein
domains and expression patterns among various organs across ADAMTS family genes were compared
using UniProt [17] and the Human Protein Atlas (www.proteinatlas.org) [18], respectively.

2.4. Pathogenicity Interpretation for Variant and Gene Evaluation

To evaluate the pathogenic potential of presumably pathogenic ADAMTS family gene variants,
we applied the 2015 ACMG guideline for variant classification [19]. To enhance the analysis accuracy,
we profiled all aspects of variants, including population allele frequency, prediction algorithm results,
and conservation status across species. For gene evaluation in terms of cause-and-effect relationships
for hereditary disorders, we applied two recently published prediction algorithms for missense
variant burden (i.e., PER (pathogenic mutation enriched regions) viewer [20] and MTR (missense
tolerance regions) viewer [21]) in ADAMTS genes. These tools provided a statistical framework to
identify gene regions with missense variation intolerance or pathogenic mutation enriched regions.
Additionally, oe values (the ratio of observed/expected number of loss-of-function variants in the
specific gene) and pLI scores (probability of being loss-of-function intolerant as metrics to measure
a transcript’s intolerance to variation) provided by the gnomAD database [22] were incorporated to
broaden genomic understanding.

3. Results

3.1. Gene-Disease Association of ADAMTS Family Genes Based on Pathogenic Mutations

In order to identify definitive gene–disease associations among mutated ADAMTS family genes in
Mendelian disorders, we reviewed all publications archived from mutation databases and systematic
literature review. A total of eight ADAMTS family genes were revealed to have strong causality for
various Mendelian disorders if mutated (Table 1). Although several recently updated reviews have
already briefly covered six ADAMTS genes [5], our evidence suggested two additional ADAMTS
genes with a high probability of involvement in different diseases [23,24]. Except for ADAMTS3 and
ADAMTS10, six genes presented a unique association with specific disease phenotypes, indicating
low genetic heterogeneity for unique Mendelian disorders caused by corresponding ADAMTS gene
mutations. Regarding inheritance modes, all ADAMTS mutations acted recessively due to the nature of
enzymes since enzymes are mostly haplo-sufficient to alleviate heterozygote loss of function mutation.
This phenomenon could also be related to the dominance of nonsense, frameshift, and splice-site
mutations in terms of the mutational spectrum in most ADAMTS genes. While ADAMTS13 possessed
more than 200 pathogenic mutations with clinical validations, mutations in seven other ADAMTS
genes were rarely reported, suggesting a very low prevalence of these ultra-rare diseases (Table 1).

Table 1. ADAMTS family genes responsible for Mendelian disorders with strong evidence as of 2020.

Gene Disease Inheritance
Mode Other Genes Mutational

Spectrum

Number of
Reported Patients

(Family)

Major References
(PMID)

ADAMTS2 Ehlers–Danlos syndrome,
dermatosparaxis type

Autosomal
recessive none nonsense,

frameshift 10 (10) 26765342

ADAMTS3 Hennekam syndrome Autosomal
recessive FAT4, CCBE1 nonsense,

missense 3 (2) 28985353

ADAMTS9 Nephronophthisis-
related ciliopathy

Autosomal
recessive none frameshift,

missense 2 (2) 30609407

ADAMTS10 Weill–Marchesani syndrome Autosomal
recessive LTBP2, FBN1

nonsense,
missense, splice

site
8 (7) 18567016,

25469541

ADAMTS13
Thrombotic

thrombocytopenic purpura
(Upshaw–Schulman syndrome)

Autosomal
recessive none

missense,
nonsense,

frameshift, splice
site

more than 200 30770395,
30792199

www.proteinatlas.org
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Table 1. Cont.

Gene Disease Inheritance
Mode Other Genes Mutational

Spectrum

Number of
Reported Patients

(Family)

Major References
(PMID)

ADAMTS17
Weill–Marchesani-like

syndrome (Weill–Marchesani
syndrome 4)

Autosomal
recessive none

nonsense,
frameshift, splice

site
4 (4) 19836009

ADAMTS18
Microcornea, myopic
chorioretinal atrophy

and telecanthus

Autosomal
recessive none missense,

nonsense 7 (5) 23356391,
23818446

ADAMTS19 Nonsyndromic heart
valve disease

Autosomal
recessive none nonsense, exonic

deletion 4 (2) 31844321

When all clinical cases were reviewed for organ-specific phenotypes, HPO analysis revealed
phenotypic heterogeneity among ADAMTS family genes (Figure 2). While ocular symptoms were
the most common, a broad spectrum of eye diseases were caused by ADAMTS10, ADAMTS17,
and ADAMTS18 [25–28]. Since ADAMTS10 and ADAMTS17 consisted of common domains, including
PLAC, clinical presentations in Weill–Marchesani syndrome caused by ADAMTS10 mutations and
Weill–Marchesani-like syndrome caused by ADAMTS17 mutations shared similar ocular and skeletal
phenotypes [26]. In contrast, phenotypes in Ehlers–Danlos syndrome and Hennekam syndrome
patients completely differed and involved different organs, although ADAMTS2 and ADAMTS3
possess the same procollagen N-propeptidase domains [29,30]. Furthermore, ADAMTS9 with a unique
GON domain presented neural, hearing, and renal phenotypes if mutated, all of which are specifically
caused by ciliary dysfunction [23].
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Figure 2. Clinical findings and distribution of affected organs in individuals with Mendelian disorders
caused by pathogenic mutations in different ADAMTS family genes. Predominant and recurrently reported
clinical presentations of eight ADAMTS genes with a strong causal relationship to Mendelian disorders are
marked according to organ. Heterogeneous distribution of affected organ types indicates the phenotypic
heterogeneity among hereditary disorders caused by pathogenic germline mutations in ADAMTS genes.

3.2. Updated ADAMTS Family Genes Responsible for Mendelian Disorders; ADAMTS9 and ADAMTS19

Our group recently found ADAMTS9 mutations are a cause of nephronophthisis-related ciliopathies
(NPHP–RCs) [23]. NPHP–RCs are a group of inherited diseases associated with defects in primary cilium
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structure and function. In this study, homozygosity mapping and whole-exome sequencing identified two
cases with homozygous mutations in ADAMTS9. A novel homozygous frameshift truncating mutation
(c.4575_4576del; p.Gln1525Hisfs*60) in ADAMTS9 was identified in an European patient with NPHP and
early-onset end-stage renal disease (ESRD) with the Joubert syndrome phenotype, including symptoms of
vermis aplasia and corpus callosum hypoplasia. In addition, the patient presented with proteinuria, deafness,
atrial septal defects, coloboma, and short stature. An Arabic child from consanguineous parents also had
ESRD from NPHP, resulting from an amino acid substitution (c.194C>G; p.Thr65Arg) at Thr65, a highly
conserved residue for protein function. The patient exhibited proteinuria, deafness, hepatosplenomegaly,
anemia, thrombocytopenia, short stature, and osteopenia. While ADAMTS9 is known to be a secreted
extracellular metalloproteinase, an in vitro study showed that ADAMTS9-loss resulted in shortened cilia
and defective sonic hedgehog signaling. Knockdown of adamts9 in zebrafish recapitulated NPHP–RC
phenotypes, including renal cysts and hydrocephalus. These findings suggest that the identified mutations in
ADAMTS9 cause NPHP–RC and that ADAMTS9 is required for the formation and function of primary cilia.

Another study on ADAMTS19 recently identified pathogenic mutations as the cause of
non-syndromic heart valve disease [24]. Exome sequencing of four affected individuals in two
consanguineous families showed novel homozygous truncating mutations in ADAMTS19 (homozygous
deletion involving exons 1 to 8 and homozygous nonsense mutation (c.1984C > T; p.Arg662*)).
The authors suggested that a unique feature results from these ADAMTS19 mutations, causing only
heart valve disorders without affecting any other organs; this indicates non-syndromic features.

3.3. Evidence-Based Evaluation for Gene-Disease Relationships in ADAMTS Genes

Various aspects of gene evaluation, including GO, protein domains, expression databases,
and functional assay availability, were reviewed (Table 2). When commonly shared biological process
and molecular function GO terms were evaluated in all ADAMTS family genes, diverse GO terms
appeared across various groups of ADAMTS genes. While “proteolysis” and “collagen processes”
were dominantly annotated for biological processes, “metalloendopeptidase”, “metal ion binding”,
and “zinc ion binding” were reported in more than half of the ADAMTS family genes. As phenotypic
variability was characteristic in the affected organ spectrum, expression patterns of ADAMTS family
genes were heterogeneous. However, in vitro functional assays were only available for seven genes
despite the commonly shared functions among ADAMTS family genes.

Table 2. Evidence-based evaluation of the clinical validity of ADAMTS family genes in gene–
disease relationships.

Gene Gene Ontology (Shared
Biological Processes)

Gene Ontology (Shared
Molecular Functions) *

Protein Domain (Major
Functional Domain,
ADAMTS Backbone

Domain Shared)

Expression Database
(Uniprot, Human

Protein Atlas)

Functional
Assay Availability

ADAMTS1

Integrin-mediated signaling
pathway

Negative regulation of cell
population Proliferation

Heparin binding
Zinc ion binding TSP type-1 repeats 2 Ovary, Immune cells,

Facial skeletal
Extracellular region

or secreted

ADAMTS2
Collagen catabolic process

Collagen fibril organization
Protein processing

Zinc ion binding
TSP type-1 repeats 3,
Procollagen amino

propeptidases
Connective tissue NA

ADAMTS3
Collagen catabolic process

Collagen fibril organization
Protein processing

Heparin binding
Zinc ion binding

TSP type-1 repeats 3,
Procollagen amino

propeptidases
Extremities

Extracellular region or
secreted,

Immunoprecipitation

ADAMTS4
Extracellular matrix

Disassembly
Proteolysis

Metal ion binding
Metallopeptidase

activity
None Adipose tissue, CNS NA

ADAMTS5
Extracellular matrix

Disassembly
Proteolysis

Extracellular matrix
binding

Heparin binding
Integrin binding
Metallopeptidase

activity
Zinc ion binding

TSP type-1 repeats 1 Breast, Placenta, Heart NA

* All ADAMTS family proteins present molecular metalloendopeptidase activity function. NA, not available.
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Table 2. Cont.

Gene Gene Ontology (Shared
Biological Processes)

Gene Ontology (Shared
Molecular Functions) *

Protein Domain (Major
Functional Domain,
ADAMTS Backbone

Domain Shared)

Expression Database
(Uniprot, Human

Protein Atlas)

Functional
Assay Availability

ADAMTS6 NA
Metal ion binding
Metallopeptidase

activity

TSP type-1 repeats 4,
PLAC

Placenta, Brain, Ovarian
follicle cells NA

ADAMTS7

Cellular response to BMP
stimulus

Cellular response to tumor
necrosis factor

Negative regulation of
chondrocyte Differentiation

Proteolysis involved in
cellular protein

catabolic process

Metal ion binding
Metallopeptidase

activity

TSP type-1 repeats 7,
Mucin-proteoglycans,

PLAC
Heart muscle NA

ADAMTS8 Negative regulation of cell
population proliferation

Heparin binding
Integrin binding
Metallopeptidase

activity
Zinc ion binding

TSP type-1 repeats 1 Gallbladder, Lung NA

ADAMTS9

Endothelial cell–matrix
adhesion

Extracellular matrix
organization

Positive regulation of
melanocyte Differentiation

Proteolysis

Metallopeptidase
activity

Zinc ion binding

TSP type-1 repeats 14,
GON-1 Kidney, Adipose tissue Extracellular region

or secreted

ADAMTS10 NA Metal ion binding TSP type-1 repeats 4,
PLAC Connective tissue, Skin

Extracellular region or
secreted, N-linked

deglycosylation assay

ADAMTS12

Cell–matrix adhesion
Cellular response to BMP

stimulus
Cellular response to tumor

necrosis factor
Negative regulation of

chondrocyte differentiation
Proteolysis involved in

cellular protein catabolic
process

Metal ion binding
TSP type-1 repeats 7,
Mucin-proteoglycans,

PLAC
NA NA

ADAMTS13

Cell-matrix adhesion
Cellular response to tumor

necrosis factor
Integrin-mediated signaling

pathway
Protein processing

Proteolysis

Integrin binding
Metallopeptidase

activity
Zinc ion binding

TSP type-1 repeats 7,
CUB domain Liver, Blood

Extracellular region or
secreted,

Beta-galactosidase
activity

ADAMTS14 Collagen catabolic process
Collagen fibril organization Metal ion binding

TSP type-1 repeats 3,
Procollagen amino

propeptidases

Brain, Gallbladder,
Placenta NA

ADAMTS15 NA

Extracellular matrix
binding

Heparin binding
Zinc ion binding

TSP type-1 repeats 2
Adipose tissue, Luminal

membranes in the
gastrointestinal tract

NA

ADAMTS16 NA Metal ion binding TSP type-1 repeats 5,
PLAC Kidney, Brain, Ovary NA

ADAMTS17 NA Metal ion binding TSP type-1 repeats 4,
PLAC

Lymphoid tissue,
Connective tissue

Extracellular region
or secreted

ADAMTS18 NA Metal ion binding TSP type-1 repeats 5,
PLAC

Eye, Adipose tissue,
Brain, Placenta,

Extravillous
trophoblasts, CNS, Bone

Medaka fish model
(ocular), In-situ
hybridization

ADAMTS19 NA Metal ion binding TSP type-1 repeats 4,
PLAC

Cervix, Uterine,
Endometrium, Smooth

muscle, Ovary
NA

ADAMTS20

Extracellular matrix
organization

Positive regulation of
melanocyte differentiation

Zinc ion binding TSP type-1 repeats 14,
GON-1

Brain, Placenta,
Retina, Testis NA

* All ADAMTS family proteins present molecular metalloendopeptidase activity function. NA, not available.

3.4. Mutational Spectrum of ADAMTS Family Genes in Current Databases

When mutation databases (HGMD and ClinVar) were searched for ADAMTS gene variants, a total of
286 SNVs and 21 CNVs were collected. While eight genes with a strong causality in specific Mendelian
disorders presented 34 SNVs on average, other ADAMTS genes with currently deficient clinical evidence
possessed up to four SNVs (Table 3). Percentages of frameshift/nonsense/splicing variants were dominant in
most causative ADAMTS genes, although missense variants were more predominant in ADAMTS18.
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Table 3. Mutational spectrum of ADAMTS family genes in Mendelian hereditary disorders in current databases and literature.

Gene

Disease Database Prediction Algorithms Population Database

Number of SNV Mutations Number of CNV Mutations PER-Viewer MTR-Viewer gnomAD

HGMD * ClinVar ** Total *** HGMD * ClinVar ** Total ***

Pathogenic
Mutation
Enriched
Region

Missense
Intolerance

Regions

oe value_
Missense

oe value_
LoF pLI Score

ADAMTS1 4 0 4 0 0 0 no (family1) no 0.92 0.2 0.72
ADAMTS2 9 8 12 3 0 3 no (family1) no 0.85 0.18 0.97
ADAMTS3 4 3 4 0 0 0 no (family1) no 0.94 0.44 0
ADAMTS4 0 0 0 0 0 0 no (family1) no 0.86 0.46 0
ADAMTS5 1 0 1 0 0 0 no (family1) no 0.91 0.46 0
ADAMTS6 4 0 4 0 0 0 no (family1) Yes 0.65 0.12 1
ADAMTS7 1 0 1 0 0 0 no (family2) no 0.94 0.49 0
ADAMTS8 0 0 0 0 0 0 no (family1) no 0.93 0.63 0
ADAMTS9 3 0 3 0 0 0 no (family3) Yes 0.92 0.29 0
ADAMTS10 14 7 14 0 0 0 no (family1) Yes 0.62 0.2 0.84
ADAMTS12 0 0 0 0 0 0 no (family2) no 0.91 0.53 0
ADAMTS13 179 38 216 9 0 9 no (family4) no 0.85 0.52 0
ADAMTS14 0 0 0 0 0 0 no (family1) Yes 0.97 0.53 0
ADAMTS15 1 0 1 0 0 0 no (family1) no 0.94 0.47 0
ADAMTS16 2 0 2 0 0 0 no (family1) no 0.96 0.29 0
ADAMTS17 7 5 7 1 3 4 no (family1) no 1.16 0.55 0
ADAMTS18 14 4 14 1 4 5 no (family1) no 1.38 0.74 0
ADAMTS19 3 0 3 0 0 0 no (family1) no 0.76 0.38 0
ADAMTS20 0 0 0 0 0 0 no (family3) no 1.06 0.69 0

* HGMD: small nucleotide variants annotated as “DM?” and “DM”. ** ClinVar: small nucleotide variants annotated as “likely pathogenic” and “pathogenic”. *** Excluding the overlapping
variants. Bolded numbers indicate the satisfaction of suggested criteria for loss of function mechanism.
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To predict the possibility of a missense mutational burden at “hot spots” on ADAMTS genes, two
recently validated prediction tools (i.e., PER-viewer [20] and MTR-viewer [21]) were utilized. As PER-viewer
considers the positional conservation status among paralogs, each ADAMTS gene was compared to other
genes within the ADAMTS family. Four families were incorporated using PER-viewer, and this algorithm
suggested that there were no definitive pathogenic mutation enriched regions for missense mutations in any
ADAMTS gene, according to the suggested threshold of Bonferroni-adjusted p-value below 0.05. In contrast,
ADAMTS6, ADAMTS9, ADAMTS10, and ADAMTS14 appeared to have missense mutation enriched regions
according to MTR-viewer based on the criterion of MTR score under 0.6 and FDR-adjusted p-value under 0.1,
as defined by algorithm developers. As missense mutations in ADAMTS9 and ADAMTS10 are validated
for their pathogenicity in association with Mendelian disorders, ADAMTS6 and ADAMTS14 are expected
to be responsible for currently undiscovered Mendelian disorders with pathogenic missense mutations.
Furthermore, oe value for missense variants in ADAMTS6 was relatively low among ADAMTS family genes,
indicating the possibility of missense mutations to be elucidated in the future. Another oe value for loss
of function (LoF) mutations provided by the gnomAD database, along with the pLI score from a previous
version of gnomAD, suggested ADAMTS2 and ADAMTS6 as LoF genes if pathogenic mutations caused
Mendelian disorders. As all reported ADAMTS2 and ADAMTS6 variants did not satisfy the pathogenicity
grades, pathogenic LoF mutations with distinctive dysfunctions might cause severe Mendelian disorders or
even embryo lethality.

3.5. Reassessment of Previously Reported Pathogenic Mutations in ADAMTS Genes

The ACMG variant interpretation guideline [19] was applied for previously reported pathogenic mutations
(Table 4). The mutational spectrum of ADAMTS13 pathogenic mutations, which was well-reviewed in recently
published literatures, revealed a heterogeneous pattern across mutation positions and variant types (Table S1).
Among the diverse evidence in the ACMG guideline, allele frequency in the control database highlighted as
predicting the prevalence of Mendelian disorders were ultra-rare. A total of 45 mutations were validated for
their suggested pathogenicity (Table 4), while another 12 presumably annotated pathogenic variants provided
insufficient evidence for pathogenicity interpretation (Table S2). Positional distribution of pathogenic and
likely pathogenic mutations were dispersed among seven genes (Figure 3).
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Table 4. Reassessment of previously reported pathogenic mutations in ADAMTS family genes using the American College of Medical Genetics and Genomics (ACMG)
variant interpretation guideline.

Gene
Tran-
script

Nucleotide
Change

Amino
Acid Change

Conservation * Population Database Prediction Algorithms ACMG Guideline

Mm Gg Xt Dr gnomAD_all gnomAD_
maxP

db
SNP SIFT PP2 Final Class Component

ADAMTS2 NM_014244.4 c.2T>C p.M1T M E _ _ none none Pathogenic PVS1, PM2, PM3
ADAMTS2 NM_014244.4 c.673C>T p.Q225* na na na na 0.0150% ASJ:0.30% rs137853146 Pathogenic PVS1, PM1, PP4
ADAMTS2 NM_014244.4 c.2384G>A p.W795* na na na na none rs137853147 Pathogenic PVS1, PM2, PP4

ADAMTS2 NM_014244.4 c.3328C>G p.P1110A P L _ _ none none Tol (0.29) Ben (0.001) Likely
pathogenic

PM2, PP1, PP2,
PP4, PP5

ADAMTS2 NM_014244.4 c.2751-2A>T NA na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS2 NM_014244.4 c.884_887del p.M295Tfs*26 na na na na none none Pathogenic PVS1, PM2, PP4

ADAMTS2 NM_014244.4 c.2458-6_2458del NA na na na na none rs1057517277 Pathogenic PVS1, PM2, PP1,
PP4

ADAMTS2 NM_014244.4 c.2927_2928del p.P976Rfs*42 na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS2 NM_014244.4 c.669dup p.P224Afs*42 na na na na none rs748037345 Pathogenic PVS1, PM2, PP4
ADAMTS2 NM_014244.4 c.1638dup p.K547* na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS2 NM_014244.4 c.32del p.L11Rfs*154 na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS3 NM_014243.2 c.280C>T p.R94* na na na na 0.0004% AFR:0.0062% rs747975445 Pathogenic PVS1, PP1, PP4

ADAMTS3 NM_014243.2 c.503T>C p.L168P L L L L 0.0004% NFE:0.00090% rs1177851177 Del (0.01) Dam (1.000) Pathogenic PM2, PM3, PP3,
PP4

ADAMTS3 NM_014243.2 c.872T>C p.I291T I I I I none rs61757480 Del (0.01) Dam (1.000) Pathogenic PM2, PM3, PP3,
PP4

ADAMTS9 NM_182920.1 c.194C>G p.T65R T T S T 0.0240% ASJ:0.096% rs192420947 Del (0.01) Dam (0.559) Likely
pathogenic PS3, PP1, PP3

ADAMTS9 NM_182920.1 c.4575_4576del p.Q1525Hfs*60 na na na na none none Pathogenic PVS1, PS3, PM2

ADAMTS10 NM_030957.3 c.41T>A p.L14Q L _ _ _ none none Del (0.01) Ben (0.090) Pathogenic PS3, PM2, PP1,
PP2, PP4, PP5

ADAMTS10 NM_030957.3 c.73G>A p.A25T A _ _ _ 0.0032% SAS:0.0098% rs121434358 Tol (0.05) Ben (0.058) Pathogenic PS3, PM3, PP1,
PP2, PP4, PP5

ADAMTS10 NM_030957.3 c.709C>T p.R237* na na na na 0.0004% EAS:0.0054% rs121434357 Pathogenic PVS1, PM3, PP4
ADAMTS10 NM_030957.3 c.952C>T p.Q318* na na na na none rs121434359 Pathogenic PVS1, PM2, PP4

ADAMTS10 NM_030957.3 c.1553G>A p.G518D G G G G none rs267606636 Del (0) Dam (1.000) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS10 NM_030957.3 c.1586G>A p.G529E G G G G 0.0004% NFE:0.00090% none Del (0) Ben (0.270) Likely
pathogenic

PM2, PP1, PP4,
PP5

ADAMTS10 NM_030957.3 c.2098G>T p.G700C G G G G none rs267606637 Del (0) Dam (1.000) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS10 NM_030957.3 c.2485T>A p.W829R W W W W none none Del (0) Dam (0.999) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS10 NM_030957.3 c.810+1G>A NA na na na na 0.0007% ASJ:0.0097% rs387906266 Pathogenic PVS1, PP1, PP4
ADAMTS10 NM_030957.3 c.1190+1G>A NA na na na na none rs431825170 Pathogenic PVS1, PM2, PP4
ADAMTS10 NM_030957.3 c.1797+2T>G NA na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS10 NM_030957.3 c.2239+1G>A NA na na na na 0.0004% AFR:0.0062% rs782338897 Pathogenic PVS1, PP1, PP4
ADAMTS17 NM_139057.3 c.760C>T p.Q254* na na na na none rs267606638 Pathogenic PVS1, PM2, PP4
ADAMTS17 NM_139057.3 c.1051A>T p.K351* na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS17 NM_139057.3 c.873+1G>T NA na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS17 NM_139057.3 c.1721+1G>A NA na na na na 0.0032% NFE:0.0071% rs749116256 Pathogenic PVS1, PP1, PP4
ADAMTS17 NM_139057.3 c.652delG p.D218Tfs*41 na na na na none none Pathogenic PVS1, PM2, PP4
ADAMTS17 NM_139057.3 c.2458dupG p.E820Gfs*23 na na na na none rs387906291 Pathogenic PVS1, PM2, PP4
ADAMTS18 NM_199355.3 c.97C>T p.Q33* na na na na none rs397515469 Pathogenic PVS1, PM2, PP4
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Table 4. Cont.

Gene
Tran-
script

Nucleotide
Change

Amino
Acid Change

Conservation * Population Database Prediction Algorithms ACMG Guideline

Mm Gg Xt Dr gnomAD_all gnomAD_
maxP

db
SNP SIFT PP2 Final Class Component

ADAMTS18 NM_199355.3 c.605T>C p.L202P L L L I none rs397515468 Del (0.01) Dam (0.992) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS18 NM_199355.3 c.1067T>A p.L356* na na na na none none Pathogenic PVS1, PM2, PP4

ADAMTS18 NM_199355.3 c.1298C>A p.T433N T T T T none none Del (0.02) Dam (1.000) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS18 NM_199355.3 c.1731C>G p.C577W C C C C none rs148319220 Del (0) Dam (1.000) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS18 NM_199355.3 c.1952G>A p.R651Q R R R R none rs866074735 Del (0) Dam (0.921) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS18 NM_199355.3 c.2065G>T p.E689* na na na na none rs397515467 Pathogenic PVS1, PM2, PP4

ADAMTS18 NM_199355.3 c.2159G>C p.C720S C C C C 0.0004% SAS:0.0033% rs749517658 Del (0) Dam (1.000) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS18 NM_199355.3 c.2546G>A p.G849D G G _ G 0.0004% EAS:0.0054% rs1417470741 Tol (0.44) Dam (0.838) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS18 NM_199355.3 c.3235T>C p.C1079R C C C C 0.0004% NFE:0.00090% rs1268581022 Del (0) Dam (0.999) Likely
pathogenic

PM2, PP1, PP3,
PP4, PP5

ADAMTS19 NM_133638.4 c.1984C>T p.R662* na na na na 0.0008% NFE:0.0018% rs772148624 Pathogenic PVS1, PS3

Abbreviations: Mm, Mus musculus; Gg, Gallus gallus; Xt, Xenopus tropicalis; Dr, Danio rerio; NA, not available; gnomAD_maxP, maximum minor allele frequency among sub-ethnic
populations in the gnomAD database; ASJ, Ashkenazi Jewish; AFR, African; NFE, non-Finnish European; SAS, South Asian; EAS, East Asian; SIFT, Sorting Intolerant From Tolerant; PP2,
PolyPhen-2; Tol, tolerated; Del, deleterious; Ben, benign; Dam, damaging; ACMG, American College of Medical Genetics and Genomics; PVS, pathogenic very strong; PS, pathogenic
strong; PM, pathogenic moderate; PP, pathogenic supporting. * Codes in conservation columns represent the corresponding amino acids in four species at the positions of mutation
according to standard amino acid abbreviations by IUPAC–IUB Joint Commission on Biochemical Nomenclature.



Biomolecules 2020, 10, 449 12 of 15

Biomolecules 2020, 10, x FOR PEER REVIEW 12 of 16 

PP3, 
PP4, PP5 

ADA
MTS1

8 

NM_199
355.3 

c.2546G>
A 

p.G849D G G _ G 0.0004% 
EAS:0.
0054% 

rs14
1747
0741 

Tol 
(0.44) 

Dam 
(0.838) 

Likely 
pathog

enic 

PM2, 
PP1, 
PP3, 

PP4, PP5 

ADA
MTS1

8 

NM_199
355.3 

c.3235T>
C 

p.C1079
R 

C C C C 0.0004% 
NFE:0.
00090

% 

rs12
6858
1022 

Del (0) 
Dam 

(0.999) 

Likely 
pathog

enic 

PM2, 
PP1, 
PP3, 

PP4, PP5 
ADA
MTS1

9 

NM_133
638.4 

c.1984C>
T 

p.R662* na na na na 0.0008% 
NFE:0.
0018% 

rs77
2148
624 

    
Pathog

enic 
PVS1, 
PS3 

Abbreviations: Mm, Mus musculus; Gg, Gallus gallus; Xt, Xenopus tropicalis; Dr, Danio rerio; NA, not 
available; gnomAD_maxP, maximum minor allele frequency among sub-ethnic populations in the 
gnomAD database; ASJ, Ashkenazi Jewish; AFR, African; NFE, non-Finnish European; SAS, South 
Asian; EAS, East Asian; SIFT, Sorting Intolerant From Tolerant; PP2, PolyPhen-2; Tol, tolerated; Del, 
deleterious; Ben, benign; Dam, damaging; ACMG, American College of Medical Genetics and 
Genomics; PVS, pathogenic very strong; PS, pathogenic strong; PM, pathogenic moderate; PP, 
pathogenic supporting. * Codes in conservation columns represent the corresponding amino acids in 
four species at the positions of mutation according to standard amino acid abbreviations by IUPAC–
IUB Joint Commission on Biochemical Nomenclature. 

 
Figure 3. Comparative analysis of pathogenic mutation loci across ADAMTS genes with strong 
relationship with specific Mendelian disorders. Positional annotations of pathogenic mutations in 
ADAMTS genes by protein functional domains indicate the wide distribution of mutations and 
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Figure 3. Comparative analysis of pathogenic mutation loci across ADAMTS genes with strong
relationship with specific Mendelian disorders. Positional annotations of pathogenic mutations in
ADAMTS genes by protein functional domains indicate the wide distribution of mutations and absence
of hot spots. “*” (asterisk) indicates a translation termination codon.

4. Discussion

In this study, we identified a subset of ADAMTS family genes with strong evidence of being
causative genes for specific Mendelian disorders. As a growing number of variants are detected
by up-to-date sequencing technologies [7], ADAMTS family genes are expected to be highlighted
for their association with human disorders, especially hereditary diseases [3–5]. Understanding the
genomic landscape and mutational spectrum of ADAMTS family genes in clinical cases will not only
benefit further characterization of ADAMTS family proteins in biology but the future development
and application of therapeutics for Mendelian disorders caused by ADAMTS gene mutations.

A total of eight ADAMTS family genes are currently known to be responsible for Mendelian
disorders. Since all ADAMTS proteins are metalloproteases, the autosomal recessive modes of all genes
are compatible with the characteristics of ADAMTS enzymes [1]. Furthermore, the mutational spectrum of
nonsense and frameshift mutations could be explained by the LoF mechanism in most genes, as expected.
While ADAMTS13 mutations are well studied for heterogenous mutations across the gene in more than
200 congenital thrombotic thrombocytopenic purpura patients [31,32], only small numbers of patients and
mutations have been reported in the other seven genes. Although the prevalence of ultra-rare Mendelian
diseases caused by ADAMTS genes is expected [5], it is important to broaden the genetic spectrum of
these genes as more patients with pathogenic ADAMTS gene mutations will present in the future. It is
noteworthy that two recently discovered Mendelian disorders arising from ADAMTS9 and ADAMTS19
broadened the spectrum of affected organs (renal and cardiac diseases, respectively) that have never been
associated with six previously identified ADAMTS genes responsible for Mendelian disorders.
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Clinical symptoms and affected organs are extremely heterogeneous among hereditary diseases
caused by ADAMTS genes. Phenotypic heterogeneity in these Mendelian disorders, despite shared
enzymatic functions and similar functional defective features of germline mutations among ADAMTS
family genes, is noticeable and it is alarming that paralogs within the ADAMTS gene family might
function differently in different organs. Redundancy or compensation by other normal ADAMTS genes
instead of affected ADAMTS genes is less likely to be anticipated based on the diverse symptoms among
these disorders. Furthermore, subgrouping of ADAMTS genes according to shared unique protein
domains did not fully correlate with the clinical presentations in affected patients, suggesting that
organ-specific functions among individual ADAMTS genes are essential to their physiological roles.

To evaluate the possibility of yet-to-be-discovered Mendelian disorders caused by other ADAMTS
genes, we applied two recently validated prediction algorithms [20,21] for missense burden estimation by
regions across genes. Although only one algorithm predicted that four genes (ADAMTS6, ADAMTS9,
ADAMTS10, ADAMTS14) possessed missense intolerance regions, pathogenic missense mutations in
ADAMTS9 and ADAMTS10 indeed account for relatively high proportions among mutation types.
Therefore, we suggest that ADAMTS6 and ADAMTS14, which are not currently considered causative genes
for any Mendelian disorders, might be responsible for novel hereditary disorders caused by pathogenic
missense mutations. Furthermore, ADAMTS6 and ADAMTS2 also presented high pLI scores and low
oe values for LoF using the gnomAD database. As nonsense and frameshift mutations in ADAMTS2 are
responsible for the Ehlers–Danlos syndrome, LoF mutations in ADAMTS6 are expected to cause novel
disease entities with diverse organotypic symptoms. Altogether, it will be interesting to examine whether
any other ADAMTS proteins are involved in different forms of Mendelian diseases in the future.

When we applied the 2015 ACMG guideline [19] for pathogenicity interpretation in all reported
ADAMTS family gene variants and compiled all published information on functional assays to evaluate
the clinical validity of gene-disease relationships, the importance of an appropriate functional evaluation
on diverse ADAMTS gene variants was once again confirmed in terms of accurately interpreting
pathogenicity. Although ADAMTS1 and ADAMTS16 variants were suggested to be responsible for
congenital mandibular prognathism and inherited hypertension, respectively, insufficient evidence for
defective functions in ADAMTS proteins caused by variants and the scarcity of clinical reports did
not allow strongly valid annotations for either the gene–disease relationship or variant pathogenicity.
While the conventional genetic assessment of ADAMTS gene family variants should be considered
in the context of prediction algorithm results, conservation status across species, and population
allele frequencies, functional assays for clear defects appear to be the most important factor in the
process of ACMG guideline application to establish a strong link between a pathogenic mutation and
an associated Mendelian disorder.

5. Conclusions

In conclusion, we evaluated the genomic landscape and mutational spectrum of ADAMTS
family genes in Mendelian disorders based on a gene evidence review of variants using publicly
available databases and systematic literature reviews. Although eight ADAMTS family genes have
a strong causal relationship with diverse Mendelian diseases in an autosomal recessive manner, there
are additional possibilities for other ADAMTS family genes, such as ADAMTS6, to have a high
potential in causing novel hereditary disorders based on our analysis. Despite an ultra-rare prevalence
of pathogenic germline ADAMTS mutations responsible for genetic diseases (with the exception
of ADAMTS13), it is important to accurately assess variants for their pathogenicity, together with
metalloproteinase-specific functional assays for ADAMTS family proteins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/3/449/s1,.
Table S1: Reassessment of variants in ADAMTS family genes with strong evidence for Mendelian disorders
previously suggested for association but disqualified for pathogenicity using the ACMG variant interpretation
guideline. Table S2: List of 202 pathogenic mutations in ADAMTS13 (NM_139025.4) with strong evidence for
hereditary thrombotic thrombocytopenic purpura or Upshaw–Schulman syndrome.

http://www.mdpi.com/2218-273X/10/3/449/s1
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