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ABSTRACT
Cellulosic biowastes are one of the cheapest and most abundant renewable organic
materials on earth that can be, subsequent to hydrolysis, utilized as an organic carbon
source for several fermentation biotechnologies. This study was devoted to explore
a semidry acid hydrolysis of cellulose for decreasing the cost and ionic strength of
the hydrolysate. For semidry acid hydrolysis, cellulose was just wetted with HCl (0 to
7 M) and subjected to autoclaving. The optimum molar concentration of HCl and
period of autoclaving for semidry acid hydrolysis of cellulose were 6 M and 50 min
respectively. Subsequent to the semidry acid hydrolysis with a minimum volume of 6
M HCl sustained by autoclaving, the hydrolysate was diluted with distilled water and
neutralized with NaOH (0.5 M). The reducing sugars produced from the semidry acid
hydrolysis of cellulose was further used for dark fermentation biohydrogen production
by Escherichia coli as a representative of most hydrogen producing eubacteria which
cannot utilize non-hydrolyzed cellulose. An isolated E. coli TFYM was used where this
bacterium was morphologically and biochemically characterized and further identified
by phylogenetic 16S rRNA encoding gene sequence analysis. The reducing sugars
produced by semidry acid hydrolysis could be efficiently utilized by E. coli producing
0.4 mol H2 mol−1 hexose with a maximum rate of hydrogen gas production of 23.3
ml H2 h−1 L−1 and an estimated hydrogen yield of 20.5 (L H2 kg−1 dry biomass).
The cheap cellulosic biowastes of wheat bran, sawdust and sugarcane bagasse could be
hydrolyzed by semidry acid hydrolysis where the estimated hydrogen yield per kg of
its dry biomass were 36, 18 and 32 (L H2 kg−1 dry biomass) respectively indicating a
good feasibility of hydrogen production from reducing sugars prepared by semidry
acid hydrolysis of these cellulosic biowastes. Semidry acid hydrolysis could also be
effectively used for hydrolyzing non-cellulosic polysaccharides of dry cyanobacterial
biomass. The described semidry acid hydrolysis of cellulosic biowastes in this study
might be applicable not only for bacterial biohydrogen production but also for various
hydrolyzed cellulose-based fermentation biotechnologies.
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INTRODUCTION
Cellulosic biowastes are of the most abundant renewable biomass available for hydrolysis
for a cost-effective fermentation bioindustries. One of these fermentation biotechnologies
is the production of hydrogen gas by bacteria. Hydrogen gas is one of the applicable
sources of future renewable energy that is potentially promising to replace the present
worldwide used fossil fuels (Yokoi et al., 2001; Nath & Das, 2004; Kapdan & Kargi, 2006;
Chong et al., 2009; Abd-Alla, Morsy & El-Enany, 2011; Budiman &Wu, 2018; Noblecourt et
al., 2018;Morsy et al., 2019). The hydrogen gas production by eubacteria is a cost-effective
way where cheap organic wastes can be utilized in such future biological industry (Yu et
al., 2002; Zhang, Brunsb & Logan, 2006; Pattra et al., 2008; Lo et al., 2009; Cheng & Chang,
2011;Noparat, Prasertsan & Sompong, 2011;Hay et al., 2016;Morsy, 2017;Morsy, Elbahloul
& Elbadry, 2019). Cellulose feedstock come at the top of interest to be utilized as an organic
form source of carbon for producing H2 by eubacteria, however most hydrogen producing
eubacteria cannot utilize cellulosic biowastes. Hydrolysis of cellulose is thus fundamental
for an efficient utilization of cellulosic biowastes in the production of hydrogen by many
eubacteria. The efficiency of acid hydrolysis of polysaccharides in general depends on its
polymeric complexity where cellulose is one of the difficult types of polysaccharides to
hydrolyze. Due to abundant cellulose feedstock all over the world (Sukumaran, Singhania
& Pandey, 2005), its hydrolysis is of the hot topics for the production of reducing sugars for
various biofuels fermentation biotechnological industries. In the past, cellulosic feedstocks
were used in heating but now with the modernization of developing countries, it is no
longer used and replaced by biogas. Thus, farmers in developing countries sometimes burn
most of the crop plants straw in-situ of their farms to get rid of it. This leads to a high-risk
pollution and increases the CO2 in the atmosphere; a trouble that shares to some extent,
besides CO2-liberating industries and extensive use of fossil fuels, in increasing the percent
of CO2 gas in the atmosphere enhancing global warming. Many works of literature seek
useful utilization of cellulose feedstocks in producing hydrogen gas biologically. Acid and
enzymatic hydrolysis of the polysaccharide cellulose is usually used for producing reducing
sugars (Camacho et al., 1996; Iranmahboob, Nadim &Monemi, 2002; Sun & Cheng, 2002;
Xiang et al., 2003; Taherdazeh & Karimi, 2007; El-Zawawy et al., 2011; Heinonen et al.,
2012; Ni et al., 2013; Pulidindi, Kimchi & Gedanken, 2014; Vo et al., 2014; Yoon, Han &
Shin, 2014). The acid hydrolysis is more applicable in high mass of cellulose at industrial
scale. Reducing the amount of acid used in the hydrolysis is useful in two aspects; first
it reduces the cost by reducing the amount of acid per-se and the amount of base used
in subsequent neutralization step; second it will reduce the final ionic strength of the
fermentation medium that might adversely affect the fermentation process. In this study a
semidry acid hydrolysis of cellulose was conducted and its efficiency in producing reducing
sugars was investigated. Applicability of acid hydrolysis of lignocelluloses and other
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polymeric carbohydrates is extensively reported in many fields of biotechnologies (Cuzens
& Miller, 1997; Baruah et al., 2018; Bhatia et al., 2021). Hydrogen gas production by E.
coli strain TFYM from hydrolyzed pure cellulose and various cellulose feedstock was
investigated as an example of the many biotechnological applications that can be served by
semidry acid hydrolysis of cellulose in a cost-effective way.

MATERIALS AND METHODS
Semidry acid hydrolysis of cellulose
Cellulose [Cellulose powder RM126, HiMedia Laboratories Pvt. Ltd. India], retaining
no humidity confirmed by drying at 70 ◦C for 20 h and re-weighting and stored in dry
conditions, was used for semidry acid hydrolysis where it was just wetted by HCl in a ratio
of 1:1 [1g cellulose: 1 ml HCl], in loosely screw capped glass tubes, followed by autoclaving
at 121 ◦C using LabTech vertical autoclave (Model LAC-51005, Daihan LabTech Co., LTD,
Namyangju-City, Kyonggi-Do, Korea).

Optimization of HCl molar concentration and period of autoclaving for
semidry acid hydrolysis of cellulose
Optimization experiments of semidry acid hydrolysis was conducted in loosely screw
capped glass tubes retaining 1 g cellulose and 1 ml of 0 (H2O) to 7 M HCl (255.2 g/L).
For optimization of HCl molar concentration and period of autoclaving for semidry acid
hydrolysis of cellulose, optimum molarity of HCl for hydrolysis was determined first. The
optimization of HCl molar concentration for semidry acid hydrolysis of cellulose was
conducted using various molarities of HCl (0 to 7 M) at a constant period of autoclaving
for 30 min. Subsequently, the optimization of the autoclaving period for semidry acid
hydrolysis of cellulose was investigated at constant optimummolarity of HCl using various
autoclaving periods (0 to 70 min). The determined optimum molarity was 6 M HCl for
semidry acid hydrolysis of cellulose and thus, determination of the optimum period of
autoclaving was conducted at constant 6M HCl. The period (0.0) of autoclaving is after
acid treatment (addition of 6M HCl to cellulose) before autoclaving. Control samples with
no acid treatment (acid replaced by distilled water) were subjected to the various periods
of autoclaving used.

Hydrolysate neutralization and preparation
Subsequent to autoclaving, the hydrolysate was diluted with distilled H2O and filtered
through Whatman No. 1 filter paper (Cat. No. 1001-090, Whatman International Ltd,
Maidstone England). The hydrolysate filtrate was neutralized by 0.5 M NaOH solution and
the reducing sugars content was measured by Nelson reagent (Nelson, 1944).

Semidry acid hydrolysis of various cellulosic biowastes
Semidry acid hydrolysis was applied on various cellulose feedstocks including wheat bran,
sawdust and sugarcane bagasse. Wheat bran was purchased from the market. Sawdust was
obtained from a carpenter shop. Sugarcane bagasse was obtained from Egypt and ground
to small pieces. All feedstocks were washed with distilled water, filtered through cloth
filter and dried at 70 ◦C up to constant weight, stored in dry conditions and subsequently
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used for semidry acid hydrolysis. Cellulose and various cellulose feedstocks (wheat bran,
sawdust and sugarcane bagasse) were subjected to semidry acid hydrolysis in loosely screw
capped glass bottles (250 ml SCHOTT Duran-group, Germany) retaining 10 g dry biomass
and 10 ml of optimum HCl molar concentration (6M HCl) in a ratio of 1:1 [1g biomass:
1 ml HCl] and subjected to optimum autoclaving period (50 min.). The hydrolysates were
diluted, filtered and neutralized as described above. The released reducing sugars content
in the filtrates was measured by Nelson reagent (Nelson, 1944) where the efficiency of the
semidry acid hydrolysis represented in the percent hydrolysis of the cellulosic biowastes
was calculated as follows:

% Hydrolysis= [Amount of reducing sugars released(g)/Dry mass(g)]×100

The neutralized filtrate retaining the released reducing sugars from semidry acid hydrolysis
of cellulose and various cellulosic feedstocks were used subsequently for dark fermentation
hydrogen gas production by E. coli TFYM.

Isolation and identification of E. coli TFYM
Isolation of E. coli and its phenotypic characterizationwas conducted by standard protocols.
Isolation of the bacterium E. coli TFYM was conducted using lactose broth following the
techniques [MPN (Most Probable Number)] (MacFaddin, 1985) from wastewater sample
at Saudi Arabia. Confirmation of the positive tubes was performed using Eosin Methylene
Blue (EMB) agar and it was further characterized as E. coli bacterium on MacConkey
medium. Other characterizations of the bacterium were conducted following Bergey’s
Manual (Brenner et al., 2005).

Molecular biological identification and phylogenetic analysis of E. coli
TFYM 16S rRNA gene sequence
The 16S rRNA gene amplification by PCR
The bacterial cells genomic DNA was extracted by Promega Wizard Genomic DNA
Purification Kits (Promega, USA) according to the kit manufacturer instructions.
Subsequently, the 16S rRNA encoding gene amplification was conducted to a near-
full length by PCR using the genomic DNA template and the universal forward 27F
primer with a sequence of (5′-AGAGTTTGATC[A/C]TGGCTCAG-3′) and reverse 1492R
universal primer with a sequence of (5′-G[C/T]TACCTTGTTACGACTT-3′) (Lane, 1991).
The amplification by PCR was performed in a reaction mixture (25 µl) composed of 2.5 µl
of 10 × Taq buffer (100 mM Tris–HCl, pH 8), 100 µM dNTPs, 1.25 mM MgCl2, 1.2 µM
forward and reverse universal primers, 0.5U of the Taq DNA polymerase, in addition to
the genomic DNA of about 5 ng as a template. The PCR amplification was performed
using Model 2720, USA Applied Biosystem Thermal Cycler following a program for PCR
of 5 min at 95 ◦C (initial denaturation), 35 cycles of [1 min at 94 ◦C (denaturation), 1
min at 56 ◦C (annealing), and 1 min at 72 ◦C (extension)] followed by 10 min at 72 ◦C as
a final extension. The PCR amplification product was subsequently analyzed by standard
protocol of agarose-electrophoresis using 1% agarose-gel retaining 5 µg/mL of ethidium
bromide. A 1 kb Plus DNA ladder size marker (Invitrogen, USA) was used.
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Sequencing, accession number and phylogenetic analysis of 16S rRNA en-
coding gene nucleotides sequence
The amplification product of the PCR was purified by PCR Purification Kit
[Invitrogen PureLink (Invitrogen, USA)]. Subsequently the purified PCR product was
photometrically quantified. Using same forward and reverse primers, the PCR purified
product was cycle sequenced in both directions using automated florescent dye terminator
sequencing method (Sanger, Nicklen & Coulson, 1977) at Macrogen Korea sequencing
facility, (Seoul, Korea). The 16S rRNA encoding gene sequence reads were assembled and
compared with its nearest matches found by searching in the nucleotide-nucleotide BLAST
of the GenBank website search tools of the NCBI website. The alignments of the base
sequences of the 16S rRNA encoding gene were conducted using the website of Clustal
W1.83 XP (Thompson et al., 1997). The 16S rRNA gene sequence derived phylogenetic tree
was constructed through the use of neighbor-joining method (Saitou & Nei, 1987) using
MEGAX software (Kumar et al., 2018). Bacillus cereus strain ATCC14579 (NR_074540.1)
was used as outgroup. The obtained base sequence in this study of E. coli TFYM 16S rRNA
encoding gene has been deposited as near full length sequence of this gene in the GenBank
website of nucleotide sequence database under accession number MK332445.1.

Growth of E. coli on reducing sugars prepared by semidry acid hy-
drolysis of cellulose as indicator of its utilization of as a carbon source
The utilization of semidry acid hydrolyzed cellulose by E. coli for growth was investigated
using BM (Basal Mineral) medium supplemented with 5 g/L reducing sugars of semidry
acid hydrolyzed cellulose. BMmediumwas composed of the followings (per liter): K2HPO4,
4.4 g; (NH4)2SO4, 1.3 g; NaH2PO4, 3.5 g; MgSO4.6H2O, 0.9 g and 1 ml of trace elements
solution. The trace elements solution was composed of the followings (per 100 ml): FeSO4

.7H2O, 0.37 g; CaCl2.2H2O, 4.8 g; MnCl2, 0.1 g; CoCl2.6H2O, 0.04 g; Na2MoO4.2H2O,
0.02 g. The aerobic growth of E. coli on reducing sugars of semidry acid hydrolysis of
cellulose on basal medium (BM) was followed spectrophotometrically by absorbance
at wavelength 600 nm quantified using UV/Vis spectrophotometer (6320D Jenway). A
calibration of the growth followed by OD at 600 nm versus dry cell weight (DCW) was
conducted in 100 ml cultures of E. coli on reducing sugars of semidry acid hydrolysis of
cellulose in Basal Mineral (BM) medium.

Hydrogen gas production by E. coli TFYM dark fermentation
Prior to fermentation, E. coli TFYM was grown in LB medium [10 g/l tryptone, 10 g/l
NaCl, 5 g/l yeast extract] at 35 ◦C. E. coli TFYM batch dark fermentation experiments were
conducted for H2 formation from reducing sugars prepared as described above by semidry
acid hydrolysis of cellulose and cellulosic feedstock biowastes (wheat bran sugarcane bagasse
and sawdust). A one-liter glass fermentation bottle was used with a working volume of 970
ml. A volume 870 ml of neutralized hydrolysate was put in the fermentation bottle and
supplemented with E. coli TFYM (OD600 equal 0.25) 100 ml inoculum. The fermentation
bottle was closed with a rubber bung and subsequently sparged with nitrogen gas for 20
min to accelerate installing anaerobic conditions. The fermentation bottle was kept in dark
with continuous stirring at 35 ◦C. The evolved H2 gas was collected using a CO2-free H2
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gas collection system (Morsy, 2015) relying on passing the evolved gas on NaOH solution
for absorbing CO2 and subsequently collecting the CO2-free H2 gas by water displacement.
The collected H2gas compared to pure H2 gas was measured using a Clark-type platinum-
coated electrode computerized system [purchased from (Hansatech Instruments, Inc.)
for Taibah University, Saudi Arabia] according to manufacturer instructions. The rate of
H2production was estimated as previously described (Morsy, Elbahloul & Elbadry, 2019) at
each point of measurements of the produced cumulative H2 gas as follows:

Rate of H2 gas production= (Vx−Vp)/(Tx−Tp)

Where (Vx−Vp) is the difference in volume of collected cumulative H2 gas at measurement
time point (x) and the previous measurement time point (p). (Tx−Tp) is difference in
time between the two cumulative H2gas measurement points.

RESULTS
In this study a semidry acid hydrolysis of cellulose and cellulosic feedstock biowastes
was conducted for producing reducing sugars that can be used in many fermentation
biotechnologies including production of hydrogen gas by bacterial dark fermentation. The
semidry acid hydrolysis of cellulose was performed in a ratio of 1:1 [1 g biomass:1 ml of HCl
where the cellulose was just wetted by the acid and subjected to autoclaving. The optimum
HClmolar concentration for semidry acid hydrolysis of cellulosewas 6Mdetermined first at
autoclaving period of 30 min (Fig. 1A). The optimum autoclaving period was subsequently
determined as 50 min (Fig. 1B) at optimum 6M HCl. These optimum 6M HCl and 50
min autoclaving conditions was efficient (Fig. 2) in hydrolyzing various cheap cellulosic
feedstock biowastes (wheat bran, sawdust and sugarcane bagasse). The percent hydrolysis
of wheat bran [65% ± 10.58 (Standard Deviation)] and sugarcane bagasse (46.3% ±
7.18) was more than pure cellulose (41.2% ± 5.31) possibly due to hydrolyzing cellulose
and other less complicated more hydrolysable polysaccharides such as hemicellulose and
others that is known to be present in natural plant residues. The semidry acid hydrolysis
was also applied on non-cellulosic biomass of the potent extracellular polysaccharides
producing cyanobacterium Nostoc commune where it produced 0.51 ± 0.12 g reducing
sugars/ g dry mass. The ability of E. coli to utilize the reducing sugars produced by semidry
acid hydrolysis of cellulose was conducted on Basal Mineral (BM) medium, so that the
medium contains only minerals and a soli organic carbon source (the reducing sugars of
semidry acid hydrolyzed cellulose). The results showed good ability of E. coli for utilization
of the reducing sugars prepared by semidry acid hydrolysis of cellulose as investigated
in a basal mineral medium where the bacterium could grow efficiently (Fig. 3) using
the hydrolysate reducing sugars as an organic carbon source. The aerobic growth of E.
coli on reducing sugars of semidry acid hydrolysis of cellulose in Basal Mineral (BM)
medium followed by OD at 600 nm (Fig. 3A) was calibrated (Fig. 3B) versus dry cell
weight (DCW) where a calibration value of OD600 nm of 1 equals 0.368 g/L. E. coli like
most other hydrogen producing bacteria cannot utilize cellulose as a carbon source and
its utilization of reducing sugars prepared by semidry acid hydrolysis is a representative
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Figure 1 Semidry acid hydrolysis of cellulose. (A) shows the optimization of HCl molar concentration
in semidry acid hydrolysis of cellulose sustained by autoclaving for 30 min. Semidry acid hydrolysis of cel-
lulose using various molarities of HCl for a constant period of autoclaving for 30 min. (B) shows the auto-
claving period optimization for semidry acid hydrolysis of cellulose at 6M HCl. The determined optimum
molarity of 6 M HCl for semidry acid hydrolysis of cellulose was used (open circles) for determining the
optimum period of autoclaving. Control samples (closed squares) with no acid treatment (replaced by wa-
ter) were subjected to various periods of autoclaving used. The mean values of three replicates and stan-
dard errors are shown.

Full-size DOI: 10.7717/peerj.11244/fig-1
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for efficiency of using such hydrolysate in dark fermentation. The bacterium used in this
study was E. coli TFYM as a representative of the hydrogen producers to investigate the
suitability of the hydrolysate prepared by semidry acid hydrolysis. This isolated bacterium
was identified morphologically and biochemically (Table 1) following standard protocols.
The identification was also confirmed by phylogenetic analysis of the 16S rRNA encoding
gene sequence (Fig. 4). As the bacterium could utilize the reducing sugars in the hydrolysate
prepared by semidry acid hydrolysis of cellulose, it was used for investigating the suitability
of the hydrolysate for dark fermentation biohydrogen gas production. For the batch dark
fermentation hydrogen production, the semidry acid hydrolysis of 10 g cellulose or various
cellulose feedstock of wheat bran, sawdust and sugarcane bagasse was conducted and the
hydrolysate retaining the reducing sugars was filtrated and neutralized to be used as an
organic source of carbon for hydrogen formation by E. coli TFYM dark fermentation. The
rate of hydrogen gas production gradually increased and was maximum (23.3 ml H2 h−1

L−1) at 10 h after the start of fermentation followed by a decline at the late stationary phase
of cumulative hydrogen production (Fig. 5). The reducing sugars produced by semidry
acid hydrolysis (4.12 g/ 10 g cellulose) were efficiently used for hydrogen production by E.
coli producing 0.4 mol H2 mol−1 hexose which is comparable to previously reported yield
by E. coli from expensive pure sugars and sugar wastes (Table 2). The estimated hydrogen
yield by E. coli (Fig. 6) from the reducing sugars prepared by the semidry acid hydrolysis
of the cheap cellulosic biowastes of wheat bran, sawdust and sugarcane bagasse was 36, 18
and 32 (L H2 kg−1 dry biomass) respectively. These results indicate a good feasibility of
hydrogen production from reducing sugars prepared by semidry acid hydrolysis of such
cheap cellulosic biowastes.

DISCUSSION
Cellulosic biomass wastes are cheap and abundant. Thus, upon hydrolysis, these polymeric
renewable organic materials can be used in many fermentation biotechnological industries.
This study describes a semidry acid hydrolysis of cellulosic feedstock biowastes where the
biomass was just wetted with 6M HCl and subjected to autoclaving for 50 min where a
considerable amount of reducing sugars were produced where the percent hydrolysis of
pure cellulose was 41.2%. Assessment of semidry acid hydrolysis of cellulose was conducted
using pure cellulose in first part of the study where 412 ± 53.1 mg reducing sugars/g of
pure cellulose were produced. Subsequently application of semidry acid hydrolysis on
crude cellulosic biowastes of wheat bran, sawdust and sugarcane bagasse biomasses was
conducted. The cellulose, hemicellulose, lignin and other organic materials composition
of these crude biowastes were previously reported (Table 3) where cellulose is basic
structural components of these biowastes. In comparison to pure cellulose, semidry acid
hydrolysis showed higher percent of hydrolysis in case of wheat bran (65%) and sugarcane
bagasse (46.3%) mostly due to presence of complicated more hydrolysable polysaccharides
associated with cellulose in these natural plant residues such as hemicellulose which is
present along with cellulose in wheat bran (Merali et al., 2015), sugarcane bagasse (Sanjuán
et al., 2001) and almost all terrestrial plant cell walls (Scheller & Ulvskov, 2010). The ground
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Figure 2 Efficiency of semidry acid hydrolysis of cellulose. The efficiency of semidry acid hydrolysis of
various cellulosic feedstock are represented in percent hydrolysis of pure cellulose (column A), wheat bran
(column B), sawdust (column C), sugarcane bagasse (column D). The mean values of three replicates and
standard errors are shown.

Full-size DOI: 10.7717/peerj.11244/fig-2

Table 1 Morphological and biochemical identification characteristics of E. coli strain TFYM.

Characteristics Escherichia coli Strain TFYM

Morphological features
Colonies on EMB agar Green Metallic sheen Green Metallic sheen
Gram staining of cell wall -ve -ve
3% KOH Viscous and thread like slime Viscous and thread like slime
Cell shape Unicellular short rods Unicellular short rods
Bacterial cell motility Motile Motile
Spore -ve -ve
Biochemical tests
Characteristic Growth on MacConkey +ve +ve
Catalase test +ve +ve
Oxidase test -ve -ve
Methyl Red (MR) +ve +ve
Indole +ve +ve
Voges-Proskauer (VP) -ve -ve
Citrate -ve -ve
Gas +ve +ve
Presumptive test +ve +ve
Urease -ve -ve
Gelatin liquefaction -ve -ve
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Figure 3 Growth of Escherichia coli as indicator of its utilization of reducing sugars prepared by
semidry acid hydrolysis of cellulose as a carbon source. The growth of Escherichia coli was conducted on
basal mineral medium supplemented with hydrolysate of cellulose and followed photometrically at 600
nm (A) to explore the ability of Escherichia coli for utilizing the reducing sugars produced from semidry
acid hydrolysis of cellulose. (B) shows the calibration of OD (600 nm) versus dry cell weight (DCW) of
Escherichia coli aerobic growth on reducing sugars of semidry acid hydrolyzed cellulose in Basal Mineral
(BM) medium. The mean values of three replicates and standard errors are shown.

Full-size DOI: 10.7717/peerj.11244/fig-3

tissue in sugarcane stalks retains abundant parenchyma cells whose cell wall is primary one
which is composedmainly of cellulose and hemicellulose. Subsequent to crushing sugarcane
stalks for extracting its juice by crusher machine in the initial steps of sugar industry, the
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Figure 4 Phylogenetic tree of isolated Escherichia coli TFYM indicating the relationship of this strain
with its nearest bacterial strains neighbors fromNCBI. The evolutionary relationships of Escherichia
sp. TFYM to other species of Escherichia sp were deduced using the Neighbor-Joining method to repre-
sent the taxa analyzed evolutionary history (Felsenstein, 1985). The evolutionary comparisons consid-
ered the variations in the composition bias among sequences (Tamura & Kumar, 2002). Bacillus cereus
strain ATCC14759 was used as outgroup for comparison. The evolutionary analysis were performed using
MEGA X.

Full-size DOI: 10.7717/peerj.11244/fig-4

sugarcane bagasse obtained is rich in residues of the primary cell walls of parenchyma
tissue retaining cellulose and hemicellulose. Thus, these natural waste biomasses, including
sugarcane bagasse and also wheat bran retaining both cellulose and the less complicated
hemicellulose, are highly susceptible for semidry acid hydrolysis. This indicates that semidry
acid hydrolysis is efficient for hydrolyzing cellulose and other less complicated polymeric
carbohydrates in the cellulosic feedstock wastes. The semidry acid hydrolysis described in
this study was thus highly efficient for hydrolysis of non-cellulosic cyanobacterial biomass.
The potent extracellular polysaccharides producing (Hill, Peat & Potts, 1994; Hill et al.,
1997; Helm et al., 2000; Tamaru et al., 2005; Morsy et al., 2008) cyanobacterium Nostoc
commune biomass was efficiently hydrolyzed (51%) by semidry acid hydrolysis indicating
that semidry acid hydrolysis was highly effective for hydrolyzing also this less complicated
non-cellulosic renewable biomass. Subjecting cellulosic biomaterials to high concentrated
H2SO4 in a two-step hydrolysis was described elsewhere (Iranmahboob, Nadim &Monemi,
2002; Chang et al., 2018). A two step acid hydrolysis was described to hydrolyze wood
chips where the first step included treatment with high concentrated 80% H2SO4 at room
temperature with a mass ratio of 500 g H2SO4/200 g dry mass of wood chips followed
by addition of distilled boiling water to reach 26 wt% H2SO4 with boiling for 30 min
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Figure 5 Dark fermentation cumulative hydrogen gas production by Escherichia coli TFYM from re-
ducing sugars prepared by semidry acid hydrolysis of cellulose. The cumulative hydrogen gas produc-
tion (closed circles) by Escherichia coli TFYM dark fermentation was followed. The rate of hydrogen gas
production (open circles) was estimated along the fermentation period. The mean values and standard er-
rors of three independent fermentation experiments are shown.

Full-size DOI: 10.7717/peerj.11244/fig-5

and stirring followed by filtration where the filtrate containing cellulose was heated in
a second step for extra 2 h resulting in 78–82% overall hydrolysis efficiency of cellulose
theoretical values inwood (Iranmahboob, Nadim &Monemi, 2002). The Two-Step cellulose
hydrolysis was also described elsewhere where in the first step cellulose was treated with
high concentrated 72 wt% H2SO4 at 30 ◦C over 2 h in a ratio of H2SO4/dry mass of
cellulose of 36 followed by a partial second step neutralization through using 20 wt%
NaOH at 2.3–2.5 molar ratio for H+/OH− with subjecting to more hydrolysis 10 min
autoclaving at a temperature of 121 ◦C (Chang et al., 2018). Cotton cellulose was found
to completely dissolve at room temperature in high concentrated sulfuric acid above 55%
(by volume) and a reduced sugar yields from the initial cotton cellulose concentrations of
30–70 g/L were varied from 64.3 to 73.9% (g R-sugar/g cotton cellulose) at a temperature
of 40 (Chu et al., 2011). The percent hydrolysis of sawdust was lower than cellulose possibly
due to presence of highly complicated lignin in wood and lower cellulose content. Around
20% to 30% of sawdust content is lignin (Sınağ et al., 2009) which is highly complicated to
be hydrolyzed. However, the use of sawdust for obtaining reducing sugars through semidry
hydrolysis would depend in the source of the sawdust where the cellulose content would
depend on the type of wood. The resulted reducing sugars were utilizable by E. coli as a
representative of the fermenting bacteria indicating that the reducing sugars prepared by
semidry acid hydrolysis are fermentable and can be utilized not only for dark fermentation
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Figure 6 Estimated hydrogen gas yield of Escherichia coli TFYM from reducing sugars prepared by
semidry acid hydrolysis of various cellulosic feedstock. The hydrogen yield was estimated for dark fer-
mentation by Escherichia coli TFYM from reducing sugars of semidry acid hydrolyzed cellulose (column
A), wheat bran (column B), sawdust (column C) and sugarcane bagasse (column D). The mean values and
standard errors of three independent fermentation experiments are shown.

Full-size DOI: 10.7717/peerj.11244/fig-6

hydrogen production but also for other fermentation-based biotechnologies. In this study,
the organic carbon sources (the reducing sugars of semidry acid hydrolyzed cellulose and
various cellulosic feedstocks) used for dark fermentation hydrogen production, are already
subjected to autoclaving during semidry acid hydrolysis and hence it contains no native
microbiota. Thus, the effect of native microbiota described elsewhere (Dauptain et al.,
2020) is not applicable in the present study where fermentation was conducted by the
supplied E. coli inoculum. Confirmative control experiments with no E. coli inoculated
to the fermentor, did not produce hydrogen gas indicating no native microbiota effect is
there where E. coli is the soli hydrogen producing bacterium in the fermentor through its
utilization of the reducing sugars of semidry acid hydrolyzed cellulose and various cellulosic
feedstocks. E. coli produce only hydrogen and CO2 gas (Penfold, Forster & Macaskie, 2003)
where CO2 is absorbed by NaOH in the collection system and the collected hydrogen gas
was fully pure compared to reference samples of pure hydrogen in measurements. The
use of the abundant cellulose feedstock for hydrogen production would be cost effective
through the semidry acid hydrolysis. The feasibility of such industry would be of importance
in future upon exhaustion of fossil fuels (Muradov & Veziroglu, 2008). In fact, more and
more research on the valorization of agricultural residual into biofuel has attracted great
attention, mainly due to the positive effects from both economic and environmental aspects
and long-term energy sustainability with greenhouse gasmitigation (Ho, Ong & Wu, 2019).
The attempt to use cellulose feedstock would also be of importance in many agricultural
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Table 2 Hydrogen yield by E. coli from semidry acid hydrolyzed pure cellulose in comparison to other non-cellulosic carbohydrates.

Microorganism(s) substrate Yield [mol of H2/
mol of hexose]

Ref.

Escherichia coliHD701 Acid hydrolyzed potato
starch residue stream

0.45 Morsy (2014)

Escherichia coliW3110 Glucose 0.54 Fan, Yuan & Chatterjee (2009)
Escherichia coli ZF3a Glucose 0.96 Fan, Yuan & Chatterjee (2009)
Escherichia coli S3 Glucose 0.84 Junyapoon, Buala & Phunpruch (2011)
Escherichia coli SH3b Glucose 1.48 Kim et al. (2009)
Escherichia coli c Glucose 0.17 Manish, Venkatesh & Banerjee (2007)
Escherichia coli 1 ldh d Glucose 0.23 Manish, Venkatesh & Banerjee (2007)
Escherichia coliHD701 Acid hydrolyzed mo-

lasses
0.46 Morsy (2011)

Escherichia coli DJT135e Glucose 1.51 Ghosh & Hallenbeck (2009a)
Escherichia coli DJT135 Fructose 1.27 Ghosh & Hallenbeck (2009a)
Escherichia coli DJT135 Galactose 0.69 Ghosh & Hallenbeck (2009a)
Escherichia coli DJT135 Glucose 1.69 Ghosh & Hallenbeck (2009b)
Escherichia coli BW25113f Glucose 1.35 Maeda, Sanchez-Torres & Wood (2007)
Escherichia coli SR15g Glucose 1.82 Yoshida et al. (2006)
Escherichia coliWDHLh Galactose 1.12 Rosales-Colunga, Razo-Flores & Rodriguez (2012)
Escherichia coliWDHL Lactose + galactose 1.02 Rosales-Colunga, Razo-Flores & Rodriguez (2012)
Escherichia coliWDHL Glucose + galactose 1.02 Rosales-Colunga, Razo-Flores & Rodriguez (2012)
Escherichia coliWDHL Glucose 0.3 Rosales-Colunga, Razo-Flores & Rodriguez (2012)
Escherichia coli strain TFYM Semidry acid hydrolyzed

pure cellulose
0.4 This study

Notes.
aEscherichia coli ZF3 mutant strain (Deletion of narL)
bEscherichia coli strain SH3 mutant engineered from disrupting the genes encoding two uptake hydrogenases; hydrogenase 1 (hya) and hydrogenase 2 (hyb)
cEscherichia coli (The parent strain for Escherichia coli 1 ldh)
dEscherichia coli 1 ldhmutant strain that lacks the enzyme lactate dehydrogenase
eEscherichia coli DJT135 mutant strain (Deletion of uptake hydrogenases, mutation of ldhA and constitutive expression of fhl)
fEscherichia coli BW25113 mutant strain (Deletion of hyaB, hybC, hycA, fdoG, frdC, ldha and aceE)
gEscherichia coli SR15 mutant strain (Deletion of ldhA and frdBc)
hEscherichia coliWDHL mutant strain (Deletion of lacI and hycA)

countries. Besides, the re-activation of this biological hydrogen production industry would
encourage farmers in developing countries to make use of crop plants straw and avoiding
the harsh burning of such straw and cellulosic agricultural wastes. The data shown in
this study either for growth of E. coli on the reducing sugars obtained from semidry acid
hydrolysis or its utilization for hydrogen production did not show any inhibition or toxicity
against the bacterium by the hydrolysate contents. As it requires minimum amount of acid
and hence minimum amount of base for subsequent neutralization step, the semidry acid
hydrolysis of cellulosic biowastes would be cost effective for bacterial hydrogen production
biotechnology. The semidry acid hydrolysis of the cheap and abundant cellulosic wastes
feedstock might possibly be applicable not only for bacterial H2 production but also for
other cellulose dependent biotechnologies. The described semidry acid hydrolysis reduces
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Table 3 Cellulose, hemicellulose and lignin contents of wheat bran, sawdust and sugarcane bagasse
biomasses.

Biomass Cellulose Hemicellulose Lignin References

Sawdust 40–50% 25–35% 20–30% Sınağ et al. (2009)
Wheat bran 31.4± 1.6% 20.3± 1.0% 22.3± 0.3% Cantero et al. (2015)
Sugarcane bagasse 32–45% 20–32% 17–32% Alokikaa et al. (2021)

the amount of high molarity HCl required for hydrolysis to minimum. Thus, the amount
of NaOH required for the tedious neutralization step required for various fermentation
biotechnologies comes to minimum. Further future studies for modification of semidry
acid hydrolysis such as combination with other hydrolysis protocols would be of interest
for the best making use of the abundant cellulosic biowastes in various fermentation
biotechnologies.
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