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ABSTRACT: Background: SNARE proteins play a vital role in membrane fusion
and cellular physiology and pathological processes. Many potential therapeutics for
mental diseases or even cancer based on SNAREs are also developed. Therefore,
there is a dire need to predict the SNAREs for further manipulation of these
essential proteins, which demands new and efficient approaches. Methods: Some
computational frameworks were proposed to tackle the hurdles of biological
methods, which take plenty of time and budget to conduct the identification of
SNAREs. However, the performances of existing frameworks were insufficiently
satisfied, as they failed to retain the SNARE sequence order and capture the mass
hidden features from SNAREs. This paper proposed a novel model constructed on
the multiscan convolutional neural network (CNN) and position-specific scoring matrix (PSSM) profiles to address these
limitations. We employed and trained our model on the benchmark dataset with fivefold cross-validation and two different
independent datasets. Results: Overall, the multiscan CNN was cross-validated on the training set and excelled in the SNARE
classification reaching 0.963 in AUC and 0.955 in AUPRC. On top of that, with the sensitivity, specificity, accuracy, and MCC of
0.842, 0.968, 0.955, and 0.767, respectively, our proposed framework outperformed previous models in the SNARE recognition task.
Conclusions: It is truly believed that our model can contribute to the discrimination of SNARE proteins and general proteins.

■ INTRODUCTION
First identified in 1980, SNARE (soluble N-ethylmaleimide-
sensitive factor attachment protein receptor) proteins specify a
superfamily group of small proteins containing a characteristic
structure of SNARE-motif with 60−70 amino acids arranged in
heptad repeat order.1 In eukaryotes, SNAREs aid in the
catalyzation of membrane fusion and mediate in various
cellular living processes such as cell proliferation, cell division,
and neurotransmission.1,2 Based on the cellular locations and
functionalities, SNARE proteins are divided into two groups
including v-SNAREs (vesicle membrane) and t-SNAREs
(target membrane).3,4 The VAMPs (synaptic vesicle-associated
membrane proteins or synaptobrevin) reside on the synaptic
vesicle,5 while syntaxin-1 and synaptosomal-associated protein
25 kDa (SNAP-25) are presynaptic membrane proteins.6−8

Both VAMP and syntaxin have their C-terminal residues
inserted in the membrane, whereas the palmitoylated cystein
residues in the central zone helps SNAP-25 bind to the plasma
membrane.5,9,10 By far, many SNARE proteins have been
discovered and the presence, absence, or impairment of
SNAREs involved in the pathological process or even potential
therapeutics of cancer,11−13 neurodegenerative diseases,14,15

psychiatric disorders,16,17 and more. With the importance of
SNAREs in the functionality of cells and the body, finding new
approaches that can robustly identify, classify, and predict their
functions is a necessity.

A plethora of recent biological studies have been conducted
to predict the functions of different SNARE proteins. Gao et
al.18 explored the role of SNARE Ykt6 in membrane fusion
during autophagy in yeast cells19 and demonstrated the
importance of SNARE Sec. 22b in embryonic development,
as lacking this protein can lead to uterus death in experimented
mice. SNAP-25 mutants may inhibit the synaptic membrane
fusion in botulinum infection pathology.20 Despite the
significant findings, these studies take much time and budget
to complete the procedure, also the framework remains hard to
replicate in real-world practice. With the development of
machine learning algorithms, different kinds of proteins and
their functions can now be identified and predicted using the
computational methods.21 For SNARE proteins, Le and
Nguyen,22 as pioneers in this field, have ensembled a model
and web server termed SNARE-CNN based on convolutional
neural network (CNN), with a newly proposed benchmark
dataset of SNARE sequences. To date, various studies have
been conducted on the aforementioned dataset to improve the
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predictive performance using different methods such as
Manhattan distance and k-nearest neighbors (kNN),23 hybrid
model,24 or support vector machine−recursive feature
elimination−correlation bias reduction (SVM-RFE-CBR).25
However, all current methods approaching the prediction

problem face two independent issues. First, most previous
studies used conventional machine learning (ML) algorithms,
which could not retrieve the hidden information from
sequence information compared to deep learning (i.e.,
CNN). Motivated by the human brain,26 CNN assembled
and unbroken the limitations of traditional ML techniques to
become a robust tool for image classification,27 protein
prediction,28,29 and so on. Various studies have indicated the
capabilities of CNN in extracting the underlying features deep
within the input data, from which we can perform the
prediction or identification of components more effec-
tively.30,31

Another limitation of previous studies identifying SNARE
proteins is that, if the study exploited CNN, they could not
keep the sequencing order in position-specific scoring matrix
(PSSM) profiles in the model, which was previously observed
in SNARE-CNN study.22 To avoid the loss of position and
order information in the protein sequences, Ho et al.31 has
proposed a novel approach utilizing the feedforward CNN32

with a multiple window scanning technique. They also used
the whole PSSM profiles as input data to assure that the
position and order of the amino acids in the sequences would
be kept stable during the training process. This leads to
broader generalizability of the protein sequences, and based on
this, the model may give a more precise prediction compared
to conventional CNN frameworks.
Given the above considerations, we herein propose a novel

deep learning framework based on multiscan CNN and PSSM
profiles of the SNARE proteins to address the hurdles of the
previous SNARE classifiers and improve the prediction
performance on SNARE proteins. In detail, we transformed
the FASTA-formatted SNAREs into PSSM profiles, which
were then fed into the 20-channel networks (i.e., correspond-
ing to 20 amino acids). We architected the layers of the
multiscan CNN, combining different window sizes to extract
the most features out of each profile. We prepared one cross-
validation set and two independent test sets to measure our
model′s efficiency meticulously. Furthermore, a precise
comparison between our proposed architecture and other
existing methods was made to demonstrate the supremacy in
the SNARE prediction task yielded by our model.

■ MATERIALS AND METHODS
Figure 1 illustrates our proposed method including different
subprocesses: data collection, feature engineering, model
implementation, and performance evaluation. In detail, we
first prepared one cross-validation dataset (i.e., for training the
model) and one independent test set. We next constructed the
PSSM profiles of all SNARE sequences and formulated the
design of the multiscan CNN framework. Finally, we certified
the identification performance of our model on SNARE
proteins with experimental metrics, visualization methods and
graphs, and comparative tables versus other models.
Benchmark Dataset. To ensemble a model that can

precisely recognize the SNARE proteins, it is of importance to
have an appropriate dataset. We referenced the benchmark
dataset presented by Le and Nguyen,22 which contains 682
SNARE proteins and 2583 non-SNARE proteins. In detail, this
benchmark study looked for the protein sequences with
keyword “SNARE” from the UniProt database,33 which
contains extensive and comprehensive information about
protein sequences. They later applied the BLAST34 to remove
all redundant sequences, and sequences with similarity over
30% appeared in the results. Eventually, 682 SNARE
sequences were included in the training set as the positive
samples. For the negative representatives, we followed the
procedure in Le and Nguyen22 and retrieved 2583 general
proteins that were not SNAREs. The previous study also split
the primary dataset into a cross-validation set (i.e., 644
SNAREs and 2234 non-SNAREs) and an independent set #1
(i.e., 38 SNAREs and 349 non-SNAREs) to implement further
experiments.
Moreover, we used the same strategy to manually collect

another dataset from UniProt33 which contained newly
discovered proteins (discovered from November 1, 2018 to
August 1, 2022). This idea aimed to get SNAREs and non-
SNAREs that have not yet appeared in the paper′s benchmark
data. This dataset, namely, independent dataset #2, contained
15 SNAREs and 126 non-SNAREs and is used as an external
validation dataset to evaluate the performance of model. Table
1 shows detailed statistics of our full dataset.
Feature Engineering. PSSM Profiles. As aforementioned,

it is important to architect the model on a proper feature
extraction method to distinguish the SNARE sequences among
vesicular transporting proteins. We applied the PSSM profile,
which was proposed by Jones35 and successfully employed in
various bioinformatics research (e.g., protein function
prediction,36,37 subcellular localization prediction,38 protein

Figure 1. Flowchart of our proposed method.
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secondary structure prediction,39 and so on), to extract the
underlying features of SNARE proteins later used as the
CNN’s training attributes.
Each PSSM profile was made up of a matrix with L rows and

N columns, with L equal to the input sequence length and N
for 20 amino acids. First, we conditionally summed up the
rows which belonged to the same amino acid to generate a 20
× 20 matrix, i.e., a new (20 × 20)-dimensional PSSM profile.
Each element in the (20 × 20) matrix was next divided by the
window size W and normalized by the sigmoid function before
feeding into the multiscan CNN

S
1

1 ex x=
+ (1)

We imposed conversing all FASTA-formatted SNARE
proteins in the original data to PSSM profiles by utilizing
PSI-BLAST34 to filter out the FASTA sequences in the
nonredundant (NR) database40 with three iterations and
accomplish the conversion.
Other Sequence-Based Features. A plethora of feature

extraction methods were conducted to generate many models
to identify different types of proteins.41,42 We also employed
well-known sequence-based features in bioinformatics to
compare their performance with raw PSSM profiles.
Amino acid composition (AAC) is used to convert a protein

sequence into an array of 20 elements containing the
frequencies of amino acid residues in the input sequence.
Pseudo amino acid composition (PAAC) is an improvement

to the shortcoming of sequence loss resulting from the
conventional AAC by adding the information about sequence
order via pseudo components.
Dipeptide composition (DPC) converts the protein

sequence to a 2D array by (20 × 20) containing the frequency
of occurrence of each amino acid pair in the sequence.
Amphiphilic pseudo amino acid composition (APAAC) has

the same form as the conventional AAC, but it provides more
information regarding the sequence order of one protein
including where the hydrophobic and hydrophilic amino acids
cross the chain.
Grouped amino acid composition (GAAC) calculates the

frequency of each amino acid group. The 20 different amino
acid residues are clustered into five groups (i.e., five
dimensions) using their physicochemical properties.
Composition of k-spaced amino acid pairs (CKSAAPs)

reflects the short-range interactions of amino acids within a
sequence or sequence fragment.
Composition of k-spaced amino acid group pairs

(CKSAAGPs) reflects the short-range interactions of residues
within a sequence or a sequence fragment.
Model Architecture. In this section, we focused on

describing the structure of our proposed method, which aimed
for the robust recognition of SNARE proteins. Based on the
principle of multitask learning and following the architecture of
DeepFam,32 the design of our model architecture was

constructed on multiscan CNN including various convolu-
tional layers. Inspired by the performance of DeepFam, this
multiscan CNN has been also applied in the later sequence-
based studies such as electron transporters31 or ion trans-
porters.43

The layers were designed with different window sizes L of
(16, 24, 32) to recognize the patterns better for the prediction
task. We input the sequences of the (20 × 20) matrix into the
convolution layer, which scanned those sequences across 20
channels. The operation continued by windowing each
convolution unit over the sequences. Each transformed
sequence with length L was output at the convolution layer
of which the size was reduced to L − Wk + 1 (WK is the size of
each convolution unit). We recruited the ReLU (rectified
linear unit) activation function for all hidden layers, which was
formulated as

f x x( ) max(0, )= (2)

For each filter output, we attempted to keep only the most
superior attention. Thus, we employed 1-max pooling layer44

at the end of each convolution layer with the formula of

h hmax ( )k i
L m

k i
max

1
1

,
k= =
+

(3)

Performance Evaluation. The model was fivefold cross-
validated on the training set, i.e., first splitting the dataset into
five subsets, and one of them would be used as the testing set
while others were for training purpose, respectively, to evaluate
its performance on the SNARE recognition task. Thereafter,
the model was evaluated on two different independent
datasets. Statistically, we validated the robustness of the
SNARE detection performance based on several metrics, i.e.,
accuracy (ACC), sensitivity (Sens), specificity (Spec), and
Matthews correlation coefficient (MCC)

ACC
TP TN

TP FN TN FP
= +

+ + + (4)

Sens
TP

TP FN
=

+ (5)

eSp c
TN

TN FP
=

+ (6)

MCC
(TP TN) (FP FN)

(TP FP)(TP FN)(TN FP)(TN FN)

=
× ×

+ + + +
(7)

where TP, FN, TN, and FP denotes true positive, false
negative, true negative, and false negative, respectively. We also
would like to verify the competency of our model and compare
it with other frameworks in discriminating the SNARE and
non-SNARE sequences; thus, we plotted the receiver operating
characteristic (ROC) curve and precision−recall (PR) curve.

■ RESULTS AND DISCUSSION
Model Selection and Parameter Optimization. During

the training process, our model was trained and cross-validated
to observe its initial efficiency. Because our datasets were
imbalance, synthetic minority oversampling technique
(SMOTE)45 was applied aiming to achieve a better perform-
ance in sensitivity. It is noticed that we only applied
oversampling on training data and kept original data in testing

Table 1. Detailed Statistics of Dataset Used in this Studya

training data independent data #1 independent data #2
SNAREs 644 38 15
non-SNAREs 2234 349 126

aTraining data and independent data #1 were retrieved from the
previous study.22 Independent data #2 is newly discovered data (from
November 1, 2018) that were manually collected in this study.
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data as well as two independent datasets. It is necessary to
advance model′s performance through processing the hyper-
parameter tuning. The fivefold cross-validation continued with
different combinations of parameters as we took into account
some parameters for tuning, i.e., epoch of (10, 50, 100), batch
size of (10, 50, 100), and learning rate of (0.0001, 0.0001,
0.001). The area under the ROC curve (AUC) score was
recorded and used to determine which set of parameters would
be chosen to generate the optimal model. After the experiment,
the best performance of the multiscan CNN could be achieved
at the epoch of 10, batch size of 10, and learning rate of 0.0001.
Baseline Comparison. It is important to demonstrate the

superiority of our framework over the existing computational
methods in identifying the SNARE proteins. Therefore, we
employed other renowned feature extractors and classifiers for
the performance comparison. For the former, we used the
same CNN architecture to learn different features to see the
performance among them. It can be observed in Table 2 that

our PSSM features outperformed other features in most
measurement metrics. In detail, we could achieve a sensitivity
of 84.5%, specificity of 95.5%, accuracy of 93.0%, and MCC of
0.800 in the cross-validation experiments. The conventional
AAC and DPC features gave the highest sensitivity scores,
which showed that these features excelled in detecting the true
SNARE proteins. Various studies in literature have utilized
Chou’s AAC41,46 and DPC47,48 to predict different types of

proteins explaining why these feature extractors worked well
on SNAREs prediction. Nonetheless, their overall MCC
metrics were noticeably lower than that of our method.
Despite the slightly low sensitivity, our method using a PSSM
feature extractor could hit the highest MCC value (0.800),
which indicates the high predictive efficiency for this
imbalanced benchmark dataset and binary problem (i.e.,
distinguishing between SNARE and non-SNARE pro-
teins).49,50

Six classifier algorithms, i.e., Random Forest (RF), Adaptive
Boosting classifier (AB), Extra Tree Classifier (ET), Logistic
regression (LR), Multilayer perceptron classifier (MLP), and
eXtreme Gradient Boosting (XGB), were selected to make the
performance comparison with our proposed model. We trained
and tested the classifiers on the same training set that we
applied multiscan CNN. Fivefold cross-validation was under-
gone to make sure that the results were reliable and
comparative. As can be observed from Figure 2, the CNN
surpassed other classifiers, as its performance attained the top
AUC and AUPRC of 0.963 and 0.955, respectively. With these
promising results, we strongly believe that we are capable of
constructing an optimal architecture for this kind of feature
data.
Independent Tests. To see the potential of overfitting or

overoptimistic performance, we inserted two different
independent datasets into our trained model to see their
performance. The results then showed a sensitivity of 0.842,
specificity of 0.968, accuracy of 0.955, and MCC of 0.767 in
the independent dataset #1. For the independent dataset #2,
our model achieved a sensitivity of 0.8, specificity of 0.952,
accuracy of 0.936, and MCC of 0.7. Compared to the cross-
validation results (in Table 2), they reached a very similar
performance, and it convinces that the model did not rely on
overfitting problem.
Visualization of Deep PSSM Features. To better

interpret the model performance made by neural networks,
we use uniform manifold approximation and projection
(UMAP) and t-distributed stochastic neighbor embedding (t-
SNE) to visualize the hidden features. t-SNE51 and UMAP52

are used to reduce the dimensions of input data, and they both
aid in better understandings about underlying features of high-
dimensional data by visualizing these types of data into two-
dimensional maps, thereby significantly deducting the

Table 2. Comparison to Other Sequence-Based Features in
Proteina

feature sensitivity specificity accuracy MCC

AAC 0.844 0.811 0.814 0.430
DPC 0.838 0.860 0.858 0.492
PAAC 0.782 0.877 0.869 0.485
APAAC 0.781 0.883 0.874 0.493
GAAC 0.755 0.718 0.721 0.285
CKSAAP 0.824 0.872 0.868 0.502
CKSAAGP 0.802 0.805 0.805 0.397
PSSM 0.845 0.955 0.930 0.800

aAll of the results were obtained using CNN architecture on the
training set via a cross-validation scheme. SMOTE algorithm was
applied to resolve imbalance problems.

Figure 2. Comparison among different models. (A) ROC curve and (B) precision−recall Curve.
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perplexity of data. As shown in Figure 3, we extracted the final
classification representations (the output of final layers) and
depicted them in two dimensions. In Figure 3A, the SNAREs
and non-SNAREs were well classified by the model
construction of multiscan CNN and PSSM profiles. However,
the blue and orange points, which symbolized the sequences in
the input space, were not well separated in t-SNE analysis,
resulting in unclear depiction. Thus, there is a need to perform
another visualization method to enhance the interpretation.
We subsequently performed UMAP analysis, and the
distinguishment between two classes of protein sequences
was explicitly portrayed in Figure 3B. The features displayed by
t-SNE and UMAP proved the prediction power of our
proposed framework in discriminating SNARE sequences
among general proteins.
Comparison to Previously Published Works. Since the

publication of the benchmark dataset,22 the identification of
SNARE proteins has gained much interest from researchers. In
addition to the deep learning framework by Le and Nguyen,22

current method proposed by SNAREs-SAP25 architected on
machine learning algorithms also achieved high performances
on SNAREs data. In this section, we focused on comparing the
predictive efficiency made by our model with aforementioned
ones since we used the same dataset. As we can notice from
Table 3, our method outperformed other models in most
metrics. In detail, our specificity and accuracy reached the top
of 0.974 and 0.946, respectively.

In the original study, Le and Nguyen22 employed CNN to
train their model and PSSM profiles to extract the interested
features, which were similar to our method. However, one
drawback was that their two-dimensional CNN (2D-CNN)
architecture could not maintain the order of input sequences.
Unlike 2D-CNN, multiscan CNN was competent in retaining
the sequence at their basic order facilitating the learning

process of the algorithms and broaden the probability of
correct prediction. As a result, the MCC obtained from our
model increased more than 1.67-fold from 0.460 yielded by
SNARE-CNN.
SNAREs-SAP, which was developed by Zhang et al.,25

assembles from SVM-RFE-CBR and PSSM profiles. Similarly,
the architecture of CKSAAP-Manhattan23 was constructed on
a kNN classifier, and its feature extraction was based on the
CKSAAP method. Both SVM and kNN are two of the most
common methods in bioinformatics; they have been applied
widely as baseline algorithms in frameworks that perform
excellently in terms of subcellular organism detection,38,47

protein functional prediction,53,54 and so on. However, with
the capabilities of unsupervised learning from high-throughput
and multidimensional data, deep learning has been evidenced
to surpass traditional machine learning algorithms in perform-
ing robust protein function prediction.37,55 This is owing to the
ability of extracting hidden features,56,57 thereby gaining
comprehensive estimation and clustering the input sequences
based on original and additional features.
On top of that, for interdisciplinary research field like

bioinformatics, where large datasets are intriguingly available
and getting easier to access, the implication of deep learning is
believed to be more suitable compared to conventional
machine learning methods.30 This is also true in the task of
SNARE recognition, with a large size of high-dimensional data,
where our framework achieved reasonably high experimental
metrics using CNN.
In bioinformatics research, not only the selection of baseline

algorithm is important but how we extract the data features
also matters. So far, there has not been a true comparison
between the efficiency of PSSM profiles and other feature
extraction techniques. However, in this study, we experimented
constructing not only the PSSM-based model but also using
the renowned techniques, including CKSAAP. The measure-
ments in Table 2 indicated that the PSSM profiles can assist
better predictive performance on SNAREs than features
extracted by CKSAAP techniques. Taken together, our
model architecture approached a deep learning strategy with
feedforward CNN-based and PSSM profiles to perform robust
SNARE detection on high-throughput and imbalanced data.
Replication of Study. The main purpose of this study is to

single out the SNARE proteins. However, this framework may
be applied to discover different kinds of proteins in the field of

Figure 3. Feature representation of multiscan PSSM profiles. (A) t-SNE analysis and (B) UMAP analysis.

Table 3. Comparison to Previous Predictors Using the Same
Independent Dataseta

predictor sensitivity specificity accuracy MCC

SNARE-CNN22 0.658 0.903 0.879 0.460
SNAREs-SAP25 0.680 0.940 0.920 0.480
proposed method 0.842 0.968 0.955 0.767

aAll of the results were obtained on independent dataset #1.
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bioinformatics. To spread our work and contribute to future
studies, we made our work publicly available at https://github.
com/khanhlee/snare-mcnn. We look forward to exchanging
ideas and discussing with other researchers and developers to
advance our work in the future.

■ CONCLUSIONS
SNARE proteins play a key role in the biological immune
system to resist microbial infection. Thus, it is necessary to
develop models that can assist the detection of these proteins.
With this study, we addressed the shortcomings of previously
proposed strategies, i.e., (1) traditional machine learning
algorithms could not retrieve the hidden information from
input protein sequence, and (2) conventional CNN could not
retain the sequencing order provided by PSSM profiles. In this
study, we proposed a novel framework based on PSSM profiles
and multiscan CNN to recognize the SNARE sequences
among other general proteins. Fivefold cross-validation was
performed on the training set with different feature extractors
involved. We also conducted many experiments to compare
multiscan CNN with other traditional machine learning
classifiers. After generating the optimal model with multiscan
CNN and PSSM profiles, we validated its performance on an
independent dataset. The experimental measurements yielded
by our framework surpassed the existing machine learning
methods and advanced the previous CNN strategy. To our
knowledge, this is the first report of using multiscan CNN and
PSSM profiles to accomplish these tasks.
Altogether, we have demonstrated the competence of our

novel framework in identifying the SNARE proteins.
Furthermore, our approach may facilitate discovering new
functions of other proteins. Future research may include
combining more feature extraction methods or unearthing new
proteins with hidden or undiscovered functions.
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github.com/khanhlee/snare-mcnn..

■ AUTHOR INFORMATION

Corresponding Author
Nguyen Quoc Khanh Le − Professional Master Program in
Artificial Intelligence in Medicine, College of Medicine and
Research Center for Artificial Intelligence in Medicine, Taipei
Medical University, Taipei 106, Taiwan; Translational
Imaging Research Center, Taipei Medical University
Hospital, Taipei 110, Taiwan; orcid.org/0000-0003-
4896-7926; Email: khanhlee@tmu.edu.tw

Authors
Quang-Hien Kha − International Master/Ph.D. Program in
Medicine, College of Medicine, Taipei Medical University,
Taipei 110, Taiwan

Quang-Thai Ho − College of Information & Communication
Technology, Can Tho University, Can Tho 90000, Viet
Nam; Department of Computer Science and Engineering,
Yuan Ze University, Chung-Li 32003, Taiwan

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.2c01034

Author Contributions
Q.H.K., Q.T.H., and N.Q.K.L. designed the study. Q.T.H. and
N.Q.K.L. collected and processed the samples. Q.H.K. and
N.Q.K.L. performed data analyses and prepared figures and
tables. Q.H.K. wrote the first draft of the manuscript, which
was significantly revised by N.Q.K.L. All authors have given
approval to the final version of the manuscript
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and
Technology, Taiwan. [Grant Numbers MOST110-2221-E-
038-001-MY2 and MOST111-2628-E-038-002-MY3].

■ REFERENCES
(1) Jahn, R.; Scheller, R. H. SNAREs−engines for membrane fusion.
Nat. Rev. Mol. Cell Biol. 2006, 7, 631−643.
(2) Wickner, W.; Schekman, R. Membrane fusion. Nat. Struct. Mol.
Biol. 2008, 15, 658−664.
(3) Söllner, T.; Bennett, M. K.; Whiteheart, S. W.; Scheller, R. H.;
Rothman, J. E. A protein assembly-disassembly pathway in vitro that
may correspond to sequential steps of synaptic vesicle docking,
activation, and fusion. Cell 1993, 75, 409−418.
(4) Weber, T.; Zemelman, B. V.; McNew, J. A.; Westermann, B.;
Gmachl, M.; Parlati, F.; Söllner, T. H.; Rothman, J. E. SNAREpins:
minimal machinery for membrane fusion. Cell 1998, 92, 759−772.
(5) Trimble, W. S.; Cowan, D. M.; Scheller, R. H. VAMP-1: a
synaptic vesicle-associated integral membrane protein. Proc. Natl.
Acad. Sci. U.S.A. 1988, 85, 4538−4542.
(6) Oyler, G. A.; Higgins, G. A.; Hart, R. A.; Battenberg, E.;
Billingsley, M.; Bloom, F. E.; Wilson, M. C. The identification of a
novel synaptosomal-associated protein, SNAP-25, differentially ex-
pressed by neuronal subpopulations. J. Cell Biol. 1989, 109, 3039−
3052.
(7) Inoue, A.; Obata, K.; Akagawa, K. Cloning and sequence analysis
of cDNA for a neuronal cell membrane antigen, HPC-1. J. Biol. Chem.
1992, 267, 10613−10619.
(8) Bennett, M. K.; Calakos, N.; Scheller, R. H. Syntaxin: a synaptic
protein implicated in docking of synaptic vesicles at presynaptic active
zones. Science 1992, 257, 255−259.
(9) Kutay, U.; Hartmann, E.; Rapoport, T. A. A class of membrane
proteins with a C-terminal anchor. Trends Cell Biol. 1993, 3, 72−75.
(10) Hess, D. T.; Slater, T. M.; Wilson, M. C.; Skene, J. The 25 kDa
synaptosomal-associated protein SNAP-25 is the major methionine-
rich polypeptide in rapid axonal transport and a major substrate for
palmitoylation in adult CNS. J. Neurosci. 1992, 12, 4634−4641.
(11) Ulloa, F.; Gonzalez-Junca, A.; Meffre, D.; Barrecheguren, P. J.;
Martinez-Marmol, R.; Pazos, I.; Olive, N.; Cotrufo, T.; Seoane, J.;
Soriano, E. Blockade of the SNARE protein syntaxin 1 inhibits
glioblastoma tumor growth. PLoS One 2015, 10, No. e0119707.
(12) Meng, J.; Wang, J. Role of SNARE proteins in tumourigenesis
and their potential as targets for novel anti-cancer therapeutics.
Biochim. Biophys. Acta, Rev. Cancer 2015, 1856, 1−12.
(13) Che, Y.; Siprashvili, Z.; Kovalski, J. R.; Jiang, T.; Wozniak, G.;
Elcavage, L.; Khavari, P. A. KRAS regulation by small non-coding
RNAs and SNARE proteins. Nat. Commun. 2019, 10, No. 5118.
(14) Fader, C. M.; Sánchez, D. G.; Mestre, M. B.; Colombo, M. I.
TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins
involved in specific steps of the autophagy/multivesicular body
pathways. Biochim. Biophys. Acta, Mol. Cell Res. 2009, 1793, 1901−
1916.
(15) Burgoyne, R. D.; Morgan, A. Chaperoning the SNAREs: a role
in preventing neurodegeneration? Nat. Cell Biol. 2011, 13, 8−9.
(16) Johnson, R. D.; Oliver, P. L.; Davies, K. E. SNARE proteins and
schizophrenia: linking synaptic and neurodevelopmental hypotheses.
Acta Biochim. Pol. 2008, 55, 619−628.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01034
J. Chem. Inf. Model. 2022, 62, 4820−4826

4825

https://github.com/khanhlee/snare-mcnn
https://github.com/khanhlee/snare-mcnn
https://github.com/khanhlee/snare-mcnn.
https://github.com/khanhlee/snare-mcnn.
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nguyen+Quoc+Khanh+Le"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4896-7926
https://orcid.org/0000-0003-4896-7926
mailto:khanhlee@tmu.edu.tw
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Quang-Hien+Kha"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Quang-Thai+Ho"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01034?ref=pdf
https://doi.org/10.1038/nrm2002
https://doi.org/10.1038/nsmb.1451
https://doi.org/10.1016/0092-8674(93)90376-2
https://doi.org/10.1016/0092-8674(93)90376-2
https://doi.org/10.1016/0092-8674(93)90376-2
https://doi.org/10.1016/S0092-8674(00)81404-X
https://doi.org/10.1016/S0092-8674(00)81404-X
https://doi.org/10.1073/pnas.85.12.4538
https://doi.org/10.1073/pnas.85.12.4538
https://doi.org/10.1083/jcb.109.6.3039
https://doi.org/10.1083/jcb.109.6.3039
https://doi.org/10.1083/jcb.109.6.3039
https://doi.org/10.1016/S0021-9258(19)50061-8
https://doi.org/10.1016/S0021-9258(19)50061-8
https://doi.org/10.1126/science.1321498
https://doi.org/10.1126/science.1321498
https://doi.org/10.1126/science.1321498
https://doi.org/10.1016/0962-8924(93)90066-A
https://doi.org/10.1016/0962-8924(93)90066-A
https://doi.org/10.1523/JNEUROSCI.12-12-04634.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04634.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04634.1992
https://doi.org/10.1523/JNEUROSCI.12-12-04634.1992
https://doi.org/10.1371/journal.pone.0119707
https://doi.org/10.1371/journal.pone.0119707
https://doi.org/10.1016/j.bbcan.2015.04.002
https://doi.org/10.1016/j.bbcan.2015.04.002
https://doi.org/10.1038/s41467-019-13106-4
https://doi.org/10.1038/s41467-019-13106-4
https://doi.org/10.1016/j.bbamcr.2009.09.011
https://doi.org/10.1016/j.bbamcr.2009.09.011
https://doi.org/10.1016/j.bbamcr.2009.09.011
https://doi.org/10.1038/ncb0111-8
https://doi.org/10.1038/ncb0111-8
https://doi.org/10.18388/abp.2008_3022
https://doi.org/10.18388/abp.2008_3022
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01034?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(17) Chen, F.; Chen, H.; Chen, Y.; Wei, W.; Sun, Y.; Zhang, L.; Cui,
L.; Wang, Y. Dysfunction of the SNARE complex in neurological and
psychiatric disorders. Pharmacol. Res. 2021, 165, No. 105469.
(18) Gao, J.; Kurre, R.; Rose, J.; Walter, S.; Fröhlich, F.; Piehler, J.;
Reggiori, F.; Ungermann, C. Function of the SNARE Ykt6 on
autophagosomes requires the Dsl1 complex and the Atg1 kinase
complex. EMBO Rep. 2020, 21, No. e50733.
(19) Wu, S.-R. J.; Khoriaty, R.; Kim, S. H.; O’Shea, K. S.; Zhu, G.;
Hoenerhoff, M.; Zajac, C.; Oravecz-Wilson, K.; Toubai, T.; Sun, Y.
SNARE protein SEC. 22B regulates early embryonic development. Sci.
Rep. 2019, 9, No. 11434.
(20) Lu, B. The destructive effect of botulinum neurotoxins on the
SNARE protein: SNAP-25 and synaptic membrane fusion. PeerJ
2015, 3, No. e1065.
(21) Chen, W.; Lv, H.; Nie, F.; Lin, H. i6mA-Pred: identifying DNA
N6-methyladenine sites in the rice genome. Bioinformatics 2019, 35,
2796−2800.
(22) Le, N. Q. K.; Nguyen, V.-N. SNARE-CNN: a 2D convolutional
neural network architecture to identify SNARE proteins from high-
throughput sequencing data. PeerJ Comput. Sci. 2019, 5, No. e177.
(23) Gao, X.; Li, G. A KNN model based on manhattan distance to
identify the SNARE proteins. IEEE Access 2020, 8, 112922−112931.
(24) Li, G. Identification of SNARE proteins through a novel hybrid
model. IEEE Access 2020, 8, 117877−117887.
(25) Zhang, Z.; Gong, Y.; Gao, B.; Li, H.; Gao, W.; Zhao, Y.; Dong,
B. SNAREs-SAP: SNARE Proteins Identification With PSSM Profiles.
Front Genet. 2021, 12, No. 809001.
(26) Fukushima, K. A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biol.
Cybern. 1980, 36, 193−202.
(27) LeCun, Y.; Boser, B.; Denker, J. S.; Henderson, D.; Howard, R.
E.; Hubbard, W.; Jackel, L. D. Backpropagation applied to
handwritten zip code recognition. Neural Comput. 1989, 1, 541−551.
(28) Senior, A. W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.;
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