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A B S T R A C T   

Serratia marcescens is a Gram-negative bacterium presenting intrinsic resistance to polymyxins that has emerged 
as an important human pathogen. Although previous studies reported the occurrence of multidrug-resistance 
(MDR) S. marcescens isolates in the nosocomial settings, herein, we described isolates of this extensively drug- 
resistant (XDR) species recovered from stool samples of food-producing animals in the Brazilian Amazon re-
gion. Three carbapenem-resistant S. marcescens strains were recovered from stool samples of poultry and cattle. 
Genetic similarity analysis showed that these strains belonged to the same clone. Whole-genome sequencing of a 
representative strain (SMA412) revealed a resistome composed of genes encoding resistance to β-lactams [blaKPC- 

2, blaSRT-2], aminoglycosides [aac(6′)-Ib3, aac(6′)-Ic, aph(3′)-VIa], quinolones [aac(6′)-Ib-cr], sulfonamides [sul2], 
and tetracyclines [tet(41)]. In addition, the analysis of the virulome demonstrated the presence of important 
genes involved in the pathogenicity of this species (lipBCD, pigP, flhC, flhD, phlA, shlA, and shlB). Our data 
demonstrate that food-animal production can act as reservoirs for MDR and virulent strains of S. marcescens.   

1. Introduction 

Serratia spp. is a genus of Gram-negative bacteria (GNB) belonging to 
the order Enterobacteriales. Most of the 30 species classified under this 
genus have been described as environmental species, however, Serratia 
marcescens has been considered a human pathogen causing serious 
nosocomial infections [1], including sepsis and urinary tract infections 
[1–3]. In addition, this pathogen has been associated with a large 
number of hospital outbreaks. [3,4]. It seems that the success of 
S. marcescens as a nosocomial pathogen is related, in part, to its 
impressive adaptation features that favor its maintenance and 

dissemination in the hospital environment [5,6]. 
The European Center for Disease Prevention and Control (ECDC) 

reported Serratia spp. was the sixth most frequent bacterial pathogen 
causing nosocomial pneumonia, and the ninth pathogen isolated from 
the bloodstream and urinary tract infections, respectively [7]. In addi-
tion, according to the latest bulletin of the National Health Surveillance 
Agency (ANVISA), Serratia spp. ranked as the tenth most frequent 
pathogen (2.85%) causing catheter-associated bloodstream infections 
(CLABSI) among Brazilian adult intensive care units (ICU) in 2021, 
among which, 44.8% were resistant to carbapenems [8]. Such data is 
worrisome since carbapenems are considered the most effective 
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antimicrobials against 3rd and 4th generation cephalosporin-resistant 
GNB [9]. However, the global spread of carbapenem-resistant GNB 
pathogens has become one of the greatest public health concerns [10], 
and this resistance phenotype occurs mainly due to the production of 
carbapenemases, which are the most potent β-lactamases [11]. In 
addition, S. marcescens is its intrinsic resistance to several antimicro-
bials, including polymyxins. This fact is very worrisome because dras-
tically reduces the therapeutic options available for the treatment of 
carbapenem-resistant S. marcescens infections. Currently, in Brazil, the 
resistance to carbapenems among S. marcescens clinical isolates has been 
mainly associated with the production of KPC-2 and, to a lesser extent, 
NDM-1 [3,12–14]. Interestingly, basically, all the published data 
regarding the resistance mechanisms found in S. marcescens strains are 
related to isolates recovered from nosocomial settings, highlighting a 
gap concerning the occurrence of this MDR pathogen in other ecological 
niches. Herein, we describe for the first time, the occurrence of 
S. marcescens strains carrying blaKPC-2 and blaSRT-2 in farm animals 
located in the Brazilian Amazon region. 

2. Material and methods 

2.1. Bacterial isolates 

As part of a Brazilian surveillance study performed by the GUARANI 
network aiming to detect antimicrobial resistance mechanisms at the 
human-animal interface [15], three carbapenem-resistant S. marcescens 
strains (SMA371, SMA412, SMA433) were selected for this study. These 
isolates were recovered from stool samples of a bovine and a poultry 
from property 1, and of a poultry from property 2, both located in the 
municipality of Castanhal, Pará state, in the Brazilian Amazon region. 

2.2. Antimicrobial susceptibility testing 

The minimum inhibitory concentrations (MICs) of ampicillin/sul-
bactam, aztreonam, ceftriaxone, ceftazidime, cefepime, ertapenem, 
imipenem, meropenem, amikacin, gentamicin, tobramycin, ciprofloxa-
cin, levofloxacin, tigecycline, and minocycline (Sigma-Aldrich, St. Louis, 
USA) were determined by agar dilution method according to the Euro-
pean Antimicrobial Susceptibility Testing Committee (EUCAST) rec-
ommendations (www.eucast.org/). The susceptibility profile to 
ceftazidime/avibactam and sulfamethoxazole/trimethoprim were 
tested by disk diffusion, while the MICs for fosfomycin and moxifloxacin 
were determined by E-test® gradient strips. The results were interpreted 
following the Brazilian Committee on Antimicrobial Susceptibility 
(BrCAST/EUCAST) (http://brcast.org.br/), which is affiliated with the 
EUCAST. The Escherichia coli ATCC 25922 and Pseudomonas aeruginosa 
ATCC 27853 strains were used as quality control for the antimicrobial 
susceptibility tests. 

2.3. Screening for genes encoding for carbapenemases and Extended- 
Spectrum β-Lactamases (ESβL) 

The samples were screened by PCR for the presence of genes 
encoding for cephalosporinases of classes A and C (blaTEM-like, blaSHV- 
like, blaCTX-M-like, blaGES-like, blaSRT-like) and for carbapenemases 
(blaKPC-like, blaNDM-like, blaIMP-like, blaVIM-like, blaSPM-like, blaGIM-like, 
blaSIM-like, blaOXA-48-like). 

2.4. Bacterial typing 

To determine the genetic similarity of S. marcescens strains, pulsed- 
field gel electrophoresis (PFGE) was performed using the restriction 
enzyme SpeI (New England Biolabs, Ipswich, UK). The electrophoresis 
was carried out using a CHEF-DR® II system (Bio-Rad Laboratories, 
USA). The PFGE band profiles were analyzed using the BioNumerics® 
version 5.0 software package (Applied Maths, Kortrijk, BE). 

2.5. Galleria mellonella as a in vivo model for evaluation of S. marcescens 
virulence 

The pathogenic potential of S. marcescens strains was evaluated using 
the in vivo infection model of G. mellonella, as previously described [16]. 
Briefly, larvae weighing between 0.25 and 0.35 g were infected with 105 

CFU of each S. marcescens strain, and the mortality rate was assessed for 
96 h using three groups of G. mellonella containing five larvae each per 
strain. The E. coli MNEC RS218 strain associated with meningitis/sepsis 
was used as a positive control, and larvae inoculated with 0.85% saline 
solution were used to verify that G. mellonella would not be killed by 
physical trauma. Given the lack of a known highly virulent S. marcencens 
strain to be used in the virulence test, we included for comparison a 
S. marcencens strain (SMA133) recovered from bloodstream infection 
and carrying the virulence-encoding genes lipB, pigP, flhD, phlA, and 
shlA. 

2.6. Whole genome sequencing 

Total bacterial DNA was extracted using the QIAamp DNA Mini Kit 
(Qiagen, Hilden, Germany) following the manufacturer’s recommen-
dations. The DNA libraries were prepared using the Nextera® XT kit 
(Illumina® Inc., San Diego, USA) and sequenced at MicrobesNG of the 
University of Birmingham (UK) on the Illumina® HiSeq™ 2500 System 
2 × 250 bp paired-end mode platform. The data obtained from the 
readings were assembled using the SPAdes software version 3.9.1 [17] 
and the annotation was performed using Prokka version 1.12 [18]. The 
genome assembly metric was calculated using QUAST (http://quast. 
sourceforge.net/). All software was used with the default settings. The 
resistome of the isolates was determined by ResFinder 4.1 (https://cge. 
cbs.dtu.dk/services/ResFinder/) and plasmid replicons by Plasmid-
Finder 2.1 (https://cge.cbs.dtu.dk/services/PlasmidFinder/), both 
belonging to the Center for Genomic Epidemiology (CGE) platform 
(http://www.genomicepidemiology.org/). Virulence determinants 
were analyzed by the Pathosystems Resource Integration Center (PAT-
RIC) platform using the PATRIC_VF database (https://www.patricbrc. 
org/). Additionally, the Basic Local Alignment Search Tool (BLAST) 
was used for the search of lipBCD (Extracellular secretion of lipase), pigP 
(positive regulator of prodigiosin and serratamolide production), flhC 
and flhD (flagellar production regulators), phlA (phospholipase A with 
hemolytic activity), shlA (pore-forming toxin with hemolytic activity), 
and shlB (activation and secretion of ShlA) genes, given their importance 
for S. marcescens virulence. The search for phages in the SMA412 
genome was carried out using the PHASTER web server (https://ph 
aster.ca/). Phylogenetic analysis was performed using the phyloge-
netic tree tool of PATRIC. For the construction of the phylogenetic tree, 
48 genomes of S. marcescens were selected through the Similar Genome 
Finder service of PATRIC considering the following parameters: P-value 
threshold of 0.001 and distance of 0.01. The phylogenetic tree was built 
employing the Codon Tree method with 1,000 single-copy genes using 
the RAxML program, on the PATRIC platform. The final phylogenetic 
tree was generated with iTOL v.5.5. (https://itol.embl.de). 

3. Results 

High resistance rates for the 19 antimicrobials tested were observed 
for all three S. marcescens isolates. The minimal inhibitory concentra-
tions (MICs) for the antimicrobials tested were as following as: ceftazi-
dime (MICs, 32–64 μg/mL), ceftriaxone (MICs, 256 - > 256 μg/mL), 
cefepime (MICs, 256 - >256 μg/mL), ertapenem (MICs, 256 - >256 μg/ 
mL), imipenem (MICs, 128–256 μg/mL), meropenem (MICs, 256 μg/ 
mL), gentamycin (MICs, 64–128 μg/mL), amikacin (MICs, 64–128 μg/ 
mL), tobramycin (MIC s,32–64 μg/mL), ciprofloxacin (MICs, >64 μg/ 
mL), levofloxacin (MICs, 32–64 μg/mL), moxifloxacin (MICs, 2–4 μg/ 
mL), minocycline (MICs,64–128 μg/mL), and fosfomycin (MICs, 128 μg/ 
mL). These isolates were resistant to sulfamethoxazole/trimethoprim 
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(9–11 mm) but susceptible to ceftazidime/avibactam (19–21 mm; CAZ- 
AVI). In fact, CAZ-AVI was the only antimicrobial showing activity 
against the tested S. marcescens isolates, which were classified as XDR. 
The SpeI-PFGE analysis demonstrated that the three S. marcescens strains 
belonged to the same clonal group and based on this fact, a single isolate, 
SMA412, was selected for whole genome sequencing. Intriguingly, the 
properties from which the strains were isolated were geographically 
distant from one another and bore no interrelation, thereby bolstering 
the hypothesis that this specific clone is widely dispersed within the 
region under study. 

The total size of the SMA412 genome was 5,484,808 bp distributed 
in 109 contigs with a G + C content of 59.12% and the largest contig 
being 780,505 bp. The N50 and N75 values were 392,502 bp and 
196,864 bp, while the values for L50 and L75 were 5 and 10 contigs, 
respectively. In addition, a total of 82 tRNA genes, 14 rRNA genes, and 
5459 coding sequences (CDS) were obtained. The search for antimi-
crobial resistance genes (ARGs) in the SMA411 genome revealed the 
presence of determinants that are responsible for conferring resistance 
to β-lactams [blaKPC-2, blaSRT-2], aminoglycosides [aac(6′)-Ib3, aac(6′)-Ic, 
aph(3′)-VIa], quinolones [aac(6′)-Ib-cr], sulfonamides [sul2], and tetra-
cyclines [tet(41)]. In addition, three incompatibility groups (IncC, 
IncP6, and IncQ1) were detected. Interestingly, the blaKPC-2 was located 
in the same contig in which the IncP6 replicon was found and inserted in 
a Tn3-like transposon composed by the genetic arrangement ΔtnpA- 
ISApu1-orf-ISApu2-Tn3-ΔtnpA + Tn3-tnpR + ISKpn27 + ΔblaTEM-1 +

blaKPC-2 + ISKpn6. The results revealed that this contig had 100% 
identity and 99% coverage with larger plasmids carried by Enterobacter 
hormaechei (accession number CP047966.1), Klebsiella pneumoniae 
(accession number MH909348.1), and Aeromonas hydrophila (accession 
number GI. CP028566.1) from China, Aeromonas veronii from Japan 
(accession number AP022283.1), Citrobacter freundii from Spain 
(accession number LT992437.1), and Escherichia coli from Vietnam 
(accession number GI. CP018968.1). The search for phage sequences in 
the SMA412 genome identified the presence of five phage regions, with 
sizes ranging from 12.3 Kb to 35.8 Kb (Table 1). 

Phylogenetic analysis grouped the strain SMA412 in a cluster with 
other S. marcescens clinical strains recovered in a Brazilian tertiary 
hospital located in the city of São Paulo (Fig. 1). In general, all 
S. marcescens strains showed a similar β-lactam resistome background, 
with a predominance of blaKPC-2, blaOXA-1, and blaSRT-2 genes (Fig. 1). 

In addition, the key virulence genes lipBCD, pigP, flhC, flhD, phlA, 
shlA, and shlB were verified in the genome of SMA412, indicating a 
highly virulent genotype. We observed 100% mortality of the 
G. mellonella larvae after 12 h of S. marcescens infection. In contrast, the 
control strains, SMA133 and E. coli RS218 killed all G. mellonella larvae 
within 24 h of infection (Fig. 2). 

4. Discussion 

Given the increasing reports of ARGs in different environments, 
antimicrobial resistance surveillance studies focused on the human- 
animal-environment interface (One Health) have been encouraged, 
since the epidemiology of antimicrobial resistance is complex with the 

interconnection of all ecological niches [19,20]. Currently, although 
many studies monitor antimicrobial resistance in different environ-
ments, they generally are carried out targeting “indicators” species such 
as E. coli and K. pneumoniae [21–24]. However, less frequent Gram- 
negative species like S. marcescens may also colonize animals and play 
a role in the maintenance and spread of clinically significant ARGs. To 
the best of our knowledge, this is the first report of KPC-2-producing 
S. marcescens strains isolated from farm animals. Interestingly, the 
S. marcescens isolates were recovered from different food-producing 
animals and properties, suggesting possible clonal dissemination in 
such a geographic region. 

In Brazil, previous reports investigating the occurrence of 
carbapenem-resistant S. marcescens isolates in intensive care units have 
already been conducted in distinct Brazilian geographic regions [25 – 
30], and to a large extent, the main carbapenem resistance mechanism 
was the production of KPC-2. In contrast, a few studies have demon-
strated the production of unusual carbapenemases by S. marcescens 
isolates in Brazil, such as SME-4 [31], GES-16 [28], and GES-5 [32]. 

In the present study, the blaKPC-2 was associated with an IncP-6 
plasmid, which is naturally found in P. aeruginosa. However, the pres-
ence of IncP-6 plasmid carrying blaKPC-2 in different clinical and envi-
ronmental GNB species has been increasingly observed, demonstrating 
the versatility of these plasmids [33]. Furthermore, the genetic context 
of blaKPC-2 in S. marcescens strains is different from what is commonly 
described in the Brazilian territory, which is predominantly associated 
with the Tn4401 and its variants. 

The phylogenetic analysis revealed that the strain SMA412 showed a 
genomic kinship and resistome to β-lactams very similar to S. marcescens 
strains recovered from a tertiary hospital in the city of São Paulo 
(Southeast region), which is 2800 km from Castanhal city (North re-
gion), and where the S. marcescens strains were isolated, suggesting the 
wide spread of this clonal lineage throughout the Brazilian territory. In 
addition, we also observed the occurrence of a virulence arsenal that 
confers to bacterial cells the ability to colonize/infected and invade the 
host’s immune system [34]. In some bacterial species, these mechanisms 
are widely known [35]; however, there are few studies dealing with 
their pathogenic mechanisms in Serratia spp. The study conducted by 
Kurz et al. [36] demonstrated that genes involved in lipopolysaccharide 
(LPS) biosynthesis, iron absorption, and hemolysin production are 
directly involved in the virulence of S. marcescens. Furthermore, this 
species also produces a diversity of enzymes (chitinase, lipase, chlor-
operoxidase, among others) that act as virulence factors [1,34,37]. 
Many of these enzymes are secreted into the extracellular medium by 
Type I Secretion System (SSTI), also called Lip, which is encoded by the 
operon lipBCD [38–40], which interestingly was present in the SMA412 
genome. Additionally, the presence of the genes pigP, flhC, flhD, phlA, 
shlA, and shlB were also found in the SMA412 genome, suggesting a high 
pathogenic profile, since these genes are associated with important 
virulence mechanisms in S. marcescens clinical isolates. PigP works by 
regulating the production of prodigiosin that directly impacts swarming 
and hemolysis via serratamolide production [38,41], while FlhDC has 
been associated with flagellar biogenesis, biofilm production, and 
expression of virulence factors during swarming [42–45]. On the other 
hand, Hemolysin ShlA is responsible for the formation of pores in cells, 
contributing to cell invasion. In large quantities, ShlA can promote 
vacuolization of the cytoplasm leading to cell lysis [46,47]. PhlA has 
also been linked to hemolytic and cytotoxic activities [48], mainly due 
to the production of lysophospholipids that damage the cell membrane, 
leading to hemolysis and cell death [34]. We emphasize that our find-
ings corroborate the results of Ferreira et al. [6], since 98.2% of 
S. marcescens clinical isolates carried the virulence-encoding genes 
mentioned above. 

In view of the virulence encoding genes carried by our S. marcescens 
isolates, we decided to use the G. mellonella larvae infection model to 
understand the virulence of such isolates. All larvae infected by 
S. marcescens isolates died within 12 h of infection. Previous studies have 

Table 1 
Phages found in the SMA412 genome.  

Region Size 
(Kb) 

Status Most Common Phage/Accession 
Number 

GC 
(%) 

1 35.8 Intact 
PHAGE_Klebsi_3LV2017_NC_047817 
(28) 56.74 

2 34.9 incomplete PHAGE_Pseudo_B3_NC_006548(17) 56.41 

3 43.7 Questionable 
PHAGE_Burkho_BcepMu_NC_005882 
(31) 56.18 

4 16.7 Intact 
PHAGE_Klebsi_phiKO2_NC_005857 
(7) 55.32 

5 12.3 Questionable PHAGE_Salmon_SJ46_NC_031129(3) 53.89  

T.B. Valiatti et al.                                                                                                                                                                                                                               



One Health 17 (2023) 100591

4

also used this model to determine the pathogenicity of S. marcescens, but 
none of them observed 100% mortality. Gruber et al. [49] analyzed an 
NDM-1-producing S. marcescens strain and found 62% of mortality 
within 24 h of infection with an inoculum of 105 CFU, while González 
et al. [50] reported mortality rates varying from 20% to 60% after 48 h 
of infection. 

5. Conclusions 

Our findings suggest that farm animals in the Brazilian Amazon re-
gion are functioning as reservoirs for virulent S. marcescens strains car-
rying a diversity of ARGs of clinical importance. Additionally, our 
phylogenetic analysis has indicated that this particular KPC-2-producing 
S. marcescens clone is closely related with other clinical isolates circu-
lating at Brazilian nosocomial settings. Therefore, the data presented 
herein underscore the necessity to broaden the spectrum of GNB species 
considered in antimicrobial resistance surveillance studies within the 
One Health context performed in Brazil. 
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al., Virulence potential of a multidrug-resistant Escherichia coli strain belonging to 
the emerging clonal group ST101-B1 isolated from bloodstream infection, 
Microorganisms 30 (2020), https://doi.org/10.3390/microorganisms8060827. 

[17] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V. 
M. Lesin, S.I. Nikolenko, S. Phan, A.D. Prjibelski, A.V. Pyshkin, A.V. Sirotkin, 
N. Vyahhi, G. Tesler, M.A. Alekseyev, P.A. Pevzner, SPAdes: a new genome 
assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol. 
19 (5) (2012) 455–477, https://doi.org/10.1089/cmb.2012.0021. 

[18] T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics. 30 (14) 
(2014) 2068–2069, https://doi.org/10.1093/bioinformatics/btu153. 

[19] T.R. Walsh, A one-health approach to antimicrobial resistance, Nat. Microbiol. 3 
(2018) 854–855, https://doi.org/10.1038/s41564-018-0208-5. 

[20] S.A. McEwen, P.J. Collignon, Antimicrobial resistance: a one health perspective, 
Microbiol. Spectr. 6 (2) (2018), https://doi.org/10.1128/microbiolspec.ARBA- 
0009-2017. 

[21] L. Salinas, F. Loayza, P. Cárdenas, C. Saraiva, T.J. Johnson, H. Amato, J.P. Graham, 
G. Trueba, Environmental spread of extended Spectrum Beta-lactamase (ESBL) 
producing Escherichia coli and ESBL genes among children and domestic animals in 
Ecuador, Environ. Health Perspect. 129 (2) (2021) 27007, https://doi.org/ 
10.1289/EHP7729. 

[22] J. Li, Z. Bi, S. Ma, B. Chen, C. Cai, J. He, S. Schwarz, C. Sun, Y. Zhou, J. Yin, 
A. Hulth, Y. Wang, Z. Shen, S. Wang, C. Wu, L.E. Nilsson, T.R. Walsh, S. Börjesson, 
J. Shen, Q. Sun, Y. Wang, Inter-host transmission of carbapenemase-producing 
Escherichia coli among humans and backyard animals, Environ. Health Perspect. 
127 (10) (2019), 107009, https://doi.org/10.1289/EHP5251. 

[23] T. Leangapichart, K. Lunha, J. Jiwakanon, S. Angkititrakul, J.D. Järhult, 
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