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Aquaculture production of crustaceans (mainly shrimp and crabs) has expanded globally,
but disease outbreaks and pathogenic infections have hampered production in the last
two decades. As invertebrates, crustaceans lack an adaptive immune system and mainly
defend and protect themselves using their innate immune system. The immune system
derives energy and metabolites from nutrients, with amino acids constituting one such
source. A growing number of studies have shown that amino acids and their metabolites
are involved in the activation, synthesis, proliferation, and differentiation of immune cells, as
well as in the activation of immune related signaling pathways, reduction of inflammatory
response and regulation of oxidative stress. Key enzymes in amino acid metabolism have
also been implicated in the regulation of the immune system. Here, we reviewed the role
played by amino acids and their metabolites in immune-modulation in crustaceans.
Information is inferred from mammals and fish where none exists for crustaceans.
Research themes are identified and the relevant research gaps highlighted for
further studies.

Keywords: crustaceans, amino acids, metabolism, immune-modulation, innate immunity
INTRODUCTION

Crustaceans constitute an important part of the marine ecosystem, with shrimp and crabs forming a
large proportion of aquatic food destined for human consumption. Over the past decade, shrimp
and crab farming have expanded rapidly bringing with huge economic benefits (1). As invertebrates,
crustaceans depend solely on innate immune response for defense and protection against pathogens
(2, 3). The innate immune system is constituted by cellular and humoral immune responses (4). The
cellular immune response mostly takes place in hemocytes where a variety of pattern recognition
receptors (PRR) on cell membranes detect and eliminate pathogens via phagocytosis, apoptosis,
nodule formation and encapsulation (5). On the other hand, the humoral immune response mainly
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depends on immune factors such as prophenoloxidase (proPO),
lectins, antimicrobial peptides (AMP), etc., found in the
hemolymph (6–8).

When the immune system is activated its demand for energy
and metabolic substrates increases substantially. The immune
system derives these metabolic substrates mainly from nutrients
to provide energy as well as serve as precursors for the synthesis
of new cells, effectors (e.g., antibodies, cytokines, and acute phase
proteins) and protective molecules (e.g., glutathione) (9). There
is therefore a close link between the immune and metabolic
systems. Among all metabolic substrates required by the immune
system, amino acids and their metabolites have attracted much
interest (10, 11), probably due to their diverse functions and
effect on several physiological and pathophysiological processes.
For instance, arginine (Arg) can be converted to citrulline and
nitric oxide (NO) under the action of nitric oxide synthase
(NOS), with NO functioning as an effector molecule of tumor
and microbial immunity, as well as a regulator of many immune
cells (12). Arg is also catabolized to polyamines under the action
of arginase and ornithine decarboxylase (ODC). In mammals,
inhibition of ODC has been used in what is termed polyamine-
blocking therapy (PBT), a strategy that combines the inhibition
of polyamine biosynthesis with the simultaneous blockade of
polyamine transport to enhance anti-tumor immune
response (13).

In crustaceans, amino acids and their metabolites play
important roles in several physiological and pathophysiological
processes including innate immune response. For instance,
supplemented dietary Arg has been shown to improve the
body weight and growth rate of juvenile kuruma shrimp
(Penaeus japonicus) (14), while tryptophan (Trp) is capable of
reducing the aggressive behavior of juvenile mud crab (Scylla
serrata) as well as enhances their anti-stress ability (15).
Although amino acids and their products are reported to affect
the growth and immune indices of crustaceans (16–19), very few
studies have explored their involvement in immune response and
the molecular mechanisms involved. In any case, amino acids
and/or their metabolites seem to play pivotal immune-metabolic
regulatory roles in crustaceans. This review therefore brings
together important findings on the effects of amino acids and
their metabolites on the immune system of crustaceans, in most
cases drawing inferences from other species where such
information does not exist for crustaceans. Research areas are
also identified with the hope that when these are further
explored, it could lead to a better understanding of the role
played by amino acids and their metabolites in immune-
metabolic regulation in crustaceans.
AMINO ACID METABOLISM AND
CRUSTACEAN IMMUNITY

As the main building blocks of proteins, amino acids are
important in the growth and development of animals. Recent
studies have also shown that amino acids and their metabolites
play an important role in the immune system. For instance, in
Frontiers in Immunology | www.frontiersin.org 2
mammals, Arg is involved in the regulation of immune cells
proliferation, by modulating the levels of NO, which
consequently affect the immune system (20). Although few
studies have explored the role of amino acids metabolism
(metabolites) in crustacean immunity, an increasing number of
studies have reported that the metabolism and/or metabolites of
Arg, Trp, lysine (Lys), methionine and cysteine play key
important roles in immune response in crustaceans, as in other
marine species (Table 1).

Arginine
Arg is one of the most versatile amino acids that can be converted
into other amino acids (proline, glutamic acid, and glutamine) or
metabolized to urea via the urea cycle, as well as to polyamines,
NO, creatine, and other essential non-protein substances (12).
Arg is therefore an important precursor that generate
metabolites and intermediates vital for the immune system. In
the metabolism of Arg, arginase and NOS are two key enzymes.
Arginase catalyzes the catabolism of Arg into urea and ornithine,
which then generate polyamines by the action of ODC (74).
Polyamines are important Arg metabolites that have antitumor
effect in mammals (75, 76) and are also involved in the synthesis
of T-cells (77). Similarly, NO, which is generated from Arg
metabolism by the action of NOS, is an effective antibacterial
agent against intracellular and extracellular pathogens (24, 78).
While NO has antimicrobial effects and also modulates immune
response in host cells, excess NO levels could promote
peroxynitrite synthesis to generate hydroxyl radicals that cause
cell damage and/or cell death (20, 79).

Optimum proportions and levels of amino acids are required
by crustaceans for proper growth and physiological/metabolic
functions, although differences exist among different species. The
Pacific White shrimp Penaeus vannamei requires 4.77%
optimum level of dietary Arg (21), while 5.47% is required by
Penaeus monodon (80). Supplemented dietary Arg is reported to
affect the metabolic activity of crustaceans by regulating the
act iv i ty of some enzymes . For instance , aspartate
aminotransferase (AST) and alanine aminotransferase (ALT),
which are key enzymes in amino acids metabolism, are
important indicators of hepatopancreas function in shrimp
(81, 82). The serum levels of AST and ALT increased
significantly when juvenile swimming crab (Portunus
trituberculatus) were fed on low Arg diets (82). Arg
supplementation also increases the activities of antioxidant
enzymes and immune-related enzymes, thereby improving the
antioxidant capacity, immunity, and disease resistance of
juvenile P. vannamei and E. sinensis (21, 22).

Some Arg metabolic pathway enzymes in crustaceans are
reported to modulate antimicrobial immune response. When the
Caribbean spiny lobster (Panulirus argus) and red swamp
crayfish (Procambarus clarkii) were challenged with Escherichia
coli or lipopolysaccharide (LPS), NO levels and the activity of
NOS both increased, as part of the immune response (25, 83). It
has also been observed that when an NOS inhibitor or P. argus
generated anti-NOS serum is administered to P. vannamei, it
reduces bacterial clearance, further illustrating the importance of
NOS in the immune defense of crustaceans (24, 83).
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TABLE 1 | Role of amino acids and their metabolism in the immune response of crustaceans and other marine species.

Amino acid Species Factor/immune response Reference

Arginine Penaeus vannamei; Eriocheir
sinensis

Dietary Arg improves antioxidant enzyme activity and immune response (21, 22)

P. vannamei Increased NO and NOS mRNA levels to improve antibacterial immune response (23)
P. vannamei; Panulirus argus Increased NO levels and NOS activity to improve antibacterial immune response (24, 25)
Penaeus japonicus Decreased arginine kinase activity attenuates WSSV replication (26)
Paphia malabarica Increased iNOS activity as an antibacterial immune response (27)
Megalobrama amblycephala Dietary Arg improves antioxidant capacity and immune response (28)

Tryptophan E. sinensis Dietary Trp increases dominant intestinal bacteria abundance, serum CAT and AKP activity, and
improves immune response

(29)

E. sinensis Dietary Trp increases THC, hemocyanin, ACP and ALP activity, and hemocyte phagocytic activity (30)
E. sinensis Melatonin (injected) increases THC, hemocyanin, and activity of ACP and GSH-Px (31)
E. sinensis Melatonin restores oxidative damage, stabilizes ACP, AKP, and Na+-K+-ATPase activity, increase Cyt-C

content, restores apoptotic rate and phagocytic activity of hemocytes
(32)

E. sinensis Melatonin (injected) increases SOD activity and decrease MDA content to enhance antioxidant capacity (33)
Dicentrarchus labrax Increase Trp levels decrease inflammatory response via immunosuppression (34)

Lysine Astacus leptodactylus
leptodactylus

L -carnitine improves antioxidant defense by increasing activities of PO, SOD, GSH and GPX (35)

Apostichopus japonicus Increased Lys enhances CAT and AKP activity to improve antioxidant and immune response (36)
Ctenopharyngodon idella Dietary Lys increases SOD, GPX and Nrf2 levels to improve lipid and protein oxidation (37)
Acanthopagrus schlegelii Dietary carnitine increases LZM and CAT activity, but inhibits expression of pro-inflammatory factors (38)
Rhynchocypris lagowski Carnitine reduces inflammatory response by Nrf2/Keap1 activation to inhibit NF-kB signaling pathway (39)

Methionine and
cysteine

Oreochromis niloticus; D.
labrax

Dietary Met increases C3 and C4 levels, CAT, GPX, and LZM activity to enhance immune response and
antioxidant capacity

(40, 41)

Dicentrarchus labrax Met promotes immune cells proliferation by regulating polyamines synthesis (42)
D. labrax Met enhances leukocytes proliferation and reduces expression of pro-inflammatory genes (43)
E. sinensis GSH supplementation promotes expression of immune genes (alf1 alf2 alf3, crus1, and crus2),, (44)
E. sinensis Dietary GSH increases SOD, GPX and GST activity to resist oxidative stress. Also reduces apoptosis by

inhibiting expression of caspase-3, caspase-8, and caspase-9
(45)

P. vannamei Dietary GSH increases ACP, AKP and SOD activity, and sensitivity to V. alginolyticus infection (46)
E. sinensis Taurine supplementation increases expression of immune genes and AMPs (47)

Branched chain
amino acid

M. amblycephala Leu increases antioxidant enzyme activity and the levels of C3 and IgM (48)
Labeo rohita Leu increases expression of LZM, C3, b-microglobulin, IgM, SOD, GPx, Nrf2, NKF-b, and TLR22, and

decreases TNF-b, Keap1, and IL-1B
(49)

Paralichthys olivaceus Ile enhance respiratory burst and total Ig content (50)
Trachinotus ovatus Val increases LZM activity and levels of C3, C4, and IgM (51)
Portunus trituberculatus Dietary Leu improves antioxidant capacity by increasing PO and SOD activity (52)

Glutamate and
glutamine

Cyprinus carpio var. Jian Glu supplementation induces Nrf2 to enhance antioxidant enzymes activity (53)
Oreochromis niloticus Gln supplementation improves macrophages phagocytosis and bactericidal ability. Promote lymphocyte

proliferation
(54)

Oncorhynchus mykiss Gln increases number of B-lymphocytes and secretion of Igs through NODs signaling pathway (55)
P. vannamei Glu-driven anaplerosis provides ATP and lipids for WSSV replication (56, 57)

Phenylalanine Danio rerio Phe helps clear drug-resistant bacteria (e.g. Vibrio alginoyticus), through an unknown pathway (58)
Oreochromis niloticus ×
Oreochromis aureus

Dietary Phe increases LZM and CAT activity (59)

C. idella Phe supplementation increases expression of intestinal IL-10, TGF-b1, TOR, IkBa, and Nrf2 (60)
Tyrosine P. vannamei Tyrosine hydroxylase knockdown enhances immune response and delays the decreased immune

response under low temperature stress
(61, 62)

Macrobrachium rosenbergii DA (injected) suppresses immune response and increases susceptibility to Lactococcus garvieae
infection

(63)

Penaeus monodon DA (injected) suppresses immune response and increases susceptibility to Photobacterium damsela
infection

(64)

P. vannamei DA receptor coupling with G protein activates the CAMP- PKA, DAG-PKC, or CAM pathway to regulate
immune response

(65)

Proline P. vannamei Pro supplementation improves antioxidant and immune capacity (66)
Histidine M. amblycephala Dietary His inhibits nuclear import of Nrf2 and decreases expression of antioxidant enzymes (67)

C. idella His deficiency/excess cause oxidative damage, increases pro-inflammatory factors and decreases anti-
inflammatory factors expression

(68)

E. sinensis Histamine increases PO and SOD activity but decreases levels of THC, ACP, and AKP (69)

(Continued)
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Arg kinase is one of the most important enzymes that regulates
energy metabolism in invertebrates (84). Invertebrates mainly store
their energy in the form of Arg phosphate, which is converted to
ATP and Arg by the action of Arg kinase during energy (ATP)
demand, while under ATP saturation, Arg kinase catalyzes the
synthesis of Arg phosphate as energy store (85). This could be one
of the reasons why in crustacean Arg kinase levels change in
response to immune stimulation and virus infection (84, 86, 87).
In P. japonicus, the Arg kinase homolog MjAK is reported to
promote WSSV replication while the Cdc42 homolog MjCdc42,
inhibits WSSV replication by interacting with the active site of
MjAK to inhibit its enzyme activity (26). Levels of Arg and Arg
metabolites as well as the activity of Arg kinase therefore affect
energy homeostasis in crustaceans, which consequently affect the
immune system (Figure 1).

Tryptophan
The aromatic amino acid, Trp, is an essential amino acid in most
animals (including crustaceans) that must be obtained from
diets, as it cannot be de novo synthesized. In addition to its
role as a protein building block, Trp is metabolized into other
active substances via two main pathways, i.e., (i) conversion to 5-
hydroxytryptophan under the action of Trp hydroxylase, which
is decarboxylated to serotonin (5-HT), and then finally to
melatonin (MT) by N-acetyltransferase, (ii) Trp is also
metabolized to kynurenine, catalyzed by Trp 2, 3-dioxygenase
(TDO), and indoleamine 2, 3-dioxygenase (IDO), and then to
acetyl-CoA and nicotinamide adenine dinucleotide (NAD+) (88,
89). Thus, Trp and its metabolites play important roles in many
metabolic, physiological, and pathophysiological functions
including immunity (90–93).

Most core metabolic reactions are conserved across many
organisms, highlighting the fundamental role of metabolism
[reviewed by (94)]. Thus, due to the paucity of information on
the role of metabolic pathway components in some species,
comparative studies or inferences are drawn from other
organisms. For Trp metabolism, numerous mammalian studies
have shown its involvement in diverse immune-related
functions. For instance, Trp affects the gut immunity of piglets
and mice by decreasing the expression of cytokines (e.g., TNF-a,
IL-6, IL-1b, IL-17, etc.) and inducing the expression of
proapoptotic caspase-8 and Bax (95). Trp also activates the
aryl hydrocarbon receptor (AhR) transcription factor (96), a
Frontiers in Immunology | www.frontiersin.org 4
key regulator of immunity and inflammation in mammals (97),
therefore essential for maintaining intestinal immunity and
barrier function (98, 99). Despite these beneficial effects of Trp,
high levels of dietary Trp could adversely affect the morphology
of intestinal epithelium and tight junction proteins (100). Key
enzymes in the Trp metabolic pathway have also been implicated
in immune regulation. It has been reported that IDO and AhR
work together to link microbial Trp catabolism and host Trp
metabolites to regulate T-cells function in intestine, especially in
T-cells immunity that depends on AhR [see recent review by
(101)]. During infection of humans by the parasite Toxoplasma
gondii, host cells synthesize Interferon-g (IFN-g) to activate IDO,
so as to degrade Trp, and therefore prevent T. gondii replication
(102, 103). The Trp metabolite serotonin (5-HT) has also been
implicated in immune response in mammals, as intestinal
microbiota are able to modulate host immune response by
altering levels of 5-HT in models of mucosal infections (104,
105), thereby attenuating the ability to mount immune response
to disease pathogens (106–108).

There is no comprehensive information on Trp metabolism in
marine species as compared to terrestrial mammals, especially the
role Trp plays in immune-related functions. Nonetheless, Trp and
its metabolites are reported to play several physiological and
immune-related functions in marine animals. In crustaceans,
dietary Trp supplementation improves the growth index and
survival rate (29, 109). It has also been shown that Trp
(metabolites) decreases the aggressive behavior (fights/attacks) of
juvenile S. serrata (15, 110), improves reproduction in P. monodon
(111) and freshwater crab (Barytelphusa guerini) (109), as well as
embryonic development of the giant freshwater prawn
Macrobrachium rosenbergii (112). In terms of immunity, Trp
supplementation increases intestinal microbiota of E. sinensis,
resulting in higher survival rates upon bacterial challenge (29).
While loss of limbs in crabs decreases their immunity and survival
rate (113, 114), dietary Trp supplementation improves their
immune indices [e.g., the total hemocyte count (THC),
phagocytosis rate, acid phosphatase (ACP), and alkaline
phosphatase (ALP) activity, etc.] as well as antioxidant capacity
(30). The Trp metabolite melatonin, affects the immune system and
antioxidant defense system (ADS) of crustaceans (33, 115). When
eyestalk-ablated E. sinensis were injected with melatonin, both their
immune and antioxidant capacity were enhanced in terms of
increased THC and hemocyanin levels, coupled with an elevation
TABLE 1 | Continued

Amino acid Species Factor/immune response Reference

Threonine C. idella Thr deficiency decreases LZM and ACP activity, and levels of C3, C4, and IgM. Decreases expression of
AMPs

(70)

M. amblycephala Thr supplementation increases levels of C3, C4 and IgM, and activity of SOD, CAT, and GPX (71)
M. amblycephala Excess or deficient Thr causes damage to antioxidant and immune systems (72)

Glycine C. idella Gly and N-acetyl cysteine (NAC) supplementation improves antioxidant capacity (73)
November 2020 | Volume 11 | Art
ACP, acid phosphatase; AMPs, antimicrobial peptides; HSP, heat shock proteins; NO, nitric oxide; IL, interleukin; TNF-a, tumor necrosis factor-a; IFN-g, interferon-g; IDO, Indoleamine 2,
3-dioxygenase; CAT, catalase; Cyt-C, cytochrome C; GPx, glutathione peroxidase; GSH, glutathione; GR, glutathione reductase; Ig, immunoglobulin; IgG, immunoglobulin G; BCL2, B-cell
lymphoma 2; mTOR, mechanistic target of rapamycin; RPS6KB1, ribosomal protein S6 kinase B1; IgM, immunoglobulin M; C3, component 3; SOD, superoxide dismutase; MDA,
malondialdehyde; Nrf2, nuclear factor erythroid 2-related factor 2; NKEF-b, natural killer-cell enhancing factor b; TLR22, toll-like receptor-22; Keap1, Kelch-like-ECH-associated protein 1;
GPCRs, G protein-coupled receptors; ERK, extracellular regulated protein kinases; LZM, lysozyme; C4, complement 4; MDSCs, myeloid-derived suppressor cells; TGF-b1, transforming
growth factor-b1; IkBa, inhibitor of nuclear factor kBa; DAO, diamine oxidase; THP-1, the human monocytic leukemia cell line; ICAM-1, intracellular adhesion molecule-1; NF-kB, nuclear
factor-kB; PBMCs, peripheral blood mononuclear cells; TIBC, total iron-binding capacity; Muc2, Mucin-2; GSH-Px, glutathione peroxidase activity; NOS, nitric oxide synthase.
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in the activities of ALP, ACP, superoxide dismutase (SOD),
glutathione peroxidase (GSH-Px), and other antioxidant enzymes
(31). Melatonin injection also enhances response to oxidative
damage and elimination of damaged mitochondria and
hemocytes due to external stress in E. sinensis (32). There are
however differences in the effect of melatonin in various tissues, as it
does not exert direct effect on the ADS of gills in the estuarine crab
(Neohelice granulata) but enhances that of muscle by increasing
glutathione (GSH) content and glutamate cysteine ligase (g- GCL)
activity (116, 117). Although increased Trp levels tend to decrease
the inflammatory response in fish (Dicentrarchus labrax) due to
immunosuppression by Trp metabolism (34), there is dearth of
information as to whether elevated levels of Trp and/or its
metabolism have similar immunosuppressive effect in crustaceans.
In any case, enough evidence points to the fact that Trp and its
metabolites are involved in different aspects of immune regulation
in crustaceans (Figure 1), although details of the immune-metabolic
Frontiers in Immunology | www.frontiersin.org 5
mechanisms remain unknown. More studies are needed to further
explore the molecular mechanisms of immunomodulation by Trp
and its metabolites in crustaceans.

Lysine
Most animals must obtain Lys from their diets as it is an essential
amino acid, which cannot be synthesized by the body. In
mammals, L-lysine can be irreversibly converted into
glutamate and a-aminoadipic acid through glycolysis, before
being further deaminated and oxidized (118). In addition to
protein synthesis, Lys can combine with methionine to form
carnitine (38), which is involved in the transfer of long-chain
fatty acid acyl groups to mitochondria for b-oxidation (119). The
optimal dietary intake of Lys differs in different marine species
and also exerts different effects on physiological and biochemical
indices (36, 120–124). For example, in fish, the daily optimal Lys
requirement for juvenile dusky kob or Giant kob (Argyrosomus
FIGURE 1 | Proposed schematic representation of how amino acids metabolism and immune-modulation occur in crustaceans. Nitric oxide (NO) is generated from
arginine (Arg) by the action of nitric oxide synthase (NOS), which counteracts pathogen-induced oxidative stress and promote immune response. Polyamines, as
downstream products of Arg metabolism, promote immune response, while arginine kinase (AK) can catalyze the conversion of Arg to arginine phosphate, which can
be coopted to promote replication of white spot syndrome virus (WSSV). Tryptophan (Trp) and its metabolite melatonin can activate the antioxidant system (ADS)
and promote the expression of immune proteins as well as counteract oxidative stress. Melatonin also promotes the repair of oxidative stress induced organelle
damage. Trp could also suppress inflammatory response through the kynurenine pathway. Some amino acids such as Met, Cys, Pro, Gly, etc., have direct
antioxidant activity due to their chemical properties. IDO, Indoleamine‐2,3‐dioxygenase; ARG, Arginase; Met, methionine; Cys, cysteine; Pro, proline; Gly, glycine.
November 2020 | Volume 11 | Article 574721
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japonicus) is 7.35% of the diet (125), while that of juvenile silver
perch (Bidyanus bidyanus) is 5.96% (126). It has been observed
that within a certain range, increasing Lys intake increases body
weight and specific growth rate (SGR) of Totoaba macdonaldi
(123), while excessive Lys intake affects growth and feed
utilization in large yellow croaker (Pseudosciaena crocea;
Richardson, 1846) (127). On the other hand, lack of Lys in
B. bidyanus reduces the crude protein content of whole body,
muscle and liver, but increases fat content (126).

Varying optimal dietary amounts of Lys have also been
reported in different crustaceans. In juvenile Atlantic ditch
shrimp (Palaemonetes varians), optimal Lys levels of 2.42%–
2.63% have been reported (128), with 1.64% reported for
P. vannamei (18), while 2.17% has been reported for juvenile
P. trituberculatus (16). In M. rosenbergii, increased levels of Lys
affect Arg retention, which suggests some antagonism between
Arg and Lys levels (129), probably because they are both
absorbed via the same brush border membrane carrier (130).
Dietary Lys supplementation affect various physiological and
biochemical indices in crustaceans including SGR, weight gain
(WG), feed efficiency, protein efficiency ratio, protein deposition
ratio, as well as AST and ALT activities (127). The activities of
pepsin, trypsin and other digestive enzymes are also reported to
increase upon adding the appropriate levels of Arg and Lys to
diets of M. rosenbergii (129), while dietary Lys affects intestinal
protease levels and activity of ALP in juvenile sea cucumber
(Apostichopus japonicus) (36).

There is no direct evidence of the involvement of Lys in
immune regulation in crustaceans. However, in many species,
some amino acids, their metabolites as well as enzymes
involved in their metabolic pathways have been directly or
indirectly implicated in immune regulation [see review by (131)
(Wu and Meininger, 2002)]. For instance, dietary carnitine (Lys
metabolite) has been shown to increase the activity of lysozyme
(LZM) and catalase (CAT) in serum and liver of juvenile
black seabream (Acanthopagrus schlegelii) as well as increase
the antioxidant capacity, but reduces inflammatory response
(38, 39, 132). In crustacean, dietary supplementation of
carnitine improves growth, increase feed utilization and the
antioxidant system in juvenile narrow clawed crayfish (Astacus
leptodactylus leptodactylus; Eschscholtz, 1823) (35). Most of the
research on the involvement of carnitine in immune regulation
in marine animals has mainly been in fish (133–135), with none
on crustaceans. It is believed that carnitine regulates nutrition
metabolism to enhance anti-stress response, as dietary carnitine
increases lipids utilization rate to produce more energy and
reduce amino acids catabolism, thereby reducing lipids
peroxidation and promoting protein synthesis (136).
Although few studies have explored the molecular
mechanisms involved in Lys metabolism in crustacean, given
that most core metabolic reactions are conserved across many
organisms (94), coupled with the importance of Lys in
immuno-regulation and its antagonism with Arg, the role of
Lys in crustacean immunity could be inferred from other
species. In any case, specific studies in crustacean are needed
to explore the immune-metabolic functions of Lys, especially
Frontiers in Immunology | www.frontiersin.org 6
the involvement of Lys in the Arg-NO pathway or other
immune-related pathways.

Methionine and Cysteine
Methionine (Met) and cysteine (Cys) are two sulfur-containing
amino acids that are involved in various metabolic pathways and
affect several biological functions. There are three main pathways
through which Met is metabolized including (i) protein synthesis;
(ii) conversion to S-adenosylmethionine (SAM), an important
methyl donor in the formation of polyamines, or trans-
methylation of SAM to S-adenosylhomocysteine (SAH), which is
further hydrolyzed to homocysteine (Hcy). Hcy can be remethylated
to Met by Betaine-homocysteine methyltransferase (BHMT) and
Methyltetrahydrofolate-homocysteine methyltransferase (MS); (iii)
irreversible conversion of Hcy to cystathionine through the trans-
sulfhydryl reaction, and then further to cysteine (137, 138). Met and
its metabolites possess antioxidant capacity, as Met residues are very
sensitive to oxidation and can inactivate reactive oxygen species
(ROS) (139, 140). Thus, Met acts as an antioxidant to protect
proteins and other macromolecules from oxidative damage
(141, 142).

The involvement of Met metabolism in immune-related
functions have been extensively studied in mammals, which
means that inferences could be drawn from such studies to
explain similar phenomenon in crustacean, given that core
metabolic pathways are conserved across species. In mammals,
high dietary Met content improves IgG levels and percentage of
lymphocytes, as well as pathological changes due to infectious bursal
disease (143). As an important immune organ in birds, bursa plays a
pivotal role in immunity, hence, lack of Met inhibits the
development of the bursa of Fabricius, which affects the humoral
immunity of chicken (144). Dietary Met supplementation also
affects the expression of inflammation-related genes (145, 146),
and impact positively on gut immunity in mammals (147–149).
Similarly, the addition ofMet dipeptides to feed reduces the harmful
effects of Eimeria spp. on the gut of broilers (150), while lack of Met
in feed could attenuate WG, intestinal development and intestinal
mucosal immunity in broilers and pigs (151, 152), or reduce
resistance to parasites in rats (153).

A growing number of studies have explored the effects of
dietary Met supplementation on immune-metabolic modulation
in marine animals including crustaceans. Most of these studies
have, however, been focused on fish. For instance, dietary Met
supplements have been shown to improve growth performance
in different fish species (144, 154–158). Specifically, lack of Met
in feed could affect protein synthesis and reduce feed utilization
in flatfish (Solea senegalensis) and white bass (Morone chrysops)
(159, 160), as well as induce general mitochondrial dysfunction
in liver of rainbow trout (Oncorhynchus mykiss) (161). On the
contrary, excess dietary Met does not result in a corresponding
improvement in growth rate in O. mykiss or orange-spotted
grouper (Epinephelus coioides) (156, 162), and could even
decrease growth rate in P. crocea (157). In the European sea
bass D. labrax, dietary Met increases the number of immune cells
upon immune stimulation (34), as Met is used as a precursor for
the synthesis of polyamines, which is required for the regulation
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of immune cells proliferation (42). Dietary Met also improves
immunity, by increasing leukocyte proliferation but decreases
the pro-inflammatory index in D. labrax (43), juvenile yellow
catfish (Pelteobagrus fulvidraco) (163) and juvenile Nile tilapia
(Oreochromis niloticus) (40). Similarly, Met levels can potentiate
the activity of SOD in juvenile O. niloticus (40), and increase the
activities of CAT and GSH-Px in juvenile D. labrax (41). Despite
the very few number of studies that have reported on the
involvement of Met in crustacean immunity, dietary Met
supplementation has been shown to improve growth
performance in shrimp (P. vannamei and P. monodon) (164,
165). The question then is, does Met and its metabolites also
improve the immune response and antioxidant ability in
crustaceans, as observed in fish and other species? This
remains an open question.

Cysteine possess special chemical properties that makes it
easily oxidized like Met (166, 167), for which reason it is often
used as an indicator of oxidative damage (168). The detailed
metabolic pathway and functions of Cys and/or its metabolites in
immune-metabolic modulation in crustaceans have not been
well elucidated as in mammals, although they could be similar
due to conserved core metabolic pathways across species. For
instance, in mammals such as piglets, Cys is reported to improve
the intestinal inflammatory response induced by dextran sodium
sulfate (DSS) (169), due to the ability of Cys to decrease intestinal
oxidative stress (147). Dietary Cys is reported to increase the
expression of proliferating cell nuclear antigen, occludin and
claudin-1 after LPS stimulation in weaned piglets, because Cys is
able to protect intestinal integrity (170). While Cys is required
for T-cells activation in mammals (88), T-cells are unable to
convert Met into Cys, and do not have the cystine transporter to
transfer cystine, which means that Cys must be provided to T-
cells by antigen-presenting cells (APC) (171). Thus, in the
absence of Cys, T-cells activation is attenuated and the
synthesis of glutathione and DNA in cells is blocked, which
eventually result in functional damage and apoptosis (172–174).
During Cys metabolism, it can also combine with glutamate and
glycine to form the tripeptide glutathione (GSH) in a two-step
reaction catalyzed by g-l-glutamyl-l-cysteine:glycine ligase and
glutathione synthetase (175). As an important antioxidant that
scavenge free radicals and ROS (176) to prevent oxidative stress,
GSH has been implicated in many cellular reactions including
immune regulation. In mammals, GSH is required for
lymphocyte proliferation, T-cells activation and cytokine
production (177–179). In addition, GSH inhibits inflammatory
response (180), as well as enhance innate and adaptive immunity
in humans by providing protection against microbial infection
(181). Mammals also metabolize Cys to taurine or ethanesulfonic
acid, one of the most abundant amino acids in cells (172)
(Grimble, 2006), which plays a key role in immunomodulation
(182, 183).

Limited number of studies have explored the role of Cys and
its metabolites in immune-metabolic modulation in crustaceans.
Nonetheless, it has been shown that dietary Cys and Met
supplementation improves survival rate, feed intake, and food
conversion rate in P. vannamei (154). In the kuruma shrimp
Frontiers in Immunology | www.frontiersin.org 7
P. japonicus, Cys and GSH have been shown to improve growth,
inhibit phenoloxidase (PO) activity, and reduce browning due to
o-quinones (184). Similarly, dietary GSH supplementation in
Chinese mitten crab (E. sinensis), increased the levels of total
protein, albumin (alB) and globulin (glB) in hemolymph,
upregulated the expression of immune-related genes (44), and
reduced LPS- induced patholog ica l damage to the
hepatopancreas, as well as decreased ROS levels and apoptosis
(45). Dietary GSH supplementation in P. vannamei has also been
shown to increase the activity of ACP, AKP, and SOD, while
decreasing shrimp susceptible to V. alginolyticus infection (46).
In crustaceans, taurine has been shown to improve growth and
immunity by increasing body weight, SGR, expression of
intestinal immune genes and antimicrobial peptides in
E. sinensis (47), and improve the growth performance of
P. vannamei (185). In spite of the fact that no specific studies
have so far explored the role of Cys and Met or their metabolites
in crustacean immunity, there are enough evidence to suggest
that these amino acids play key roles in crustacean immunity.
Further research should therefore explore how Cys and Met or
their metabolites modulate crustacean immune response and the
molecular mechanisms involved.

Other Amino Acids
The branched chain amino acids (BCAA) leucine, isoleucine and
valine, which are essential amino acids in animals (186), are
important for growth, development and immunity (187, 188).
Leucine (Leu) acts as a nutrient signal that regulates T-cells by
activating mTORC1 (189). The mTOR signaling pathway is
important for immune response, cell metabolism and other
biochemical reactions (190), as it receives and organizes signals
from the surrounding environment to direct T-cells
differentiation and function in mammals (191). Isoleucine (Ile)
is associated with intestinal immunity and can activate G-protein
coupled receptors (GPCR) and extra-cellular signal-regulated
kinase (ERK) signaling pathways, thereby increasing the
expression of human b-defensin-2 (HBD2) (192), an important
antimicrobial peptide involved in gut innate immunity (193). In
fish, such as grass carp (Ctenopharyngodon idella), increase
dietary Leu content within a certain range results in an
increase in the mRNA level of Nrf2 [nuclear factor erythroid
2-related factor 2 (Nrf2)] in muscle that also shows a positive
correlation with the expression of antioxidant enzymes,
indicating that Leu enhances antioxidant capacity by increasing
the activity of antioxidant enzymes (194). Increasing levels of Leu
supplements also improves the immune capacity of juvenile
blunt snout bream (Megalobrama amblycephala) by elevating
the levels of complement component 3 (C3) and IgM (48). The
effects of BCAAs on immune function has also been shown in
juvenile golden pompano (Trachinotus ovatus) (51), juvenile
olive flounder (Paralichthys olivaceus) (50), and Labeo rohita
fingerlings (49). For crustaceans, dietary Leu intake has been
reported to improve growth performance (195), and antioxidant
capacity by increasing the activity of PO and SOD in juvenile P.
trituberculatus (52). While the effects of Leu on the antioxidant
system and the molecular mechanism involved have not been
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reported in crustaceans, it could be similar to that of fish or other
marine species due to synonymous metabolic pathways found in
different species. Further studies could explore this aspect of
Leu’s role in crustacean immune response.

Glutamine (Gln) is the most abundant free amino acid in
mammals (196), and plays a key role in immune response by
supporting T-cells proliferation (197), macrophage development
(198) and intestinal immunity (199). In marine animals, Gln
supplementation can improve the antioxidant capacity of
juvenile gilthead sea bream (Sparus aurata) (200) and enhance
macrophages phagocytosis and bactericidal ability in O. niloticus
(54). Similarly, in O. mykiss, Gln is reported to inhibit LPS-
induced inflammatory response through the NOD signaling
pathway (55). Very few studies have so far explored Gln
metabolism and its metabolites on crustacean immunity. In a
recent study, it has been revealed that a different type of
anaplerosis exist in P. vannamei, where WSSV-infected cells
were more likely to ingest glutamate than glutamine, as the virus
activates mTORC2, glutamate dehydrogenase (GDH) and
aspartate aminotransferase (ASAT) to catabolize excess
glutamate in the hemolymph into a-KG, so as to maintain the
TCA cycle and to support viral replication (56). In addition, a-
KG can also be converted into isocitrate, and then used for the
synthesis of lipids required by WSSV (57).

For the aromatic amino acids phenylalanine (Phe) and
tyrosine (Tyr), Phe has been implicated in mammalian
immune response (88), as it regulates T-cells proliferation and
activation (201). Among aquatic animals, most of the studies
involving the aromatic amino acids, especially Phe, has been in
fish. For instance, Phe is reported to promote lysozyme
expression in Danio rerio, acting as an essential amino acid for
the elimination of resistant Vibrio alginolyticus (58), while in
juvenile hybrid tilapia (Oreochromis niloticus × Oreochromis
aureus), Phe levels affect immune performance (59). There are
relatively few studies on Phe in crustaceans, which have mainly
focused on the dietary requirements of Phe for optimal growth
(202). Tyrosine hydroxylase, a key enzyme in Tyr metabolism,
catalyzes the conversion of Tyr to L-DOPA, which then forms
the catecholamines (dopamine, norepinephrine, and
epinephrine) (203). Silencing of tyrosine hydroxylase has been
shown to enhance the immunity of P. vannamei, even under low
temperature stress (61, 62). Similarly, the catecholamine
dopamine (DA) is reported to affect the immunity of
crustaceans, as it suppresses the immune response of shrimp
(P. monodon and M. rosenbergii) as well as increase their
susceptibility to bacteria (Lactococcus garvieae and Photobacterium
damsela) infection. DA receptors also couple with G protein to
activate the cyclic adenylate (cAMP)-PKA, DAG-PKC or CaM
pathway to regulate the immune system, and modulate the
activities of antioxidant enzymes (63–65, 204). Thus, the
enhancement of crustacean immunity after tyrosine hydroxylase
silencing is achieved due to an inhibition of DA (or other
catecholamines) synthesis.

Proline (Pro) is a key amino acid involved in protein synthesis
(205) and an important regulator of metabolism (206), immunity
(66), and together with its metabolite, hydroxyproline, play an
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important role in collagen synthesis and tissue repair (207).
Proline metabolism plays an essential part in innate immune
response, as infection of Caenorhabditis elegans with P.
aeruginosa, results in the catabolism of Pro into P5C by
proline dehydrogenase (PRODH), with the resultant P5C
regulating ROS homeostasis and SKN-1 activation, to induce
antibacterial response (208). Limited studies have explored the
role of proline in crustaceans, but Pro is reported to play a role in
the immune system of shrimp, where dietary Pro supplementation
has been shown to improve the antioxidant and immune capacity of
P. vannamei (66).

Recent studies have reported that histidine (His) plays an
important role in the antioxidant capacity of fish. For instance,
low His diets have been shown to inhibit the nuclear import of
Nrf2 and to decrease the expression of antioxidant enzymes in
juvenile M. amblycephala (67) and young C. idella (68). In
crustaceans, the His metabolite, histamine, is reported to affect
the immunity of E. sinensis by increasing the activities of PO and
SOD, while decreasing the levels of THC, ACP, and AKP as well
as the activities of intestinal digestive enzymes (69, 209).

Threonine (Thr) plays an important role in intestinal
immunity (210), with high levels (3%) of dietary Thr shown to
improve the intestinal tract of broilers and increase the IgA levels
of ileum to enhance immune response (211). Deficiency of Thr is
reported to induce decrease in lysozyme activity, and reduce the
levels of C3, C4, and IgM as well as some anti-inflammatory
factors, thereby impairing the growth and development of
juvenile C. idella (70). Thr levels have also been reported to
affect the growth performance of crustaceans. In juvenile
P. vannamei, the SGR and protein efficiency ratio increased
with dietary Thr supplementation, coupled with increased
activity of SOD and PO (19, 212).

Dietary glycine (Gly) supplementation has been shown to
increase WG and SRG of P. vannamei (213), while Gly and N-
acetyl cysteine (NAC) supplementation improves the antioxidant
capacity of C. idella (73). Alanine (Ala) has been implicated in
the regulation of T-cells activation in mice (214) with no report
in marine species. For the other amino acids such as serine (Ser),
aspartate (Asp), and asparagine (Asn), there are currently no
published reports on their role in crustacean immune-metabolic
regulation. Despite the fact that there are currently no reported
studies on the involvement of these amino acids and/or their
metabolites in crustacean immunity, the importance of these
amino acids in most organisms coupled with the fact that core
metabolic pathways are conserved across species, it is plausible to
conceive that these amino acids could also play vital roles in
crustacean immune modulation. Further studies are needed in
order to ascertain the involvement of these amino acids
in immune-modulation in crustaceans.
CONCLUSION AND FUTURE
PERSPECTIVES

Amino acid metabolism is essential for maintaining normal
growth and for generating metabolites important for
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physiological and pathophysiological processes in the body. The
immune system, which is pivotal in protecting and defending the
body from pathogens, is nourished and regulated by amino acids
and their metabolites (215, 216). While some amino acids
including cysteine, alanine, glutamine, etc., have been shown to
directly affect the activation, proliferation, and differentiation of
immune cells (88, 198, 214), key enzymes involved in amino acid
metabolism have also been implicated as key regulators of the
immune system (12, 208). Most of the research findings on the
role played by amino acids and their metabolites in
immunomodulation has been in mammals, with very few
studies on crustaceans. Nevertheless, given that the core
metabolic pathways are conserved across species, and the fact
that exogenous supplementation of amino acids and amino acid
metabolites have been shown to drastically improve the
antioxidant capacity and immune parameters in fish and
crustaceans, it indicates the importance of amino acids in
immune-metabolic modulation in crustaceans. For instance,
details are emerging on the pathogenicity and infection
mechanism of WSSV, which requires glutamic acid for
replication in shrimp (56). During Arg metabolism, increased
activity of NOS has been shown to enhance functions of the
immune system in P. vannamei, while Arg kinase promotes
WSSV replication (24, 26). This suggests that Arg might be the
bridge between energy metabolism and immune response.

In mammalian studies, Trp metabolites have been used as
ligands to activate AhR (217), so as to regulate host intestinal
immunity, which in turn, affects the composition of intestinal
microbiota such as Clostridium sporogenes, Ruminococcus
gnavus, Lactobacillus, Clostridium, Bacteroides, etc. (101).
Similarly, Trp supplementation can enhance the immunity
and antioxidant capacity of crustaceans, as well as increase
intestinal microbiota (29, 30), which suggest that intestinal
microbiota regulate the immune system of crustaceans via Trp
metabolites. Trp metabolism may therefore reveal the
relationship between crustaceans and microorganisms. In
addition, studies in fish show that amino acids and their
metabolites can regulate the immune system by activating
immune related signaling pathways or enhance the synthesis
of immune proteins. Since amino acids undergo similar
Frontiers in Immunology | www.frontiersin.org 9
metabolism in different species, it suggests that in crustaceans
amino acids may also improve their immune response through
similar mechanisms (Figure 1).

Crustacean farming has been hampered by several diseases
and pathogens (218), as there is still limited understanding of
their molecular immunology. Thus, to fully understand the
immune response mechanisms of crustaceans, it is necessary to
explore and delineate the key molecular factors such as amino
acids and/or their metabolites that are involved in the
modulation of these processes. Such insight would enable the
institution of prudent and more effective disease control
measures. Knowledge of immunomodulation by amino acids
or their metabolites from similar studies in other animals such as
fish could be inferred and possibly leveraged for useful
application in crustacean aquaculture.
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