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Abstract

The rapid increase in the number of published articles poses a challenge for curated

databases to remain up-to-date. To help the scientific community and database curators

deal with this issue, we have developed an application, neXtA5, which prioritizes the lit-

erature for specific curation requirements. Our system, neXtA5, is a curation service com-

posed of three main elements. The first component is a named-entity recognition mod-

ule, which annotates MEDLINE over some predefined axes. This report focuses on three

axes: Diseases, the Molecular Function and Biological Process sub-ontologies of the

Gene Ontology (GO). The automatic annotations are then stored in a local database,

BioMed, for each annotation axis. Additional entities such as species and chemical com-

pounds are also identified. The second component is an existing search engine, which

retrieves the most relevant MEDLINE records for any given query. The third component

uses the content of BioMed to generate an axis-specific ranking, which takes into account

the density of named-entities as stored in the Biomed database. The two ranked lists are

ultimately merged using a linear combination, which has been specifically tuned to sup-

port the annotation of each axis. The fine-tuning of the coefficients is formally reported

for each axis-driven search. Compared with PubMed, which is the system used by most

curators, the improvement is the following:þ231% for Diseases,þ236% for Molecular

Functions andþ3153% for Biological Process when measuring the precision of the top-

returned PMID (P0 or mean reciprocal rank). The current search methods significantly im-

prove the search effectiveness of curators for three important curation axes. Further ex-

periments are being performed to extend the curation types, in particular protein–protein

interactions, which require specific relationship extraction capabilities. In parallel, user-

friendly interfaces powered with a set of JSON web services are currently being imple-

mented into the neXtProt annotation pipeline.
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Introduction

Over the past decades, biomedical literature has grown ex-

ponentially (1). In parallel, the research community needs to

have access to data in computable forms to support power-

ful querying and complex data analysis. Meanwhile, most

knowledge acquisition methods in biocuration are based on

manual approaches. Few automatic methods are in use in

real-life settings. The process is thus labour intensive and

time-consuming (2, 3). The development of effective meth-

ods to automatically process the literature promises to make

increase the efficiency of the curation process, thus enabling

to parse a much larger fraction of the literature.

To balance the need of efficiency and resources limita-

tions with the expansion of the literature, text-mining tools

such as document-triage engines (or prioritization engines)

and named-entity recognizers (that recognize and highlight

specific entities in texts) have been designed. These tools

can be integrated at different stages of the curation process

(3–5): triage, indexing, extraction of evidences, validation

and recording. Among the numerous software developed

in recent years (6–14), the most performant are usually

quite specific, focusing on a narrow scope (6, 10) or a

given ontology (7, 11). However, most of these systems

usually do not offer a fully integrated workflow, displaying

prioritized abstracts together with proposed annotations,

for the validation by the biocurators and thus, ready for

database insertion.

neXtA5 is an application developed to support biocura-

tion activities at neXtProt (15). The goal of this project is

to create an annotation workflow that will leverage auto-

mated methods for text analysis to speed up curation. The

final system should retrieve pertinent documents across

MEDLINE, mine them with specific ontology-driven

named-entity recognition systems and generate annota-

tions. The current project is an active collaboration with

the neXtProt database (16), whose main outcome is a sys-

tem operated via publicly accessible Application

Programming Interface (APIs) and web services. These

tools will then be integrated into a Swiss Institute of

Bioinformatics (SIB) tool called Bioeditor (17), as well as

other curation workflows.

In this report, we evaluate a specific component of the

workflow, neXtA5, which aims to improve the triage func-

tion for some of the neXtProt curation axes. In this article,

we focus on three types of annotation: Diseases, Molecular

Functions (MFs) and Biological Processes (BPs). Diseases

are defined as National Cancer Institute thesaurus (NCIt)

concepts, while MFs and BPs are defined as Gene

Ontology (GO) concepts.

Materials and Methods

In this section, we introduce the resources used by neXtA5,

including the terminological resources we defined and the

benchmarks we generated to assess the ranking power of the

system. Then, we describe the neXtA5 ranking functions,

which we evaluated for each of the three annotation axes.

Diseases

The vocabulary chosen for Diseases annotation is the NCIt

(18–20), 7 November 2014 release, obtained from https://

ncit.nci.nih.gov/ncitbrowser in the Web Ontology Language

format. For each concept, we restricted the fields to pre-

ferred terms, synonyms (SY) and abbreviations. However,

this version is enhanced by cross-linking different SY form

the medical subject heading (MeSH) vocabulary, using the

unified medical language system. The resulting vocabulary

is slightly richer than the original NCIt. From this con-

trolled vocabulary, we also filtered out the most frequently

used English words and words with a length shorter than

four characters (21). This step aims at removing false posi-

tives caused by entries such as ‘CAN’, an acronym for

‘Chronic Allograft Nephropathy’ (NCIt ID: C38145).

Gene Ontology

The GO is a vocabulary designed to describe the role of genes

and gene products across all species (22, 23). This resource is

subdivided in three axes: the MF describes molecular activ-

ities of proteins, while the BP captures how these molecular

activities are connected to perform coordinated events (e.g.

DNA replication).The cellular component (CC) characterizes

physical locations (organelles or complexes) within the cell or

the extracellular environment. Compared with MF and BP,

the CC have not extensively been annotated in neXtProt,

therefore this study focuses on MF and BP. In GO, each entity

is defined with a unique alphanumeric identifier, a term

name, a definition and its axis. SY may be associated to the

term with their related relationship as represented in Table 1.

The version of GO from 25 November 2014 was used for

this work and regular updates (every month) are planned at
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exploitation time. We tested the SY of different types

(EXACT, NARROW and RELATED) with little effect on

the performance of the system.

Additional terminological resources

Together with the three curation axes described in the pre-

vious sections, several entities are also identified in the

body of the abstracts and titles. Then, entities such as spe-

cies [National Center for Biotechnology Information

(NCBI), taxon identifier], chemical compounds Chemical

Entities of Biological Interest (ChEBI) and evidence codes

(ECOs) are also identified although they are not currently

used to compute the ranking functions as they do not con-

stitute a curation axis. However, these entities are high-

lighted at curation time to ease the reading of the abstracts.

Regarding the species, we are working on a subset of speci-

mens identified by their TaxID form the NCBI. The list

covers the curation needs of neXtProt. Species are mined in

texts with their official and common names.

The ChEBI is a dictionary based on chemicals molecules

available on http://www.ebi.ac.uk/chebi/init.do. We ex-

tracted only information about short and developed name,

besides their accession number. Finally, we use the

Evidence Ontology (ECO), 26 January 2015 release, cover-

ing laboratory experiments and computational methods. A

subset of the original ECO nomenclature is combined with

�30 new codes proposed by the curators. The terminology

distributions are shown in Table 2.

Triage

Triage can be performed using a wide span of methods. It

is thus possible to envisage the work as a machine-learning

task. In that case, the triage system is trying to classify a

given article into some inferred categories. The classifica-

tion can be binary (relevant/non-relevant) or multiclass

(relevant for a particular annotation axis). Classification

framework, such as support vector machine, neural net-

works or naı̈ve Bayes, are basically binary classifiers,

which can be used to perform multi-class classification

problems as in Wormbase (24). In the past, Text Retrieval

Conference (TREC) Genomics has for instance evaluated

triage as a classification problem to support the annotation

of the Mouse Genome Database with inconclusive results:

no system was able to beat the baseline, whose strategy

was to select articles based on MeSH descriptors assigned

by librarians of the National Library of Medicine. The

main challenge was clearly the acquisition of negative

training data since the ‘negative data gap’—database man-

agers do not keep track of articles regarded as irrelevant by

curators—is a well identified shortcoming of today’s data

stewardship (25). The automatic acquisition of negative

samples is possible but challenging (26), therefore neXtA5

is designed as a learning to rank system (27).

Triage can indeed be opportunely considered as a rank-

ing problem, as explored by BioCreative 2012, Track I

(28)—to support the annotation of the Comparative

Toxicogenomics Database (29). This option seems more

suitable when designing an interactive system, as it does

not attempt to make the triage decision, but instead it only

attempts to display the most relevant articles on the top of

the list.

The separation between classification and ranking is con-

venient but relative as it is always possible to transform a bin-

ary classifier into a ranking system, for instance by using the

class probability as an analogue of a similarity measure.

Symmetrically, a ranking system can be turned into a classi-

fier by setting an empirical boundary threshold. However, a

ranking model can be regarded as more flexible and more ap-

propriate to the knowledge extraction workflow of neXtProt

as the curators are used to query retrieval engines. It has also

the advantage to be able to gracefully operate with sparse

positive and no negative tuning data.

neXtA5 design

Inspired by ToxiCat (30), which achieved competitive re-

sults during BioCreative 2012, neXtA5 is a java/javascript-

Table 1. Example of GO BP entity with valid SY

[Term]

id: GO:0030318

name: melanocyte differentiation

namespace: biological_process

def: “The process in which a relatively unspecialized cell

acquires specialized features of a melanocyte.” [GOC:mah]

synonym: “melanocyte cell differentiation” EXACT []

synonym: “melanophore differentiation” EXACT []

is_a: GO:0050931! pigment cell differentiation

is_a: GO:0060563! neuroepithelial cell differentiation

Table 2. Index size per axis after thesauri refinement

Thesaurus #terms

Diseases 97545

GO MF 36068

GO BP 99242

GO CC 6459

ECO 174

Species 81

ChEBI 41
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based platform intended to enhance the curation of

MEDLINE. Figure 1 shows the functional services of

neXtA5. The input of the ranking module is a triplet {pro-

tein—research mode—axis}, the output is a ranked list of

PMIDs, where bio-entities have been normalized.

The automatic identification of entities, available

through these aforementioned terminological resources, is

performed on the whole MEDLINE a priori to speed up

user interaction with the system. The only task performed

at query time is the ranking of documents.

The preprocessing steps include a text-mining module

that automatically extracts and annotates a local copy of

MEDLINE, synchronized on a weekly basis. Articles are

processed individually, vocabulary by vocabulary, match-

ing entities in both titles and abstracts and starting with

the longest descriptors. This way, the system is likely to

capture more specific entities. Thus, ‘Papillary Breast

Cancer’ (ID C9134 in NCIt) will be preferred over ‘Breast

Cancer’ (ID C4872), which will be preferred over ‘Cancer’

(ID C9305). Table 2 presents the number of terms con-

tained in the vocabulary, together with three complemen-

tary vocabularies: for chemical entities (ChEBI), species

and other evidences (ECO). All named-entities found in

MEDLINE are stored in a local database within tuples

such as {PMID; Term ID; Term Frequency (TF); Textual

Form}. ‘Term ID’ allows neXtA5 to associate SY while

‘Textual Form’ corresponds to the string as found in the

abstract or the title.

Our information retrieval (IR) component proposes two

research modes; see Gobeill et al. (31, 32) for a detailed pres-

entation of the process and settings of the engine. The first

mode makes possible to perform Boolean queries directly

using PubMed via the e-Utils. In this case, the search engine

score assigned to each PMID is �0 and the rank is strictly

obtained from PubMed. The second is a search engine based

on a vector-space model that locally indexes the content of

MEDLINE (33). This mode is referred to as ‘vectorial’

mode. A specific weighting schema (combining Okapi BM25

and Deviation from randomness) has been tuned (34, 35).

Finally, the ranking function is based on a linear com-

bination of factors (36, 37): the search engine score, the

number of distinct matched terms (matching index size)

and the TF. These three elements were experimentally

weighted, and we adjusted the coefficients to obtain an op-

timal axis-specific scoring function. A post-ranking filter is

applied on the retrieved documents to exclude ‘retracted

Figure 1. The neXtA5 functional architecture.
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articles’ and ‘reviews’, two MEDLINE article types that

should be excluded from the curation process.

The prototype interface presented in Figure 2 is de-

signed to clearly display the results of the ranking function

as an ordered list of PMIDs. The minimal input of the ap-

plication requires a user query (e.g. a protein), an annota-

tion axis and a retrieval mode (Boolean or vectorial). An

advanced mode allows performing a more precise request

by adding filters on publication dates or gene SY, which

can be accessed using the UniProt accession numbers, to

expand the query. Finally, a fetching interface provides the

list of concepts harvested by neXtA5 for a given PMID.

The web service can access the content of BioMed and sup-

ports an output in a JavaScript Object Notation (JSON)

format, as shown in Table 3.

Evaluation and benchmark description

Every year since 1992, the TREC organizes competitions

to assess advances in IR. Hence, the TREC methodology

has been used to generate various reference benchmarks. A

more detailed presentation of TREC standards and met-

rics, which are used in this report, can be found in Singhal

2001 (38). The formal benchmark is composed of three

different data sets: (i) a set of queries, (ii) a corpus of docu-

ments and (iii) a set of relevance judgements, which links

each query to one or more documents considered as

relevant.

In IR, the precision and the recall are the metrics con-

sensually adopted to establish to what degree the system

obtained the expected results (39). The recall represents

the fraction of the relevant documents set that are retrieved

Figure 2. The neXtA5 web interface. The query was {FER—vectorial—Diseases}, with 1990 as the lower limit (the date can be modified in advanced

mode) for the publication dates. The output presents the first fifty results ranked over the chosen axis, with the score of the linear combination and

the concepts identified in the PMID.
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by a given query, whereas precision is the proportion of

documents retrieved by the system that are relevant. In

large collections, the recall can only be estimated on a rela-

tive scale, therefore IR is mainly measured with respect to

the precision. Because relevant documents returned at high

ranks are more useful, evaluation is measure at different

ranks between 0 and n and P0 (the precision at Rank #1) is

regarded as the most stringent measure.

To construct our reference benchmark, also called

QREL (Query Relevance document), we used annotations

supplied by neXtProt for 100 kinases. These one are ex-

tracted from a 2-years manual work involving 14 curators,

Table 4 displays the proportions among focused axes.

Then, we ran the TREC evaluation tool (trec_eval) to com-

pare our QREL with the results provided by neXtA5 (with

different settings) on the same kinases (Supplementary

data). Strictly in the same way, we evaluated the results

provided by PUBMED on these queries. As experimented

with TREC and BioCreative evaluations when they operate

with curated data (Mouse Genome Database, Gene

Ontology Annotation, IntAct. . .), the quality of the anno-

tation is taken as ‘ground truth’. Such an assumption is

relatively weak if we consider that curated data reflect as

state of the knowledge at a given time. Perfect benchmarks

do not exist neither regarding coverage nor stability.

Even if there are articles that were omitted by the cur-

ators, we estimate that curated data provide a good esti-

mate of what should be captured by an automatic system.

Finally, as the purpose is not only to retrieve the exact

same list of papers, but also to rank the most relevant at

the top, our evaluation represents a fair—yet relative—

evaluation of the different components and settings of a tri-

age system.

With the objective to enhance mainly the precision, we

evaluated the performance of neXtA5 by tuning 1042 com-

binations of parameters, see section ‘neXtA5 Design’. We

compared our results against two systems (as baselines):

the vectorial search engine, which is a strong baseline, and

the ‘Relevance’ version of PubMed, which is the typical

tool used by curators.

Results

We first establish a strong baseline by evaluating the search

effectiveness of the vector-space search mode (40–42).

Figure 3 represents the results obtained for the three eval-

uated axes at the top-returned PMID (P0). The blue histo-

grams show the performances of the vectorial search

engine, while the red histograms show the precision af-

fected by tuning. Thus, we observe a gain ofþ66%,þ48%

andþ385% for Diseases, BP and MF axes, respectively.

The experimental improvement is statistically significant

for all axes (P> 0.05). The gain for the Diseases axis

reachesþ66% (from 25 to 41%), which means that the

top ranked PMID in neXtA5 is a relevant one more than

four times out of 10 compared with approximately one

time out of four in the baseline system.

The second most significant improvement is observed

for BP with an increase ofþ48%. The gains for MF, with

almostþ385%, is even higher, however such an improve-

ment could be imputable to the limited number of relevant

documents in the curators’ benchmark (Table 4). Thus,

using the current parameters, neXtA5 has different impact

on curation with respect to the axis with improvements

ranging from �50% to nearly 400%. The linear combin-

ations providing the optimal ranking functions are the

following:

Diseases: Article score¼ 1.0� search engine score-

þ0.5�matching index size.

BP: Article score¼ 0.9� search engine score-

þ1.0�matching index size.

MF: Article score¼ 1.5� search engine scoreþ0.3� term

frequency.

Future versions of the weighting schemas should clearly

take into account usage patterns, and therefore these coef-

ficients are likely to vary in the future. Yet, the choice to

design axis-driven search strategies, as opposed to creating

a general purpose curation engine, is fully validated.

Comparison with PubMed

The reference search platform for biocuration is PubMed,

the NCBI search engine on the top of the MEDLINE digi-

tal library. PubMed offers different ranking functions. The

default one is a Boolean query engine that sorts results in

reverse chronological order, with most recent publications

on top. Otherwise, the ‘Relevance’ mode sorts citations ac-

cording to statistical measures (43). In this mode, priority

is still given to recent articles.

In Figure 4, we compare the performances of the

neXtA5 ranking function with the ranking proposed by

PubMed on the BP and Diseases annotation axes. The two

PubMed ranking modalities are examined: the default

method and the so-called ‘Relevance’ sorting. Regarding

search, the differences between the two models are mar-

ginal. For these systems, we also measure the mean average

precision (MAP), which computes the average precision at

different ranks (top-10, top-20, etc.). If we consider, for in-

stance, the Diseases axis, the two search modes obtain ex-

tremely close results regarding MAP. Regarding the top

precision, the Relevance-based mode performs slightly
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better than the default one (0.124 vs. 0.122!þ1.6%). In

contrast, neXtA5 obtains a top precision of 0.41. Thus,

compared with the best retrieval strategy of PubMed,

which is likely to be used as default by many curators, the

relative gain shown by the neXtA5 is approxi-

matelyþ108% on the MAP. Similar improvements are re-

ported for BP and MF with, respectively,þ192%

andþ2998%.

At P0 (interpolated precision at recall¼ 0.00), the best

improvement to support a Diseases curation task

isþ231%, whereas it is respectively ofþ236%

andþ3153% for BP and MF curation when PubMed

‘Relevance’ is used as baseline system.

Discussion

Although the comparison against PubMed is obviously in

favour of the neXtA5 ranking algorithm, the reported re-

sults vary significantly with the considered axes. Further,

when we pay attention to precision at top ranks, the im-

provement is impressive with a maximum gain

ofþ3153%, obtained for MF.

Assessing the absolute advantage of the system is diffi-

cult and evaluations based on utility metrics (e.g. process-

ing time, quality improvement. . .) will be needed, however

it is worth observing two important aspects. The neXtProt

data used as benchmark in our experiments should not be

regarded as perfect because of its coverage. Although the

quality of the curation defines our gold standards, the

usual curation process is protein-centric rather than paper-

centric. Most of what is known about a given protein at a

given time is likely captured by the neXtProt curators.

Nevertheless, we are aware that covering all published—

and often redundant—papers is obviously not a goal for

curators. Our experimental measures are directly derived

from the neXtProt benchmark, which has a particular cre-

ation date. Therefore, the outputs of our search engines

have been adapted to limit the date of the returned docu-

ments (1990–2013).

In the same vein, the current system is taking only

MEDLINE contents as input, while the triage performed

by curators may have taken into account additional con-

tents such as full-text articles (44), including figures, tables

or supplementary files that were not available for neXtA5.

It is expected that working with these additional data may

have improved our results; however, this comparison is

fair regarding our baseline search engines.

Conclusion

We presented in this report, neXtA5, a ranking service and

interface embedded into a curation platform. This applica-

tion is powered by various ontologies, which are used to

provide a better ranking of MEDLINE articles for sake of

curation and a vectorial search engine. When compared

with the best PubMed search model, the precision (P0) of

neXtA5 is, respectively, improved byþ231%,þ236%

andþ3153%, respectively, for the Diseases, the BP and the

MF curation, after the accurate tuning of our local vector-

space search engine.

We are now drafting more specific ranking functions to

perform the curation of protein–protein interactions, and

similarly we plan to further explore the MF. In particular,

we intend to fix up our vector-space model, and to custom-

ize neXtA5 to support the curation using full-text articles

in complement to abstracts.

Table 4. Distribution of annotated proteins and PMIDs in the

benchmark for each annotation axis

Thesaurus #kinases #terms

Diseases 100 4839

GO MF 18 47

GO BP 100 3189

Figure 3. Optimization of the ranking function for each axis.

Table 3. JSON annotation example for PMID: 23883606a

{“error”: ““, “pmid”: “23883606”, “result”:

[{“termid”: “C26740”, “tf”: 1, “form”: “dehydration”},

{“termid”: “GO:0008900”, “tf”: 1, “form”: “gastric h/k atpase”},

{“termid”: “GO:0008900”, “tf”: 1, “form”: “gastric hþ/kþ
atpase”},

{“termid”: “GO:0016020”, “tf”: 3, “form”: “membrane”}]}

aThis article contains six concepts: one from NCIt (“dehydration”) and

three GO (two different synonyms for “hydrogen:potassium-exchanging

ATPase activity” and three occurences of the term “membrane”). Bold entries

represent the JSON fields that could be captured from the web service.
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Supplementary data are available at Database Online.
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