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Abstract

Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement.
Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population
derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina
sequencing and a bin-mapping approach, we generated �1920 bin markers spanning �875 cM. Phenotyping data were collected and
analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of
these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new
genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic
underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed
during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors
that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these
genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domesti-
cation and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement
to the sorghum community.
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Introduction
Sorghum (Sorghum bicolor L. Moench), a staple cereal crop that
grows in arid and semi-arid regions of the world, is an important
food crop, a source of animal feed and forage, an emerging bio-
energy crop (Rooney et al. 2007), and a model for C4 grasses,
particularly maize, sugarcane, and Miscanthus. Among cereals,
sorghum ranks fifth worldwide in acreage and annual tonnage
after wheat, maize, rice and barley (Dogget 1998). Sorghum
originated in Eastern Africa, but was taken by humans to Asia
�4000 years ago (Winchell et al. 2018). Varieties from Africa and
Asia have subsequently contributed to the genetic makeup of
current cultivated sorghum germplasm. The five races (bicolor,
guinea, caudatum, kafir, and durra) within S. bicolor subsp.

bicolor (2n ¼ 2x ¼ 20) are fully interfertile, and are derived from
several wild progenitors, including S. bicolor subsp. verticilliflo-
rum, S. bicolor subsp. drummondii and other weedy species that
persist in sorghum growing regions of Africa (Dogget 1998;
Wiersema and Dahlberg 2007; Mace et al. 2013). Several complex
intermediate races have formed naturally or through breeding
programs to achieve the most desired agronomic outcomes,
such as increased yield, improved grain quality, and tolerance
to various abiotic and biotic stressors (Mace and Jordan 2010,
2011; Morris et al. 2013). In addition, breeding efforts have pro-
duced sorghum germplasm that lacks photoperiod sensitivity,
allowing its efficient introduction into temperate latitudes
(Stephens et al. 1967).
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Quantitative trait locus (QTL) mapping is a powerful approach
to identify genomic regions that control specific phenotypes.
Numerous sorghum recombinant inbred line (RIL) populations
have been constructed, and QTL controlling >150 traits related to
grain yield, leaf characteristics, maturity, panicle architecture,
stem composition, stem morphology, perenniality, and abiotic
and biotic stresses have been identified (reviewed in Mace and
Jordan 2011). Nevertheless, the majority of the genetic diversity
in wild and weedy crop relatives remains untapped, including in
sorghum and related species from the center of diversity in Africa
(Dogget 1995). To investigate the underlying genetic architecture
controlling some of these traits, we generated an interspecific RIL
population by crossing S. propinquum (female parent) with S. bi-
color (Tx7000), representing the widest euploid cross that is easily
performed in sorghum. Tx7000 is a variety known for pre-
anthesis drought tolerance, and was used as an elite R-line for
the production of early grain sorghum hybrids (Evans et al. 2013;
Morishige et al. 2013). Prior crosses between Tx7000 and other in-
bred lines such as BTx642 (Evans et al. 2013), B35 (Subudhi et al.
2000; Xu et al. 2000) and SC56 (Kebede et al. 2001) have been used
to investigate QTL related to drought tolerance and stay green
traits. Tx7000 is most likely derived from Blackhull Kafir and
Durra Dwarf Yellow Milo, and thus is substantially diverged from
sorghum inbred BTx623, which was used to generate the sor-
ghum reference genome sequence and as a parent in numerous
segregating populations for the construction of genetic maps
(Mace and Jordan 2011; Evans et al. 2013). S. propinquum is a wild
relative, indigenous to SE Asia, that has small seeds, high-density
tillering, narrow leaves, day-length-dependent flowering, and
well-developed rhizomes that contribute to perenniality. Because
of the many phenotypic differences between S. bicolor and S. pro-
pinquum, the RIL population developed in this study provides an
opportunity to investigate agronomically important traits such as
tillering and aerial branching, plant height, flowering time, and
biomass, all of which are important in grain, forage, and fuel pro-
duction (Rooney et al. 2007; Jessup et al. 2017).

QTL mapping can be combined with transcriptome analysis
(RNA-seq) to identify candidate genes underlying QTL for traits of
interest. For example, Gelli et al. (2014) identified candidate genes
associated with nitrogen stress tolerance in sorghum by overlay-
ing differentially expressed genes (DEGs) onto validated QTL be-
tween parents and pools of RILs with high and low nitrogen use
efficiency (NUE). Similarly, the genetic basis of O3 sensitivity was
examined in Arabidopsis by the combined application of QTL
mapping and differential transcriptome analysis of the parents
(Xu et al. 2015). Here, we evaluated several agronomically impor-
tant traits in our RILs at two field sites and in the greenhouse. We
complemented the QTL mapping of tillering with transcriptome
analysis during tiller bud elongation. These experiments enabled
the identification of 30 QTL related to six important agronomic
traits in addition to several candidate genes associated with tiller
bud dormancy and elongation.

Materials and methods
Plant material
We developed a mapping population consisting of 191 F3:5 RILs
derived from a cross between Sorghum propinquum (female,
unnamed accession obtained from Dr. William Rooney, Texas
A&M University, College Station, TX) and S. bicolor inbred
“Tx7000.” Each RIL was derived from a single F2 plant following
the single seed descent method and progressed up to the F5 gen-
eration. Because of day length issues for flowering at some

locations, some RILs trailed the overall population advancement,
and are now only at the F3 or F4 generations. For the transcrip-
tome analysis, we germinated seeds and collected tiller buds
for mRNA sequencing. We used Tx7000 and S. bicolor subsp.
verticilliflorum (PI302267) for this part of the study because seed
germination for S. propinquum was low and asynchronous with
Tx7000, preventing informative comparisons at 8 and 14 days
post-planting. S. bicolor subsp. verticilliflorum produces tillers and
is phylogenetically closer to S. propinquum than any other culti-
vated or wild species of sorghum (Mace et al. 2013).

Field trial design and greenhouse study
Phenotypic performance of the RILs and parents was evaluated
at two field locations and in one greenhouse experiment
(Supplementary Table S1). Field trials were conducted at the
University of Georgia’s Iron Horse Farm, Watkinsville, GA, USA
(33.725� N, 83.3� W; coarse sandy loam soil) and at the Oklahoma
State University’s Cimarron Valley Agricultural Research Station,
Stillwater, OK, USA (35.986� N, 97.049� W; sandy loam soil) in the
years 2016 and 2017, respectively. Henceforth, these populations
will be referred to as 2016-W and 2017-S. Seeds were germinated
in mid-April for both field studies. In 2016-W, fifteen plants from
each RIL were transplanted in mid-May in a randomized com-
plete block design with three replications. Five seedlings per RIL
were planted in each replication in a row, with 61 cm between
rows and 51 cm between plants within a row. In 2017-S, 30 plants
from each RIL were transplanted in a randomized complete block
design with three replications and containing two replications
per block. Spacing was the same as that of the 2016-W experi-
ment. Standard agronomic practices were followed throughout
the growing season, with supplemental irrigation and weed
control as necessary.

The greenhouse experiment was conducted in July 2014, and
will henceforth be referred to as 2014-GH (Supplementary Table
S1). Nine seeds from each RIL (3 replicates with 3 plants per line
per replication) were planted in germination mix (Metro-mix, Sun
Gro Horticulture, Bellevue, WA, USA), and transplanted two
weeks after germination into 15 cm Azalea pots (1.3 liter capacity)
filled with Metro-mix soil (Sun Gro Horticulture, Bellevue, WA,
USA). Plants were grown in small pots to evaluate their ability to
tiller in limited growing space. Plants were grown at 21 �C/26 �C
night/day temperatures under natural day length. Plants were
fertilized once every three weeks with 20:18:20 N: P: K (Jacks
water-soluble fertilizer, Allentown, PA) in addition to 40 grams
of granular slow-release Osmocote 14:14:14 N: P: K fertilizer
(Osmocote Pro). Plants were treated with 15 grams of Ironite
(Gro Tec, Inc, Madison, GA) as needed.

Genotype analysis using whole genome re-
sequencing
High-quality nuclear DNA was isolated from the parents and the
RILs using a nuclear isolation protocol (Peterson et al. 1997; Lutz
et al. 2011), specifically Protocol B as described by Lutz and cow-
orkers, which maximizes nuclear genome content by limiting
organellar contamination. Illumina sequencing libraries with
dual-indexes were prepared following the method of Glenn et al.
(2019). The 100 bp paired-end (PE) sequencing was performed on
an Illumina HiSeq 2000 at either the Marshall University
Genomics Core Facility, Huntington, WV or the University of
Georgia Genomics and Bioinformatics Core, Athens, GA. Parental
lines and RILs were sequenced at �18x and �2x depths, respec-
tively. For SNP calling, the sequence reads from each RIL were
aligned to the masked S. bicolor reference, ver 3.1 (Paterson et al.

2 | G3, 2021, Vol. 11, No. 2



2009) using Bowtie2 (Langmead and Salzberg 2012) with default
parameters. SNPs were called using samtools mpileup (Li et al.
2009). High quality SNPs with (1) a minimum genotype quality
score of 30, (2) a minimum sequencing depth of 2 for each RIL,
and (3) called in at least 40% of the RILs were selected for the con-
struction of genetic maps for subsequent QTL analysis.

Genetic map construction
The high-quality SNP variant call file was parsed through the
GenosToABHPlugin in Tassel ver 5.0 (Bradbury et al. 2007) to ob-
tain informative biallelic SNPs in a parent-based format (S. pro-
pinquum alleles as “A,” S. bicolor alleles as “B,” and heterozygotes
as “H”), and to exclude sites in which the parental genotypes
were missing, ambiguous, or heterozygous. The ABH-formatted
SNP data file was used as input to SNPbinner (Gonda et al. 2019),
which calculates breakpoints (transition between haplotypes) in
each RIL and constructs genotype bins that are implemented in
three python modules (crosspoints.py, visualize.py, and bins.py).
Briefly, the module crosspoints.py, which uses a pair of hidden
Markov models (HMM), one considering all three states (A, B, and
H) and the other considering homozygous states (A and B), was
used to determine the most likely genotype at each point along a
chromosome for each RIL. Breakpoints that were separated by
less than 0.2% of the chromosome length were merged into the
surrounding regions. The visualize.py module was used on a ran-
dom selection of chromosomes to visualize the representation of
the original SNPs against the calculated breakpoints for quality
control and to determine the optimal parameters for crosspoint
calculations. The bins.py module was used to create a combined
map of all breakpoints across the RILs at a user-specified resolu-
tion (a 10 kb bin size was used in this study). Finally, duplicate bin
markers and markers that were potentially indicative of double-
crossovers (as determined by calculating genotyping error LOD
scores using calc.errorlod() function in R/qtl) were removed, and
the remaining markers were used to construct the genetic map.
The markers were ordered based on the physical positions of the
bins in the reference genome, and the centimorgan distances
were calculated using the Kosambi map function in R/qtl
(Broman et al. 2003) (Supplementary Table S2).

Phenotype evaluation
Three individual plants from the middle of the five consecutive
plants (plants 2, 3, and 4) in each of the three replicate blocks
were scored for phenotypes in 2016-W (total 9 plants), while two
plants from the middle of the five consecutive plants (plants 2
and 4) in each of the 6 replicates were scored for phenotypes in
2017-S (total of 12 plants). At maturity, plant height (HT) was
measured from ground to the apex (panicle tip) if flowering, and
if the plant was not flowering, height was measured from the
ground to the base of the top leaf. Tiller number (TN) was
recorded by counting the number of tillers that had emerged
from the base of the plant. Stem diameter (SD) was measured us-
ing vernier calipers between the first and second aboveground in-
ternode. The days to flowering (FL) was determined by collecting
the heading dates for each plant in the greenhouse trial and in
the 2017-S field trial. FL was not recorded during the 2016-W field
experiment. To obtain dry weight for biomass (B) measurements,
the aboveground portion of the plant was manually harvested
from both field trials, placed in separate Mesh harvest bags
(Midco, USA), and placed in a drying oven (140

�
F) for 1 week.

Branches (ARB) emerging from the internodes were counted dur-
ing the 2017-S field experiment.

Phenotype analysis
The total number of RILs evaluated in each experiment is indi-

cated in Supplementary Table S1. Least squared means were esti-

mated for each line and trait combination within each

environment across replicates and examined for normality using

Q-Q plots in R (R Core Team 2013). Traits that deviated from nor-

mality were transformed as necessary, and the transformed data

were used in an analysis of variance (ANOVA). In the greenhouse

experiment, flowering date and SD were transformed using

Tukey ladder of powers transformation with an appropriate

lambda value (Tukey 1977). For the 2017-S field experiment, tiller

number and height were square-root transformed. For the 2016-

W field experiment, log transformation was applied to biomass

and box–cox transformation was applied to height.
Correlation of phenotypic traits within each site was

explored using Pearson correlation in R (R Core Team, 2013;

Supplementary Figure S1). Combined ANOVA was performed by

fitting a linear model (lm) to assess genotype (G), environment

(E), and genotype � environment (GxE) interactions in R (lm and

calculated Type III ANOVA summary for the model;

Supplementary Table S3). In addition to least squared means for

each trait within each environment, we also computed best lin-

ear unbiased predictors (BLUP) of lines across environments for

tiller number, height, and SD, which were measured in both field

environments. To generate BLUPs, block and location were con-

sidered as fixed effects, whereas G and GxE were considered as

random effects. The least square means and BLUP values were

used in QTL analysis.

QTL analysis
QTL analysis was performed in R/qtl ver.1.14 (Broman et al. 2003)

using only the RILs that were both genotyped and phenotyped.

For QTL analyses, we used genetic maps that were constructed

using 1934, 1915, and 1906 bin markers from the 2014-GH, 2016-

W, and 2017-S experiments, respectively (Supplementary Table

S2). The genetic maps consisted of 10 linkage groups that corre-

spond to the 10 chromosomes of the sorghum genome (Paterson

et al. 2009). QTL mapping was performed for each field experi-

ment separately. To summarize phenotypic values for correlated

traits (tiller number, height, and SD) from the two field sites, we

used 170 common RILs that yielded 1906 bin markers for the

BLUP analysis. A single QTL model using an interval mapping

method and appropriate phenotype model was chosen to identify

QTL exhibiting logarithm of the odds (LOD) score peaks greater

than the permutation-based significance threshold (alpha ¼ 0.05)

estimated via 1000 permutations (Churchill and Doerge 1994).

Next, a multiple QTL model that uses forward selection and

backward elimination to determine the best fit QTL model was

used to identify additional additive QTL, refine the QTL positions,

and test for the interaction between QTL for a given trait. The sig-

nificance of fit for the full multiple QTL model was assessed us-

ing Type III ANOVA. The proportion of variance explained and

the additive effect for each locus was extracted from the model

summary. Because of the large window size obtained using MQM

for tillering QTL, composite interval mapping (CIM) was imple-

mented in R/qtl using a genome scan interval of 1 cM, a window

size of 10 and a forward and backward regression method to re-

fine the QTL position. Putative genes (S. bicolor ver 3.1) found

within a 1.0 LOD confidence interval for each QTL were identi-

fied.
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RNA isolation, RNA-seq library construction and
sequencing
S. bicolor inbred Tx7000 and S. bicolor subsp. verticilliflorum
plants used for RNA-seq were grown in controlled growth
chambers at 24�C, with a 16-h light/8-h dark cycle. Tiller buds
collected at 10, 12, and 14 DAP (days after planting) were dis-
sected from the first leaf axil under a stereomicroscope and
flash frozen in liquid nitrogen. Bud size measurements were
taken at 8, 10, 12, 14, and 16 DAP to compare early tiller bud
development between the two genotypes. All sampling was
performed within a 2-hour window in the afternoon approxi-
mately 5–7 hours after dawn to minimize circadian effects.
Depending on the size of tiller buds at a given developmental
stage, 50–144 individual tiller buds were pooled per biological
replicate, and three biological replicates were collected per
sample. RNA was isolated, for three replicates, from tiller buds
collected at 10, 12, and 14 DAP, using the QIAGEN miRNeasy
Micro kit (cat. no. 217084) according to the manufacturer’s
instructions. The RNA-seq libraries were prepared using a
KAPA stranded mRNA kit (cat.no. KK8421) according to the
manufacturer’s instructions (KAPABIOSYSTEMS, https://www.
kapabiosystems.com). The average library insert size was ap-
proximately 500 bp. Libraries were assessed for quality and
quantified on an Agilent bioanalyzer (Agilent), and 125 bp
paired-end Illumina (Hi-seq 2500) sequencing was performed
at the Marshall University Genomics Core Facility (Marshall
University, Huntington, WV).

Differential expression analysis of RNA-seq data
Methods for differential expression analysis were as described in
Dong et al. (2019). Eighteen RNA-seq libraries were sequenced and
�428 million paired-end (PE) raw reads were obtained, averaging
�23 million reads per library. Overall quality was assessed using
FastQC (Andrew 2010). Trimmomatic v.0.36 (Bolger et al. 2014)
was used to remove Illumina adaptor sequences, trim bases with
quality scores less than 30 from the 5’ and 3’ end of each read,
and to discard reads of less than 36 bp in length. The processed
reads were mapped to the reference genome, version 3.1
(Sb.ver3.1), of S. bicolor BTx623 using STAR aligner v.2.6.0a (Dobin
et al. 2013) with default settings. The total and uniquely mapped
reads are summarized in Supplementary Table S4. A read count
matrix was generated by aggregating the raw counts of the
mapped reads for a given gene in each sample using
featureCounts (Liao et al. 2014) in reference to 34,211 sorghum
gene models in Sb.ver3.1 (Supplementary Table S5). The read
count matrix was then employed for differential gene expres-
sion analysis using the R package edgeR v.3.22.5 (Robinson
et al. 2010). In order to improve sensitivity, only genes with a
count-per-million (CPM) value >1 in at least three libraries
were used for gene expression analysis. The filtered read count
matrix was normalized for compositional bias between librar-
ies using the trimmed means of M values (TMM) method, and
DEGs were identified from pairwise comparisons of samples.
Principal component and hierarchical clustering analyses were
performed to assess the reliability of RNA-seq data. Genes with
an adjusted p-value (q-value) � 0.05 and an absolute value of
log2 fold changes (FC) � 1 were considered differentially
expressed. We identified the DEGs that lie within 1 LOD of the
physical position of the tillering QTL peak in the S. bicolor refer-
ence genome.

Co-expression cluster analysis and GO
enrichment analysis
DEGs (Supplementary Table S6) were subjected to co-expression
cluster analysis, both among species and between developmental
stages, using the R package coseq v1.5.2 (Rau and Maugis-
Rabusseau 2017). The RPKM (Reads Per Kilobase of transcript per
Million mapped reads) values for all DEGs were extracted and
used as input for co-expression cluster analysis. Briefly, log CLR-
transformation and TMM normalization were applied to the gene
expression matrix to normalize the expression of genes, and the
K-means algorithm was chosen to detect the co-expressed clus-
ters across all samples. The K-means algorithm was repeated 30
times in order to determine the optimal number of clusters. The
resulting number of clusters in each run was recorded, and then
the most parsimonious cluster partition was selected using an
adjusted random index (compare ARI function in coseq).
Statistically enriched (adjusted p-value � 0.05) gene ontology
(GO) terms for DEGs between pairwise comparisons, or of genes
assigned to each co-expression cluster, were identified using sin-
gular enrichment analysis (SEA) in AgriGO v2.0 with the S. bicolor
v2.1 genome sequence as a background (Tian et al. 2017). The
most statistically enriched GO terms were plotted in ggplot2
(Wickham 2016) for visualization.

Data availability
Seeds are available upon request. RNA-seq data are available in
the Sequence Read Archive (SRA) at GenBank under accession
PRJNA622506. Supplementary material, including the phenotype
data and the binned genotype data used for QTL mapping can be
found in Supplementary Tables S7–S12 and in the figshare proj-
ect at https://figshare.com/projects/Integration_of_high-density_
genetic_mapping_with_transcriptome_analysis_uncovers_numer
ous_agronomic_QTL_and_reveals_candidate_genes_for_the_con
trol_of_tillering_in_sorghum/86396. The authors affirm that all
data necessary for confirming the conclusions of the article are
present within the article, figures, and tables.

Results
Construction of genetic maps using bin mapping
After quality filtering, 360,118, 156,962, and 261,448 SNPs were
retained for bin mapping in the 2014-GH, 2016-W, and 2017-S
populations, respectively (Supplementary Table S2). In the RILs
assessed in the 2016-W and 2017-S field trials, we detected 7439
and 6928 breakpoints from 182 and 170 RILs with an average of
4.09 and 4.08 breakpoints per chromosome per RIL, respectively.
In the greenhouse experiment, there were 7186 breakpoints in
171 RILs with an average of 4.20 breakpoints per chromosome per
RIL. A total of 3803, 3666, and 3652 bin markers were obtained
from grouping the filtered SNPs sites for the 2014-GH, 2016-W,
and 2017-S field experiments, respectively. After removing dupli-
cate markers and double crossovers, the genetic maps included
1934, 1915, and 1906 bin markers from the 2014-GH, 2016-W, and
2017-S experiments, respectively, and the average physical
length of the bins per chromosome was �180 kb, ranging from
10 kb to 17 Mb (Supplementary Table S2). The total genetic dis-
tance of the bin map across the three trials averaged 875 cM,
with �3.6 cM per bin. The average retained heterozygosity, a
measurement based on the proportion of heterozygous bin
markers, was 16%. The recombination bin map for the common
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170 RILs from the 2016-W and 2017-S experiments is shown in
Supplementary Figure S2.

Segregation distortion
The physical distribution of segregation distorted bin markers
was visualized by plotting the physical bin marker positions ver-
sus the associated p-value (converted in terms of negative loga-
rithm with a base of 10) for the 170 common RILs from the 2016-
W and 2017-S field experiments (Supplementary Figure S3). A
chi-squared test was used to calculate the deviation from the
expected Mendelian ratio (1:1) for each bin marker. Distorted
markers (deviation at 0.1% [p< 0.001]) were distributed across 8
of the 10 chromosomes. The distorted regions on chromosomes 2
(peak at 65 Mb) and 5 (peak at 12.9 Mb) are enriched for S. propinq-
uum alleles, whereas the highly distorted regions on chromo-
somes 1 (peak at 62.5 Mb), 4 (peak at 66.1 Mb), 6 (peak at 0.7 Mb),
and 10 (peak at 60 Mb) are enriched for S. bicolor alleles (Table 1).

Phenotype and QTL analysis using the high-
density bin map
Tillering:
S. propinquum produced a maximum of 16 tillers, while Tx7000
produced 0 to 4 tillers, in the field. (Table 2). In the greenhouse, S.
propinquum produced 1 or 2 tillers, but Tx7000 produced no tillers.
The average tiller number in the RIL population in the field trials
was 1 (2016-W) and 5 (2017-S), with a maximum of 27. In all three
experiments, tillering was positively skewed (skewness � 1)
(Supplementary Figure S4A). Two QTL for tillering on chromo-
somes 1 and 7 were detected in both field trials (Table 3). QTL
mapped for tillering using the BLUPs from the combined field
environments were also detected on chromosomes 1 and 7 with
peaks at 15.86 and 8.36 Mb (Figure 1), respectively, that together
explained 31% of the phenotypic variation. These QTL
(qTN1.blup and qTN7.blup) had an average negative additive ef-
fect of �0.54, indicating that the Tx7000 alleles negatively influ-
ence tillering. In the greenhouse, tillering QTL (qTN3.14GH and
qTN9.14GH) were detected on chromosomes 3 and 9 with peaks
at 62.01 and 45.79 Mb that together explained 31% of the varia-
tion.

Height:
Across the three experiments, S. propinquum was taller (mean ¼
227 cm) than Tx7000 (mean ¼ 96 cm), and the average plant
height of the RIL population was 176 cm, ranging from 10 to
439 cm (Table 2). Plant height showed a fairly symmetrical distri-
bution (skewness < 1) in the 2014-GH (Supplementary Figure
S1C) and in the 2017-S experiments (Supplementary Figure S4B).

In 2016-W, plant height was bi-modally distributed
(Supplementary Figure S4B). Common QTL for height were
detected on chromosomes 7 and 9 in the field trials. Similarly,
the QTL for height using BLUP values were located at 59.83 and
57.05 Mb, spanning 300 kb and 1.1 Mb intervals (qHT7.blup,
qHT9.blup, respectively) (Table 3 and Figure 1). The BLUP sum-
mary explained 39.1% of the phenotypic variation. These QTL
had an average negative additive effect of �17.3, indicating that
Tx7000 alleles negatively influence height. In the greenhouse, the
same QTL peaks for height were detected at 59.83 Mb (chromo-
some 7) and 56.68 Mb (chromosome 9), spanning 950 kb and
2.12 Mb, respectively. The two QTL explained at total of 28% of
the phenotypic variance.

Stem diameter:
Across the two field sites, S. propinquum had a smaller SD (mean
¼ 1.40 cm) than Tx7000 (mean ¼ 1.85 cm). The average SD across
the RIL population was 1.73 cm, and ranged from 0.2 to 4.06 cm
(Table 2). In the greenhouse, SD was smaller than that observed
in the field, with S. propinquum stems measuring an average of
0.92 cm, Tx7000 measuring an average of 1.14 cm, and a popula-
tion mean of 0.93 cm (range of 0.1-2.5). SD displayed a normal
distribution in all experimental trials (Supplementary Figures
S1C and S4C). QTL for SD differed by environment. In the 2016-W
experiment, QTL were detected on chromosomes 7 and 8
(qSD7.16W, peak at 53 Mb; qSD8.16W, peak at 60.43) (Table 3 and
Figure 1). Together, these QTL explained 21.4% of the phenotypic
variation with positive additive effects, indicating that Tx7000
alleles positively influenced SD. In the 2017-S experiment, QTL
on chromosomes 3, 7, and 9 were detected (qSD3.17S, peak at
62.64 Mb; qSD7.17S, peak at 4.78 Mb; and qSD.9.17S, peak at
48.32 Mb). These QTL together explained 36.5% of the phenotypic
variation. The QTL on chromosomes 7 and 9 had positive additive
effects (0.24) while the QTL on chromosome 3 had a negative ef-
fect (�0.13). The overlapping QTL on chromosome 7 between the
2016-W and 2017-S experiments ranged from 8.06 to 58.54 Mb
and 3.22 to 58.69 Mb, respectively, but the location of the QTL
peak differed between experiments (53 Mb in 2016-W and 4.78 Mb
in 2017-S). The maximum QTL peaks for SD using the BLUP val-
ues were located on chromosomes 7 and 8 (qSD7.blup peak at
14.5 Mb, qSD8.blup peak at 59.4 Mb) and explained 23% of the
phenotypic variation with additive effects indicating that Tx7000
alleles had a positive effect on SD. With a similar effect, two QTL
for SD were detected on chromosomes 7 and 8 in the greenhouse
experiment (qSD7.14GH peak at 59.9 Mb, qSD8.14GH peak at
62.4 Mb), and together they explained 21% of the phenotypic vari-
ation.

Table 1 Bin markers with highly distorted segregation ratios on 8 of the 10 chromosomes

Distorted marker characteristics

Chromosome* Number of distorted markers S. propinquum S. bicolor Average marker ratio (SP: SB) Region (Mb) Peak (Mb)

1 98 — 98 21:103 17.1–77.0 62.5
2 60 63 — 97:36 59.8–70.0 65.0
3 4 — 4 49:83 42.8–44.5 —
4 62 — 62 32:92 57.4–67.5 66.1
5 34 34 — 95:36 5.7–61.8 12.9
6 52 — 52 15:101 0.91–50.1 0.7
7 58 — 58 47:91 0.27–58.5 21.2
8 0 — 0 — — —
9 20 — 20 46:86 0.99–56.9 56.8
10 73 — 73 50:89 0.68–61.0 60.0

* In table 1, bin markers that deviated from an expected Mendelian ratio (1:1) were considered to be distorted.
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Table 2 Summary of the trait data for the RIL mapping population compared to parental performance in Watkinsville, GA (2016),
Stillwater, OK (2017) and in the Greenhouse, Morgantown, WV (2014)

Parameter Tiller number Height (cm) Stem Diameter (cm) Biomass (kg plant-1) Flowering time Aerial branching

Watkinsville, GA (2016)
S. propinquum (6sd) 10.4 (5.8) 263 (23.2) 1.44 (0.65) 1.14 (0.13) — —
Tx7000 (6sd) 0.5 (0.54) 99.4 (19.1) 1.91 (0.68) 0.07 (0.02) — —
Population mean (6sd) 1.1 (2.1) 220 (73) 1.71 (0.42) 0.31 (0.30) — —
Population range 0–14 10–439 0.23–3.0 0.01–2.79 — —
Skewness 1.09 �0.25 0.07 2.7 — —
Stillwater, OK (2017)
S. propinquum (6sd) 12.08 (4.2) 166.79 (57.3) 1.35 (0.29) 0.33 (—) NF 0
Tx7000 (6sd) 1.75 (1.13) 107.3 (45.84) 1.78 (0.35) 0.042 (—) 71.2 (5.84) 2.33 (2.18)
Population mean (6sd) 5.48 (2.4) 148.75 (37.28) 1.75 (0.38) 0.22 (0.12) 79.9 (9.83) 6.32 (5.32)
Population range 0–27 22.8–314.9 0.2–4.06 0.04–0.72 42–103 0–49
Skewness 0.97 0.08 0.24 1.1 �0.39 0.79
Morgantown, WV (2014)
S.propinquum (6sd) 0.57 (1.11) 252 (17.2) 0.92 (0.04) — NF —
Tx7000 (6sd) 0 84.1 (4.70) 1.14 (0.13) — 50 —
Population mean (6sd) 0.53 (0.62) 160.2 (41.2) 0.93 (0.22) — 88.0 (15.1) —
Population range 0–9 10–339 0.1–2.5 — 57–145 —
Skewness 1.85 �0.04 0.16 — 0.45 —

NF, not flowered; ‘’, not measured.

Table 3 QTL identified in the RIL population from high density bin mapping using least square means at each environment and across
two field experiments based on Best Linear Unbiased Prediction (BLUP)

Trait QTL
name

Chr Position
(cM)

Bin
(Max LOD)

LOD
score

Method P-value PVE Additive Start
(Mb)

Peak
(Mb)

End
(Mb)

TN qTN1.16W 1 49.22 S01_16769238 3.99 CIM — 9.79 �0.44 15.69 16.77 22.01
qTN7.16W 7 38.96 S07_8400259 3.90 CIM — 10.57 �0.45 5.75 8.40 21.25
qTN1.17S 1 47.18 S01_15863892 5.88 CIM — 13.10 �0.91 15.20 15.86 17.06
qTN7.17S 7 49.00 S07_5453335 9.17 CIM — 17.08 �1.10 8.82 21.25 52.99
qTN1.blup 1 47.18 S01_15863892 6.76 CIM — 14.11 �0.49 15.49 15.86 17.06
qTN7.blup 7 46.23 S07_8357246 8.14 CIM — 17.22 �0.57 5.68 8.36 21.25
qTN3.14GH 3 93.68 S03_62007544 4.50 MQM — 14.07 0.25 58.98 62.01 62.80
qTN9.14GH 9 43.56 S09_45786397 5.65 MQM — 17.15 �0.27 10.27 45.79 48.99

HT qHT7.16W 7 58.26 S07_59741453 14.68 MQM — 29.87 �35.76 59.51 59.74 59.97
qHT9.17W 9 64.83 S09_56980787 4.03 MQM — 7.38 �18.14 55.78 56.98 58.63
qHT7.17S 7 66.19 S07_59741453 11.06 MQM — 24.87 �19.93 59.64 59.74 59.96
qHT9.17S 9 71.81 S09_56983991 4.20 MQM — 8.68 �11.98 56.54 56.98 57.68
qHT7.blup 7 66.59 S07_59830664 14.47 MQM — 30.55 �22.36 59.66 59.83 59.96
qHT9.blup 9 72.19 S09_57050030 4.71 MQM — 8.58 �12.15 56.54 57.05 57.68
qHT7.14GH 7 63.50 S07_59828717 8.47 MQM — 20.18 �19.23 59.01 59.83 59.96
qHT9.14GH 9 69.44 S09_56682751 3.51 MQM — 7.86 �11.99 55.55 56.68 57.67

SD qSD7.16W 7 43.31 S07_53001009 4.48 MQM — 10.27 0.10 8.06 53.00 58.54
qSD8.16W 8 64.16 S08_60425472 4.85 MQM — 11.14 0.10 58.23 60.43 60.50
qSD3.17S 3 97.13 S03_62635193 5.02 MQM — 12.91 �0.13 60.95 62.64 66.21
qSD7.17S 7 35.29 S07_4784055 4.38 MQM — 12.08 0.13 3.22 4.78 58.69
qSD9.17S 9 46.97 S09_48316584 4.10 MQM — 11.44 0.11 45.98 48.32 48.99
qSD7.blup 7 47.88 S07_14562005 6.11 MQM — 15.20 0.10 4.71 14.56 54.50
qSD8.blup 8 63.60 S08_59415843 3.46 MQM — 8.26 0.07 59.23 59.42 61.02
qSD7.14GH 7 63.92 S07_59931057 5.03 MQM — 13.20 0.06 59.01 59.93 60.24
qSD8.14GH 8 82.25 S08_62415250 3.21 MQM — 8.31 0.05 62.06 62.42 62.61

B qB6.16W 6 2.27 S06_516090 3.20 MQM — 8.65 �291.90 0.08 0.52 43.65
qB7.16W 7 58.00 S07_59655698 3.40 MQM — 9.02 �7250.60 59.51 59.65 59.74
qB6.17S 6 3.51 S06_866023 4.18 MQM — 10.54 �69.21 0.54 0.87 22.57
qB7.17S 7 66.59 S07_59830664 3.62 MQM — 9.06 �31.03 4.50 59.83 60.07

FL qFL2.17S 2 85.93 S02_73306588 5.49 MQM — 15.23 �4.58 72.64 73.31 74.06
qFL3.17S 3 99.52 S03_63319665 4.28 MQM — 11.72 �4.14 60.42 63.32 64.02
qFL9.17S 9 78.21 S09_57905603 4.75 MQM — 13.58 �4.63 57.57 57.91 59.27
qFL6.14GH 6 12.60 S06_39972722 3.08 IM 0.06 0.38 39.97 46.02

ARB qARB5.17S 5 41.86 S05_59415863 4.78 MQM — 12.29 �1.64 8.27 59.42 60.91
qARB6.17S 6 6.00 S06_2276742 8.64 MQM — 21.90 3.89 0.89 2.28 22.57
qARB7.17S 7 66.19 S07_59741453 3.52 MQM — 9.44 �0.57 57.59 59.74 62.52

The QTL name designation starts with the letter q and trait abbreviation, followed by chromosome number (1 to 10), two digits of the year in which phenotyping
was conducted (2014, 2016, or 2017), and ends with the location abbreviation (W—Watkinsville, GA; S—Stillwater, OK; and GH—Greenhouse, Morgantown, WV).
QTL detected with the BLUP data were suffixed with BLUP instead of year and location designation. HT, Height; TN, Tiller number; SD, Stem diameter; B, Biomass;
FL, Flowering time; ARB, Aerial branching. LOD logarithm of odds, QTL analysis method (MQM, CIM, or IM), PVE, phenotypic variation explained.
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Biomass:
The average plant biomasses of S. propinquum and Tx7000 were
1.14 kg and 0.07 kg in 2016-W, and 0.33 kg and 0.042 kg in 2017-S,
respectively (Table 2). Biomass was not measured in the green-
house trial. Biomass of the RIL population was positively skewed
(skewness > 1, Supplementary Figure S4D), ranging from 0.01 to
2.79 kg plant�1 with a mean of 0.27 kg plant�1 across the two field
environments. Common QTL for biomass were detected on chro-
mosome 6 (qB6.16W, peak at 0.52; qB6.17S, and peak at 0.87) and
chromosome 7 (qB7.16W, peak at 58.63; qB7.17S, peak at 59.83) in
the field experiments and explained �18% of the phenotypic vari-
ance (Table 3 and Figure 1). In both field trials, the Tx7000 alleles
had a negative effect on biomass; however, we observed a greater
effect in 2016-W.

Flowering time:
The number of days to flowering was recorded for the 2014-GH
experiment and the 2017-S field trial. Tx7000 flowered after
50 days in the greenhouse, and 71 days in the 2017-S field study,
while S. propinquum did not flower in either location (Table 2). For
the plants that flowered (80% of the population, on average),
flowering time was normally distributed and varied from 42 to
145 days with a mean of 84 days (Table 2, Supplementary Figure

S4E). In the 2017-S field trial, three QTL for flowering time were
identified on chromosomes 2 (qFL2.17S, peak at 73.31 Mb), 3
(qFL3.17S, peak at 63.32 Mb), and 9 (qFL9.17S, peak at 57.91 Mb),
and explained 40.5% of the phenotypic variation (Table 3 and
Figure 1). In the greenhouse, a flowering time QTL was detected
on chromosome 6 (qFL6.14GH, peak at 39.97 Mb).

Aerial branching:
Aerial branching was measured only in the 2017-S field trial. S.
propinquum produced no aerial branches, while Tx7000 produced
an average of two aerial branches (Table 2). The frequency distri-
bution for aerial branching was positively skewed, ranging from 0
to 49 with a mean of 6.3 (Supplementary Figure S4F). Three QTL
for aerial branching were identified, one each on chromosomes 5
(qARB.17S. peak at 59.42), 6 (qARB.17S, peak at 2.28), and 7
(qARB.17S, peak at 59.74). These QTL explained 43.6% of the vari-
ation. The QTL on chromosomes 5 and 7 had average negative
effects of -1.1 while the QTL on chromosome 6 had positive
effects (Table 3 and Figure 1).

Tiller bud transcriptome analysis
The principal component and hierarchical clustering analyses
confirmed that biological replicates were highly correlated

Figure 1 Genetic map containing QTL locations for six traits from 170 common RILs studied at both field locations. The map position in cM is shown on
the y-axis. Horizontal lines on each chromosome represent a single bin marker while empty spaces represent regions containing heterozygous or
duplicate markers or lacking polymorphic markers. Vertical colored lines show the locations of QTL, with the color codes for each trait indicated in the
inset. Black dots within QTL indicate the position of the QTL peak.
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among the developmental stages and across the genotypes
(TX7000 and S. bicolor subsp. verticilliflorum) indicating the reliabil-
ity of RNA-seq data (Supplementary Figure S5). Differential ex-
pression analysis of tiller bud transcriptomes identified 6189
DEGs from the pairwise comparison between Tx7000 and S. bicolor
subsp. verticilliflorum across a developmental series (10, 12, and 14
DAP) and within species between developmental stages
(Supplementary Table S6, Figure 2A). K-means clustering of the
6189 genes identified seven co-expression clusters (Figure 2B).
Clusters 4, 5, and 7 showed similar patterns of increased expres-
sion in Tx7000, with consistently lower expression in S. bicolor
subsp. verticilliflorum across the same developmental stages, sug-
gesting that these clusters contain genes involved in the acquisi-
tion of dormancy. In contrast, an increased expression level was
observed in clusters 1, 2, 3, and 6 in S. bicolor subsp. verticilliflorum,
suggesting that these clusters contain genes that may promote
tiller bud elongation. GO enrichment analysis identified several
distinct regulatory processes associated with these clusters
(Figure 2C). Cluster 2, which is upregulated in S. bicolor subsp. ver-
ticilliflorum, is enriched for genes involved in cellular and meta-
bolic processes, while cluster 5, which is upregulated in Tx7000,
is enriched for regulation of gene expression, and other regula-
tory functions. Cluster 7 was enriched for ADP, carbohydrate, nu-
cleoside, and nucleic acid binding transcription factor activity
involved directly or indirectly in regulating gene expression that
controls bud growth or dormancy. The genes in clusters 1, 3, 4,
and 6 were poorly annotated, so no significant GO terms were
detected.

Of the 6189 DEGs, 409 were located within our tillering QTL
windows. Among DEGs located in tillering QTL, 33% belong to co-
expression clusters 2, 3, and 6 (upregulated in S. bicolor subsp. ver-
ticilliflorum tiller buds), and �67% belong to co-expression clusters
4, 5, and 7 (upregulated in Tx7000 tiller buds). In the QTL on chro-
mosome 1, there are 93 DEGs, of which 39 belong to clusters 2, 3,
and 6 and 54 belong to clusters 4, 5, and 7. In the QTL on chromo-
some 7, the majority of DEGs (�75%) belong to clusters 4, 5, and
7, indicating increased expression in dormant buds. Two QTL
were identified in the greenhouse experiment on chromosomes 3
and 9. Within these QTL there are 186 DEGs, of which �34% show
increased expression in S. bicolor subsp. verticilliflorum tiller buds,
while the remaining 66% are upregulated in Tx7000 tiller buds.

We compared the genes in our co-expression clusters to a pre-
vious study that evaluated Phytochrome B (PhyB)-mediated regu-
lation of tiller bud growth in sorghum (Kebrom and Mullet 2016).
From differential expression analysis comparing wild type (tiller-
ing) to those of a phyB mutant (lacking tillers), the authors delin-
eated several genes that appear to either promote or inhibit tiller
bud initiation and elongation. Of the 78 DEGs presented in detail
in Kebrom and Mullet, 48 were differentially expressed at 14 DAP,
the time point at which Tx7000 buds acquired dormancy in our
study (Figure 2A), and 39 of those displayed differential expres-
sion in the same direction (up or down-regulated). Seven of the 9
genes that displayed opposing expression patterns to those ob-
served in Kebrom and Mullet are hormone related genes with dif-
ferential expression during the early stages of bud development
(up to 6 DAP), and therefore the discrepancy may be due to the
differences in timing of the expression analysis (6 DAP vs 14
DAP).

Discussion
In this study, we produced a high-density genetic map in sor-
ghum composed of �1920 bin markers spanning a genetic map

length of �875 cM constructed via low-coverage sequence-based
genotyping. We used this population to identify QTL for tillering
and other important sorghum traits, demonstrating its value as
an important resource for the sorghum community. In compari-
son to previous studies that used low-density maps based on con-
ventional marker systems such as restriction fragment length
polymorphisms (RFLPs), amplified fragment length polymor-
phisms (AFLPs), and simple sequence repeats (SSRs) (Lin et al.
1995; Hart et al. 2001; Bowers et al. 2003; Kong et al. 2013), the ge-
netic map produced here consisted of �1.6 segregating markers
per cM.

Quality and accuracy of bin mapping
Plant height has been extensively studied in several sorghum
QTL and genome wide association studies (Brown et al. 2008;
Morris et al. 2013; Higgins et al. 2014), and all have pointed toward
four major dwarfing genes (Dw1, Dw2, Dw3, and Dw4) as the key
contributors, either singly or in combinations, to the small stat-
ure of domesticated sorghum (Quinby and Karper 1954; Lin et al.
1995; Hart et al. 2001; Li et al. 2015; Hilley et al. 2016, 2017). In our
study, the two major QTL for plant height that were identified in
all experiments overlapped with Dw3 on chromosome 7
(qHT7.blup: 59.83 Mb; Dw3: 59.82 Mb) and Dw1 on chromosome 9
(qHT9.blup: 57.05 Mb; Dw1: 57.04 Mb). Similarly, in the 2017 field
trial, a flowering QTL was identified on chromosome 3 spanning
a 4.0 Mb region (Chr03: 60.42 - 64.02 Mb) that contains a known
member of the Flowering locus T (FT) family of flowering genes
(Sobic.003G295300 at Chr03: 62.74 Mb; SbFT8; Wolabu and Tadege
2016), demonstrating the efficiency and accuracy of the bin map-
ping method used in this study. This result also indicates the de-
gree to which different environments and/or different gene
combinations can affect which contributing genes can be uncov-
ered in a QTL study for even a highly penetrant trait.

Segregation distortion
We identified several regions of highly distorted segregation, indi-
cating gametic, zygotic, or inadvertent experimental selection
during the formation of our RIL population. Two of the most dis-
torted regions were on chromosomes 1 and 6, both showing bi-
ased transmission of S. bicolor alleles. On chromosome 1, the
distal end was significantly enriched for S. bicolor alleles with an
average marker ratio of 1:5 (SP: SB). This distorted region contains
the maturity gene Ma3 which is located near the distortion peak
(phyB, Sobic.001G394400, Chr01: 68 Mb) (Supplementary Figure
S3). The distorted region on chromosome 6 includes a large het-
erochromatic block (�50 Mb in size) containing the maturity gene
Ma6 (GDH7, Chr06: �0.7) near the distortion peak, in addition to
the SbFT12 gene (Chr06: Sobic.006G047700 at 33.5 Mb), and Ma1
(SbPRR37 located at Chr06: 40.2 Mb). It is known that three
maturity genes (Ma1 [(SbPRR37, Chr06: 40.28 - 40.29 Mb]), Ma2
[(Chr02: Sobic.002G302700 at 67.8 Mb]), and Ma3 [(phyB,
Sobic.001G394400, Chr01: 68.03 Mb]) are responsible for variation
in flowering time among Milo genotypes (Quinby 1967; Casto et al.
2019). In addition, SbFT12 is a floral suppressor during longer
days (Cuevas et al. 2016), and is therefore expected to confer
short-day length dependent flowering in S. propinquum-derived
germplasm. Because the RIL population was advanced in a tem-
perate latitude, it is likely that S. bicolor haplotypes were predomi-
nantly selected because of their ease of advancement, thereby
causing segregation distortion of the regions related to photope-
riod control of flowering.

Chromosomes 2 and 5 contained large segments demonstrat-
ing preferential transmission bias of S. propinquum alleles. The

8 | G3, 2021, Vol. 11, No. 2



S. bicolor (Tx7000) S. bicolor subsp. verticilliflorum

8 10 12 14 16 8 10 12 14 16

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

Days after planting (DAP)

bu
d 

si
ze

 (m
m

)

Bud

L1
L2
L3

A

●●

●●

●

●
●

● ● ●

● ● ●

C3

●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●●
●●
●●●●●●● ●●

●

●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●
●●
●
●
●●

●

●
●●

●●

●

●●●●●

●●●●●

●●●

●●●●●

●●

●

●●

●●●●●●●

●●●●●

●●●●●●●●

●

●

●

●●

●

●●●
●

●

●

●

●●

●●●●

●●●●●●●●

●
●

●
●●
●●

●

●

●

●●

●●

●●

●

●●●●●●

● ● ●

● ● ●

C2

●

●
●●●●●●●●
●
● ●●●●●

●

●●●

●

●●●●
●● ●

●

● ● ●

C5

●●●●●●●● ●●●●●●●●
●
●●●●
●
●● ●●

●

●●●

●

●
●
●●●●●

●

●

●

●

●●●

●●

●●

●

●
●
●

●

●●

●

●
●
● ●●●●

●

●●●●●●●●● ●●●●
●
●●●

●

●

●

●●●●●

●●

●
●●●

●

●

●

●●●●●●●●

●
●

●●

●

●

●

●●● ● ●

●
● ●

C6

●

●
●
●●●●
● ●

●

● ● ●

● ● ●

C4

0.00

0.05

0.10

0.15

0.20

● ●

●

●

●
●

● ● ●

●
● ●

C1

0.00

0.05

0.10

0.15

0.20

●●●●
●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●

●
●●●●●●●●●●
●
●●●●●
●●●●●●●
●
●●●
● ●●●●●●

●
●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●
●●●●●●
●
●

●

●●●●●●●●●●●●

●

●●
●●●●●●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●

●

●●●●

●

●●

●

●●

●●

●●●●●

●

●

●

●●●●●●●●
●

●●●●●●●●●
●●●●●●● ●●●●●

●
●●●●●●●●
●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●

● ● ●
● ● ●

C7

Tx
10

Tx
12

Tx
14

Sv
10

Sv
12

Sv
14

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e 

ex
pr

es
si

on
 p

ro
fil

es

Line and 
time point

TX10
TX12
TX14
SV10
SV12
SV14

B

Tx
10

Tx
12

Tx
14

Sv
10

Sv
12

Sv
14

Tx
10

Tx
12

Tx
14

Sv
10

Sv
12

Sv
14

C
2

C
5

C
7

transferase activity
protein phosphorylation

protein kinase activity
nucleotide binding
nucleoside binding

carbohydrate derivative binding
ADP binding

oxidation−reduction process
organic substance biosynthetic process

structural constituent of ribosome
nitrogen compound metabolic process

translation
ribonucleoprotein complex

single−organism metabolic process
organonitrogen compound metabolic process

macromolecule biosynthetic process
gene expression

regulation of transcription, DNA−templated
regulation of gene expression

transcription factor activity, DNA binding

2
4
6
8
10

-logFDR value

C

[1630][7] [92]

[101] [352] [303]

[3704]

Figure 2 Transcriptional profile of tiller buds in S. bicolor Tx7000 and S. bicolor subsp. verticilliflorum. (A) Length of tiller buds in the first (L1), second (L2),
and third (L3) leaf axis of Tx7000 and S. bicolor subsp. verticilliflorum at 8, 10, 12, 14, and 16 days after planting (DAP). Buds from developmental stages at
10, 12, and 14 DAP were collected for RNA-seq transcriptome profiling. Bars for each stage represent the mean 6 standard error of eight replicates. (B)
Seven co-expression clusters (C1—C7) were identified from the 6189 genes that were differentially expressed across the developmental series in S.
bicolor—Tx7000 and S. bicolor subsp. verticilliflorum. Connected red lines correspond to the mean expression profiles for each cluster. The vertical bars
define the upper and lower quartile, and the dots outside the bars indicate outliers. The number of genes per cluster is indicated within brackets in the
top right corner of each box. (C) Over-represented GO terms in the co-expression clusters with false discovery rate (FDR) � 0.01 (-logFDR � 2) were
considered as significantly enriched.
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distorted region on chromosome 2 harbors the maturity gene,
Ma2, near the peak of distortion (Chr02: Sobic.002G302700 at
67.8 Mb, Casto et al. 2019). Interestingly, the combination of Ma2
in its recessive state with Ma1 is known to promote early flower-
ing in long days in sorghum lines that are photoperiod sensitive
(Quinby 1967). Therefore, it is likely that the S. propinquum-type
lines that have lost day-length dependence were selected during
RIL population development, in combination with Ma1 on chro-
mosome 6. If the cause of distortion relates to overall seedling or
adult-plant vigor, a logical reason for inadvertent human selec-
tion during RIL population development, these S. propinquum
regions may have value for S. bicolor improvement.

QTL mapping
QTL for plant height were detected on chromosomes 7 and 9 in
all experimental trials, indicative of strong genetic controls for
this trait (Figure 1). On chromosome 7, the QTL overlaps with the
sorghum dwarfing gene Dw3 (Sobic.007G163800) and on chromo-
some 9 with Dw1 (Sobic.009G229800). Dw3 is a homologue of
maize Br2, pearl millet d2, and Arabidopsis PGP1, and encodes a
protein similar to ATP-binding cassette transporters of the multi-
drug resistant (MDR) class of P-glycoproteins (P-GPs) known to
mediate polar auxin transport (Multani et al. 2003, Parvathaneni
et al. 2013, 2019). Dw1 encodes a putative membrane protein that
is known to reduce cell proliferation activity in the internodes
(Hilley et al. 2016; Yamaguchi et al. 2016). Furthermore, the flow-
ering QTL on chromosome 9 in the 2017-S field trail overlaps with
Dw1. The colocalization of the flowering and height QTL on chro-
mosome 9 mirrors that observed for the association that can be
fractured between flowering time and plant height during map-
ping of sorghum conversion lines (Thurber et al. 2013), and there-
fore it is likely that the two QTL are controlled by different genes
rather than an outcome of pleiotropy.

Unlike height, where common QTL were identified in all ex-
perimental trials, stem diameter demonstrated significant phe-
notypic plasticity in response to variable environmental
conditions (Figure 1). Only one common QTL was identified on
chromosome 7 across all experimental trials (qSD7.14GH,
qSD7.16W, qSD7.17S); however, the QTL from the field experi-
ments spanned a large chromosomal region, and their peaks
were in different locations (qSD7.16W at 53 Mb; qSD7.17S at 4.78)
(Table 3). The remaining QTL (qSD8.16W, qSD3.17S, qSD9.17S,
and qSD8.14GH; Table 3) were unique to each environment.
Unique QTL were also identified for tillering in the greenhouse
experiment (qTN3.14GH, qTN9.14GH). There is a known non-
causal negative relationship between SD and tillering that is
likely due to common hormonal control (Alam et al. 2014).
Therefore, the significant variation in tillering observed among
the experiments may explain the observed phenotypic plasticity
and numerous unique QTL for SD.

Similarly, unique QTL were identified for flowering time
(Figure 1). The novel flowering time QTL qFL3.17S encompasses
433 annotated genes, including a gene that encodes a
phosphatidylethanolamine-binding protein (PEBP) domain char-
acteristic of members of the “FT” family of flowering genes
(Sobic.003G295300; SbFT8; Chr03: 62.74 Mb, Wolabu and Tadege
2016). In response to short days, PEBP domain-containing genes
promote flowering in photoperiod-sensitive sorghum genotypes
(Wolabu and Tadege 2016). Wolabu and Tadege (2016) demon-
strated accumulation of SbFT1, SbFT8, and SbFT10 transcripts in
the leaf near the critical time of floral transition, suggesting that
these three genes could be the sources of sorghum florigen, a
flowering hormone. It is possible that SbFT8 and Ma2 are working

with other regulatory factors to affect the expression of Ma1 dur-
ing floral initiation (Casto et al. 2019). These results suggest the
usefulness of this population in identifying genetic regulators of
phenotypic plasticity to more fully delineate the genotype–phe-
notype relationship in diverse environmental conditions.

Candidate genes for tillering in sorghum
To further evaluate the effectiveness of our population in identi-
fying loci associated with important agronomic traits in sorghum,
we combined QTL mapping with RNA-seq analysis during early
tiller bud development. In addition, to focus our analysis on DEGs
likely to be involved in tillering, we compared our results to those
of Kebrom and Mullet (2016) in which the authors evaluated
Phytochrome B (PhyB)-mediated regulation of tiller bud growth in
sorghum. In the Kebrom and Mullet study, during the period
from seed germination to 6 days after planting, the wild-type and
phyB mutant displayed similar patterns of bud formation and
growth. During this period, genes related to cytokinins, gibberellic
acid, and sugar transporters were differentially expressed
(Kebrom and Mullet 2016). After 6 days, during the onset and de-
velopment of bud dormancy, genes such as those encoding
Dormancy Associated Protein 1 (DRM1, a well-known marker of
bud dormancy), other dormancy related genes (e.g., NAC domain-
containing proteins), and various transcription factors
(WUSCHEL and Bellringer) were upregulated in dormant buds,
while ACC oxidase, an ethylene responsive gene, and several
early nodulin genes were downregulated.

Our results paralleled those of Kebrom and Mullet, particu-
larly their findings during the onset and development of bud dor-
mancy. There are 93 DEGs in the QTL on chromosome 1, of which
28 belong to cluster 2 and 49 belong to cluster 7, the most notable
of which is DRM1 (Sobic.001G191200 at 16.9 Mb). DRM1 is upregu-
lated �2.3-fold in Tx7000 tiller buds and is likely the gene control-
ling this QTL. In the QTL on chromosome 7, the majority of DEGs
(�75%) belong to clusters 4, 5, and 7 and they include numerous
transcription factors such as BTB-POZ, WRKY, and AP2/ERF. This
QTL region also includes WUSCHEL (Sobic.007G087600, co-
expression cluster 2), a homeobox transcription factor that is
upregulated �2.7-fold in S. bicolor subsp. verticilliflorum tiller buds
and is known to be a positive regulator of tiller growth in rice
(Wang et al. 2014). Other DEGs from co-expression cluster 2 that
lie within QTL identified in at least one of the environments in-
clude genes involved in the generation of cytokinins (CKs), which
are known to promote bud outgrowth (Müller et al. 2015), and ab-
scisic acid (ABA)-related genes that are known to repress bud out-
growth (Chatfield et al. 2000; Reddy et al. 2013). In addition, it
should be noted that there are several DEGs of unknown function
that belong to co-expression clusters 2 and 6 and are located
within the two QTL from the field trials. These DEGs are upregu-
lated in S. bicolor subsp. verticilliflorum tiller buds, and in several
cases no expression was detected in Tx7000 tiller buds. These
results demonstrate the power of combining QTL mapping with
RNA-seq for the discovery of novel genes that control a pheno-
type of interest.

Several other genes show similar patterns of expression but
are located in QTL identified from only one of the experimental
environments, suggesting that they play a role in the environ-
mental plasticity of tiller development. These genes include regu-
lators of ABA levels, transcription factors, and gibberellin-
regulated family proteins, all known to be involved in promoting
bud dormancy. Interestingly, two important transcription factor
genes, tb1 (SbTb1, Sobic.001G121600) and gt1 (SbGt1,
Sobic.001G468400), known to regulate axillary branching in

10 | G3, 2021, Vol. 11, No. 2



maize (Dong et al. 2019), were not identified as DEGs in this study;
however, there was a 1.5-fold increase in SbGt1 gene expression
in dormant buds of Tx7000 relative to elongating buds of S. bicolor
subsp. verticilliflorum, although it was not judged statistically sig-
nificant between time points. Similarly, Kebrom and Mullet did
not detect differential expression of tb1 using RNA-seq, although
qRT-PCR validation experiments detected a twofold increased ex-
pression of tb1 in the PhyB mutant.

Conclusions
As in all QTL studies with only two parents, finite progeny popu-
lation sizes, and testing across a limited number of environ-
ments, it is not expected that all contributing genetic variation
for a trait will be discovered. Therefore, it was impressive in our
analysis that several QTL were found in two or more experiments
across widely different environments and dates. For example,
QTL for plant height were detected on chromosomes 7 and 9 in
the greenhouse and in both experimental field trials. It was also
interesting that many of the 29 QTL that we found for the most
penetrant traits were associated with already-known genes. In all
of our field and greenhouse experiments, and for all traits ana-
lyzed, transgressive segregation was the rule, with progeny often
exhibiting several fold greater variation for a trait than seen
when comparing the parents. This is a routine observation in
plant genetics when crosses between domesticated and wild spe-
cies are analyzed (Lippman and Tanksley 2001; Cong et al. 2002;
Doust et al. 2004; Tanksley 2004; Mauro-Herrera and Doust 2016;
Singh et al. 2018), but it does emphasize the tremendous potential
value of this population for future studies of domestication and
crop improvement. Most exciting, many QTL were found in
regions that lack well-known genes that could account for the
detected variation. The combination of QTL mapping with RNA-
seq is a powerful approach for identifying such candidate genes.
This now-available RIL population and these results provide im-
portant targets for future study and improvement of S. bicolor.
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