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Network science has made what once seemed miracle into practical science: we can set up condi-
tions for self-building systems, and we can use their patterns of variability to identify and explain
processes underlying prospective control in biological systems.

Behavior lifts itself from a sprawling mass of random events and directs itself prospectively
toward events in the future not existing presently except as possibilities (Turvey, 1992). Possible
effects become causes for current action. This control balks ordinary cause-and-effect sequences:
organisms move themselves to seek stimuli which may never exist. Other sciences must wait for
outside forces to stimulate a system into action, but cognitive science has begged your patience for
a central article of faith: if you accept that a system can steer itself toward the future, we might find
important insights into behavior.

Biology has not discouraged this article of faith. Anticipatory, context-sensitive pragmatism is a
defining feature of life, even in brainless forms (Saigusa et al., 2008; Latty and Beekman, 2011).
Anticipation suffuses popular neo-Darwinist understandings of evolution as life tailoring itself
according to variable transmission of genotypes (see Brooks, 2005; Fodor and Piattelli-Palmarini,
2010; Griffiths and Gray, 2005; Lewontin, 1982; Smith, 2008 for widely ranging views for/against
this interpretation). Life seems different, straddling a boundary between thermodynamics and
information: thermodynamic provides the fuel, and information encodes biological particulars
into signals guiding phenotypes away from dangerous future unknowns (Rosen, 1985). We never
think of non-biological stuff interpreting anything, but if we lend biology powers of interpretation
(Dennett, 1971), then systems steering themselves toward the future might seem less mysterious.

Cognitive science leaves biology to its own mysteries, but it extends the line of credit to the
brain. Cartesian metaphors of the brain as seat of a soul-as-observer have been much maligned as
question-begging. Everyone knows to swear off this ghostly homunculus (or perhaps, for a more
modern era, “personcule”), but cognitive science still has had trouble explaining its faith in steering
toward the future.We have learned fromLashley’s (1950) futile search for specific cortical structures
storing memories and Hebb’s (1949) rephrasing of “representations” from contents of neural lock-
boxes to less offensive “fire-together/wire-together” patterns. Then again, we steer clear of vague
holism blandly allowing that “Everything might do everything.” Cognitive science has grown con-
fident carving brains and/or minds into modules, simple parts with domain-specific functions and
evolutionary roots (Pinker, 1997). The trouble with this bounty of inherited modules is threefold:
evolution does not know what purpose is Lewontin (1982), Fodor (2005) the genome carries much
more genetic material than necessary to code for proteins while also leaving much of the hard work
of building tissues to codeless, lifeless physics (Denton et al., 2003; Pearson, 2006); and brains do
not support a stable anatomical organization respecting different cognitive, perceptual or behav-
ioral domains (Graziano et al., 2002; Anderson, 2010; Hickok, 2014). This latter point requires
spirited and repeated restatement against all-too-easy intuitions to the contrary.

Network theory was born of a hope that, one day, systems steering themselves toward future
states might not require so much faith. Computer science, cybernetics and complex-systems
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theories raised fascinating new questions about the capacity of
material systems to absorb sensory inputs and develop these sen-
sory input into goal-directed behaviors (McCulloch and Pitts,
1943; Ashby, 1956). Turing (1936, 1937, 1950) led the vanguard
in asking how intelligent machines could be. Some very sim-
ple machines did literally build themselves from dead material
parts to choose sensors and learn rudimentary things about their
surroundings (Pask, 1958). They were notoriously difficult to
control and useless for our everyday purposes (Cariani, 1993).
Some engineers suggested that orderly natural systems were built
of modular parts and so that only modular systems were con-
trollable ones (Simon, 1969)—and greater financial interest went
toward building docile machines (e.g., for typing messages upon)
than in breathing life into autonomous ones. Ultimately, these
pioneering minds began to ponder whether intelligent behav-
ior might build itself out of the busy connections among many
non-intelligent component agents (Rosenblatt, 1958; Selfridge,
1959). This now-immense program of research began in fits and
starts, always looking forward to the future possibility that the
right interactive architecture might allow autonomous behavior
steering toward the future (Minsky and Papert, 1969).

Like any newborn organisms learning to toddle around, some
of these networks behaved more obediently than others. Some
behaved well according to a supervisor’s “delta rule” (Widrow
and Hoff, 1960), dutifully computing upon sensory inputs and
comparing its behavior with the engineer’s feedback. Other net-
works were moodier and acted up on their own. Without any
supervision, they began to amplify small fluctuations and share
them among local parts, producing large, coherent behaviors
that their designers had not planned. These unsupervised net-
works would not stop when they had an accurate or adaptive
response. Instead, they kept generating new structures building
on what they had done before or breaking it down. It is this
latter, unruly sort of network that might be more interesting
provided they ever learned anything. The former only acts to
follow rules, but the latter has something close to creativity in
its coordination, both attributes we find intriguing in biological
systems.

These unruly networks clamber to their feet and generate their
own large-scale behaviors using familiar methods: in the sand- or
rice-pile network, single grains dropped at regular intervals pile
up into dunes, and gradually, pile instability yields an avalanche,
and one avalanche begets another (Jensen, 1998). We find simi-
lar avalanches in artificial neural networks built on similar prin-
ciples. Neuronal avalanches appear as local field potentials in
explicitly neural networks (Beggs, 2008). Both types of avalanches
follow an inverse power-law structure consistent with “fractal”
statistics: both probability density functions of avalanches and
power spectra of avalanche time series’ power spectrum decay
slowly with increasing size or frequency, respectively. This slow
decay entails that power laws never converge and never stop
growing, suggesting that interactions among avalanches have a
rich creativity bounded only by the size of the network (Bak
et al., 1987). Of course, rice-piles are not brains and exhibit
none of the intelligence that cognitive science seeks to explain
(Wagenmakers et al., 2005). Novel work in a sort of neural net-
work exhibiting what is called “critical branching” proposes to

implicate the strength of power-law scaling of neural-spike trains
with improved memory and computing capacity (Kello, 2013;
Rodny and Kello, 2014). The self-organizing network is growing
up and developing into an intelligent animal.

Power-law structure in self-organizing networks suggests that
empirical evidence of power-law structure indicates interaction-
driven, self-organizing processes (Bak, 1996; Van Orden et al.,
2003; Friston et al., 2012). These proposals are more tantaliz-
ing in cognitive sciences than in “natural” ones, the latter being
inured to the world’s self-organization. Only in cognitive sciences
does the glow of consciousness cast shadows on “natural-ness.”
In the cognitive sciences, the rise of choice, goals, or forward-
looking pragmatism make everything seem suddenly “not so
natural” (Lewontin, 2010). Whatever “natural” is, cognitive sci-
ence deals in behaviors driven by “agents,” “selves,” or whatever
we call “personcular” ghosts. Agents stand apart from the self-
organizing world beyond in their interpretive stance, browsing
through reams of sensory codes to plot its leap forward into an
imagined future, balancing nimbly between energy-burning pro-
cess of collecting information and energy-conserving computa-
tions over that information (Brooks, 2005; Smith, 2008; Friston
et al., 2012).

To iron out the ghosts lurking in this information-
thermodynamics divide, we disregard any primitive distinction
between conservable “information” and dissipated energy. Self-
organizing networks give cognitive science two points of leverage.
First, fractal statistics in empirical data from cognitive perfor-
mance implicate similarly interactive architecture (Holden and
Rajaraman, 2012; Abney et al., 2014). Fractal statistics are not
simply concurrent with but outright predictive of cognitive per-
formance (Stephen et al., 2009; Stephen and Hajnal, 2011). Sec-
ond, given the overwhelmingly full-body evidence of fractal
statistics beyond the confines of the skull (Hausdorff, 2007),
network modeling allows us to clothe fractal systems with new
theoretical elaborations.

A crucial point for theoretical development of networks is that
our infant networks needed the “right” mix of constraints and
unsupervised randomness to exhibit interesting self-organization
(Beggs, 2008). Different interactive architectures leave networks
free to discover different response patterns—just as task con-
straints can strengthen or diminish evidence of fractal structure
(Kuznetsov and Wallot, 2011), it is possible to build a network
that will not produce power-law-structured responses (Csányi
and Szendröi, 2004).Wemight gradually tune control parameters
to generate networks with gradually more fractal or less fractal
architectures (Sporns, 2006), and we can use these parameters to
describe the “connectome” of functional interactions spanning
the brain (Zuo et al., 2012). Subtle changes in network topol-
ogy in terms of connection strengths and connection patterns
offers a rich testbed for creating novel hypotheses about devel-
opment of perceiving-acting systems (Gorochowski et al., 2012;
Ma et al., 2013). For instance, recent pioneering work in robotics
has attempted to flesh out such neural networks, embedding net-
works into musculoskeletal architectures in order to model the
dramatic effects of subtle factors such as uterine pressures and
twitches during sleep on sensorimotor development (Blumberg
et al., 2013; Mori and Kuniyoshi, 2013). In this way, network

Frontiers in Physiology | www.frontiersin.org 2 March 2015 | Volume 6 | Article 88

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Soberano and Kelty-Stephen Demystifying cognitive science with networks

science has gradually blurred the lines between infant models and
actual human infants.

Even without human-infant morphology, network modeling
has brought its share of surprises. For instance, the sand/rice-
pile model can fail to produce straightforward fractal fluctuations
(Jensen et al., 1989). Even more stunning has been the evidence
that the sand/rice-pile model may not just be fractal but, in
fact, multifractal: it may exhibit several power-law forms at once
(Tebaldi et al., 1999; Cernak, 2006; Bonachela and Muñoz, 2009),
making it more complex. This multifractal wrinkle in the self-
organization narrative may be exactly what’s needed to help cog-
nitive science play by more ordinary scientific rules. Observation
of multifractal fluctuations offers the possibility that fractal fluc-
tuations might interweave and spread into one another (Halsey
et al., 1986). Where we might once have envisioned anatomical
parts each with their ownmysterious capacities, there may be less
rigidly defined regions engaging in ongoing exchange of fractal
and multifractal fluctuations.

The sharing of multifractal fluctuations has empirical anchor-
ing in behaviors extending beyond the brain. Network analy-
ses such as vector autoregression (VAR; Sims, 1980) allow us
to depict the flow of information across nodes in full-body net-
work, even from measurements of living, breathing organisms.
For instance, infants’ spontaneous leg kicking has been intu-
itively understood as an exploratory process, bringing “external”
or “peripheral” information about gravity and leg kinematics
“inward” to central nervous structures. However, VAR can elevate

this intuition to empirically demonstrable fact: the flow of mul-
tifractal fluctuations along infants’ legs from ankle to knee to
hip does become a rigorously testable hypothesis (Stephen et al.,
2012). Additionally, recent work in perceptual learning showed
that use of visual feedback for a manual wielding task depends
on time-varying fractal structure of head sway. Multifractality
of head sway supports the pick up of visual information. VAR
showed further that simply receiving visual feedback lets multi-
fractality at the head spread down to the hand, thereby changing
subsequent manual wielding (Kelty-Stephen and Dixon, 2014).
The sharing of multifractal fluctuations may underwrite body-
wide coordinations in ways that only network analyses have
revealed.

Exciting as simulations may be, we see more promise in this
latter attempt to draw from fractal statistics and matrix algebra
to help us probe the full-body network. Distributing cognition
across the body is still not repaying the loans of intelligence,
but it may diminish the borrowed principal. Network modeling
thus allows us to envision behavior—real, observed behavior—
as the time-varying mixture of an extended field of multifrac-
tal fluctuations. Through this lens, behavior begins to require
much less faith and much more like generic physical processes.
Cognitive science need not ask to play by different rules or to
start with different assumptions. On the contrary, network sci-
ence might allow cognitive science operate on the same play-
ing field as other sciences, whether sciences of living systems or
otherwise.
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