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The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition
receptor, which can be upregulated in inflammatory diseases as an amplifier of immune
responses. Once activated, TREM-1 induces the production and release of pro-
inflammatory cytokines and chemokines, in addition to increasing its own expression
and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1).
This amplification of the inflammatory response by TREM-1 has now been considered as a
critical contributor to the dysregulated immune responses in sepsis. Studies have shown
that in septic patients there is an elevated expression of TREM-1 on immune cells and
increased circulating levels of sTREM-1, associated with increased mortality. As a result, a
considerable effort has been made towards identifying endogenous ligands of TREM-1
and developing TREM-1 inhibitory peptides to attenuate the exacerbated inflammatory
response in sepsis. TREM-1 modulation has proven a promising strategy for the
development of therapeutic agents to treat sepsis. Therefore, this review encompasses
the ligands investigated as activators of TREM-1 thus far and highlights the development
and efficacy of novel inhibitors for the treatment of sepsis and septic shock.
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INTRODUCTION

Sepsis is a complex disorder, defined by a dysregulated host response to infection leading to organ
dysfunction (1, 2). The pro-inflammatory response to invading pathogens is initiated by pattern
recognitions receptors (PRRs) located on the surface and intracellularly of immune and non-
immune cells, that recognize pathogen-associated molecular patterns (PAMPs), molecules released
from pathogens, and damage-associated molecular patterns (DAMPs), molecules released from
damaged cells (3, 4). Activation of PRRs on innate immune cells initiates microbicidal and pro-
inflammatory responses to contain and eliminate the invading pathogens and activates the adaptive
immune response, particularly T lymphocytes (3). Toll-like receptors (TLRs) are a well-studied
family of PRRs for their role in innate immunity that amplify the inflammatory response
synergistically with triggering receptor expressed on myeloid cells-1 (TREM-1), a more recently
characterized PRR (5–8).
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TREM-1 was first identified on circulating neutrophils and
monocytes in response to lipopolysaccharide (LPS), a glycan
mostly present on the surface of Gram-negative bacteria that
strongly activates the host immune response (9–11). TREM-1 is
part of a family of TREM receptors that also includes TREM-2,
TREM-3, and TREM-like transcript-1 and 2 (TLT-1, TLT-2)
(12). TREM-3 is only expressed in mice, and like TREM-1, is
upregulated in response to LPS. TREM-2, on the other hand, is
downregulated in response to LPS and, upon activation,
attenuates the inflammatory response (12, 13). Activation of
TREM-1 in neutrophils and monocytes triggers the release of
pro-inflammatory cytokines and chemokines, in addition to
upregulating the gene expression of TREM-1 and surface
expression of cell activation markers (9). This amplification of
the inflammatory response by TREM-1 has gained interest as a
critical contributor to the dysregulated immune response in
sepsis (4). Patients admitted to the ICU with septic shock have
higher surface expression of TREM-1 on monocytes and elevated
circulating levels of the cleaved soluble extracellular portion of
TREM-1 (sTREM-1) (14, 15). Elevated levels of circulating
sTREM-1 have also been associated with increased mortality in
patients with septic shock (16, 17). Additionally, mice genetically
deficient in TREM-1 had less severe disease in response to
multiple pathogens without affecting their ability to clear the
infection, resulting in similar pathogen loads (18). The inhibition
of TREM-1 remains a promising target for development of
therapeutic agents to treat sepsis. This review aims to give an
overview of the role of TREM-1 and its endogenous ligands in
sepsis, and the development of novel inhibitors of this pathway
and their efficacy for the treatment of sepsis.
STRUCTURE AND SIGNALING PATHWAY

TREM-1 is a member of the immunoglobin superfamily, a group
of cell surface receptors with related extracellular Ig-like domains
(19, 20). In addition to the extracellular Ig domain, it consists of a
transmembrane region with a conserved lysine residue, and a
short cytoplasmic domain that does not contain a signaling motif
(21, 22). Propagation of signaling is instead dependent on
association with the immunoreceptor adaptor protein DNAX
activation protein 12 (DAP12). TREM-1 contains a positively
charged transmembrane lysine residue that associates with a
negatively charged aspartate residue of DAP12 (21–24). Upon
receptor activation, the immunoreceptor tyrosine-based
activation motif (ITAM) of DAP12 is phosphorylated,
signaling the recruitment and activation of spleen tyrosine
kinase (Syk), a nonreceptor tyrosine kinase (20). Syk activates
multiple downstream signal transduction pathways including the
PI3K/Akt pathway, the Ras/ERK/MAPK pathway, NF-kB
signaling, and phospholipase C phosphorylation, leading to
increased intracellular calcium and proinflammatory cytokine
secretion (19–22, 25).

TREM-1 activation independently triggers downstream
inflammatory cascades that can synergize with TLR signaling
pathways (22, 25). TLR4 activation upregulates the expression of
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TREM-1, and the concomitant activation of TREM-1 and TLR4
leads to a synergistic increase in proinflammatory cytokine and
chemokine release by 25-fold compared with that of TLR4
activation alone (8, 26–28). One proposed mechanism for their
synergistic proinflammatory response is that TREM-1 increases
the availability of TLR4 downstream signaling molecules such as
MyD88, CD14, NF-kB, and IkBa (26). When TREM-1 s blocked,
RAW cells stimulated with LPS maintain TLR4 expression but
have decreased genetic expression of these signaling molecules as
well as inflammatory cytokines (21, 26, 29). Understanding the
structure and signaling pathway of TREM-1 remains an important
focus of research to better elucidate its role in sepsis and to develop
novel therapeutic targets.
TREM-1 LIGANDS

The identification of TREM-1’s endogenous ligands is crucial for
studying the role of TREM-1 in the pathogenesis of sepsis.
Moreover, knowing TREM-1’s endogenous ligands and their
structure offers critical insights to develop TREM-1-targeting
pharmacological strategies to reduce sepsis hyperinflammation,
such as the inhibitory peptides discussed below. Although
TREM-1 was characterized in 2000, it took 14 years until the
first ligand was identified. Since then, multiple ligands have been
implicated as activators of TREM-1, furthering our knowledge
on this receptor’s role in innate immunity, sepsis, and non-
infectious inflammatory diseases.

Peptidoglycan Receptor Protein 1
(PGLYRP1)
PGLYRP1 (also named Tag7) was one of the first identified
ligands of TREM-1 (30). PGLYRP1 is an antimicrobial protein
that is secreted from polymorphonuclear leukocyte granules in
response to infection (5, 30, 31). It subsequently binds to
peptidoglycan and LPS, essential components of the bacterial
membrane, where it induces lethal membrane depolarization and
oxidative stress to the bacteria (32–34). After it was discovered
that an endogenous, unknown ligand of TREM-1 exists on
bacterially activated peritoneal neutrophils, PGLYRP1 was
investigated as a potential ligand (30, 35). Neutrophils were
stimulated with peptidoglycan and cross-linked to sTREM-1
and, using mass spectrometry, identified that the resulting
complexes contained PGLYRP1 peptides (30).

PGLYRP1 as a ligand for TREM-1 was further studied using
affinity chromatography, which demonstrated conclusively that
immobilized soluble TREM-1 binds PGLYRP1 (36). It has also
been shown that PGLYRP1 is an activating ligand of TREM-1 on
monocytes and induces the development of cytotoxic
lymphocyte subpopulations in peripheral blood mononuclear
cells (PBMCs) (37). In the presence of LP17, an inhibitory
peptide of TREM-1 discussed further below, monocytes treated
with PGLYRP1 failed to induce cytotoxic lymphocyte
transformation and had reduced secretion of IL-2, thus
providing further evidence that PGLYRP1 is an endogenous
ligand for TREM-1 (36, 37). Interestingly, soluble PGLYRP1
June 2022 | Volume 13 | Article 907387
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alone does not activate TREM-1. Only when complexed with
peptidoglycan, anchored to HEK293 cell surface, or bound to a
plate, was PGLYRP1 able to elicit an inflammatory response via
TREM-1 (30). This should be kept in mind for future research on
PGLYRP1/TREM-1 interaction, as activation may only be
reproducible when TREM-1 is bound to a cell surface.

Extracellular Cold Inducible RNA Binding
Protein (eCIRP)
eCIRP is a DAMP that has recently been identified as an
endogenous ligand of TREM-1. It was originally discovered in
the blood of critically ill septic and trauma-hemorrhage surgical
patients. CIRP is a ubiquitously expressed nuclear protein which
has been mostly studied in macrophages, lymphocytes, and
neutrophils, which release it into circulation during periods of
hypoxic and mild hypothermic stress, such as in sepsis (38, 39).
Mice injected with recombinant murine CIRP (rmCIRP)
developed a sepsis-like acute lung injury with vascular
endothelial cell damage, leukocyte infiltration and increased
pro-inflammatory cytokine production (40). Using surface
plasmon resonance (SPR), it was determined that rmCIRP
binds to recombinant murine TREM-1 (rmTREM-1) with
strong affinity, with a KD of 11.7 × 10-8 M (41). Binding was
further demonstrated between rmCIRP and surface TREM-1 on
murine RAW264.7 and peritoneal macrophages using
fluorescence resonance energy transfer (FRET) analysis.
rmCIRP-injected mice had attenuated systemic and pulmonary
inflammatory response after treatment with the TREM-1
inhibitor LP17. Additionally, mice deficient in TREM-1 had
reduced serum IL-6 and IL1-b after rmCIRP injection,
indicating eCIRP acts an endogenous ligand of TREM-1 (41).

High Mobility Group Box 1 (HMGB1)
HMGB1 has also been investigated as an endogenous ligand to
TREM-1 (42). HMGB1 was originally identified as a nuclear
DNA-binding protein that functions as a cofactor in
transcription regulation. It was later found that it can be
released from a variety of cells and function as a DAMP,
signaling through activation of TLRs and receptor for
advanced glycation end products (RAGE) to induce a pro-
inflammatory response (43–45). More recently, using a murine
model of hepatocellular carcinoma, HMGB1 released from
necrotic hepatocytes was found to bind TREM-1 using
immunoblotting and SPR, with a binding KD of 35.4 x 10-6 M
(42, 46). HMGB1 has also been shown to induce inflammatory
responses through TREM-1 activation in THP-1 human
monocytic cells, a human monocyte cell line, and upregulate
TREM-1 expression on macrophages (47, 48). However,
recombinant HMGB1 alone was insufficient to induce TREM-
1-regulated M1 polarization, suggesting it may need co-
activating molecules to fully trigger TREM-1, or that
recombinant HMGB1 is different from endogenous HMGB1
(33, 49).

Heat Shock Protein 70 kDa (Hsp70)
Along with HMGB1, the 70 kDa heat shock protein (Hsp70) was
found to be released from necrotic cells and augment the
Frontiers in Immunology | www.frontiersin.org 3
proinflammatory response through TREM-1 activation (42, 47).
Under normal conditions, HSP70 is a molecular chaperone that
participates in the maintenance of protein homeostasis through
folding and remodeling processes (50). Normally expressed at low
levels, Hsp70 becomes upregulated in pro-inflammatory states like
bacterial endotoxemia (47). In addition to Hsp70’s primary role of
protein folding stabilization, there has been growing interest in its
function as a pro-inflammatory mediator after it was found to
upregulate TNF-a, IL-1b, and IL-6 in human monocytes (51).
Hsp70 was then investigated as a novel ligand for TREM-1 using
LPS- and necrotic cell lysate-stimulated THP-1 cells. These cells,
when treated with an anti-HSP70 antibody, had a reduction in
expression of TNF-a, IL-6, and IL-8 that was further reduced by
the addition of an inhibitory recombinant TREM-1 fusion
chimera (47). This data suggests that Hsp70 is released from
necrotic cells to aid pro-inflammatory responses in monocytes
through TREM-1 activation of the cytokine expression cascade
(47). Hsp70 as a ligand of TREM-1 was further studied using
affinity chromatography and demonstrated to bind to sTREM-1
immobilized on a CNBr-Sepharose column as well as to TREM-1
on the monocyte surface (52). Interestingly, however, it was found
that Hsp70 released from necrotic Kupffer cells along with
HMGB1 in a murine model of hepatocellular carcinoma, does
not directly bind to TREM-1, suggesting that HMGB1 may have a
stronger affinity and compete for binding on TREM-1 (42).

Extracellular Actin
Actin is one of the most abundant proteins within cells,
functioning in the form of filaments that polymerize to aid in
cell morphology and motility (53). When cells undergo apoptosis
and necrosis, such as during sepsis, actin is released and has
deleterious effects once extracellular (53). After it was
determined that an unknown ligand expressed on platelets
activates TREM-1 in sepsis, further investigation using gel
analysis of platelet total protein and rTREM-1 suggested the
ligand to be actin (54, 55). Confocal microscopy was used to
confirm the co-localization of TREM-1 and actin on RAW267.7
cells treated with LPS-stimulated platelets and LPS with
recombinant actin. This co-localization was also demonstrated
in vivo using a CLP model of polymicrobial sepsis. Actin and
TREM-1 had increased expression and co-localized in the lungs
of septic mice (55). Additionally, actin dose-dependently
enhanced LPS-stimulated release of TNF-a from RAW267.7
cells and peritoneal macrophages (55). This response was
blunted in cells treated with the TREM-1 inhibitor LP17 as
well as in peritoneal macrophages isolated from TREM-1
knockout mice, strongly suggesting that actin activates
inflammatory cells via TREM-1 (55).
IMMUNE RESPONSES IN TREM-1
KNOCKOUT MICE

Mice genetically deficient in TREM-1 are another valuable tool to
help uncover the potential benefits of modulating TREM-1 for
June 2022 | Volume 13 | Article 907387
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the treatment of sepsis. To study this, multiple knockout models
with different genetic modifications have been developed:
TREM-1 knockout, endothelial cell-specific TREM-1
(endoTREM-1) knockout, TREM-1/3 double knockout, and
TREM-like transcript-1 (TLT-1) knockout. To determine the
effects of TREM-1 deficiency on the immune response to
infection, TREM-1-/- mice were infected with Leishmania
major (18). Compared to WT mice, TREM-1-/- mice had
reduced infiltration of neutrophils and decreased lesion size
around the site of bacterial inoculation (18). TREM-1-/- mice
also had reduced morbidity after infection with influenza A virus,
measured by body weight and temperature, and decreased IL-6
in bronchoalveolar lavage (18). Importantly, while infection-
related pathologies were improved, TREM-1-/- mice had
equivalent pathogen clearance of L. major, influenza virus, and
Legionella pneumophila as WT mice, indicating these mice do
not develop disseminated infection like TREM-1/3-/- (18).
Additionally, after LPS-induced septic shock, TREM-1-/- mice
had decreased neutrophil extracellular trap (NET) release in the
serum and lungs, which have pro-inflammatory functions that
contribute to the progression of septic shock (56). Aortas and
mesenteric arteries isolated from TREM-1-/- mice were protected
from in vitro NET-induced vascular dysfunction (possibly due to
their inability to respond to the eCIRP present in NETs),
maintaining normal contraction and relaxation (56–58). The
involvement of TREM-1 in sepsis induced vascular dysfunction
was further proven using endoTREM-1-/- mice (57). After cecal
ligation and puncture (CLP)-induced sepsis, endoTREM-1-/-

mice had restored vasorelaxation in addition to reduced serum
VCAM-1 and IL-6, and prolonged 7-day survival (57).

In mice, the gene for TREM-3 is adjacent to TREM-1 and
likely occurred from a duplication event, demonstrated by their
high homogeneity (59). Additionally, the two receptors are both
amplifiers of the immune response, and likely work
synergistically (59–61). TREM-3 in humans, however, is a
pseudogene and has no functional overlap with TREM-3 in
mice (61). Therefore, it has been suggested that TREM-1/3-/-

mice might better reflect TREM-1 deficiency in humans than
mice deficient in TREM-1 alone (61–63). Interestingly, although
TREM-1-/- mice were protected after exposure to infectious
agents, TREM-1/3-/- mice had worse outcomes after infection.
TREM-1/3-/- mice had increased mortality and bacterial
dissemination after infection with Streptococcus pneumoniae
and Klebsiella pneumoniae, despite infected primary TREM-1/
3-/- macrophages having decreased cytokine release (64, 65). The
relevance of murine TREM-3 to human TREM-1 function
should continue to be explored to better characterize which
murine models best emulate human disease.

TLT-1 belongs to the TREM family, and its gene resides in the
human TREM gene cluster, along with TREM-1, -2, -3, and TLT-
2 (66). It is specific to platelets and megakaryocytes and, upon
platelet activation, translocates to the cell surface where it plays a
role in hemostasis/thrombosis (66). Additionally, a soluble
fragment of TLT-1 is present in the circulation and is believed
to function as an endogenous TREM-1 inhibitor (67, 68). TLT-1
knockout mice (treml-1-/-) had increased gene and protein
Frontiers in Immunology | www.frontiersin.org 4
expression of inflammatory cytokines in the lungs and plasma
after CLP induces sepsis (68). Additionally, septic treml-1-/- mice
had increased mortality, indicating a protective role of TLT-1 in
polymicrobial sepsis, likely by inhibiting TREM-1 (68).
TREM-1 BLOCKADE AS A THERAPEUTIC
APPROACH

Studies using TREM-1 knockout mice have demonstrated that
this receptor plays a critical role in the progression of sepsis.
Armed with this knowledge, multiple receptor antagonists have
been created, predominately based on the structure of TREM-1
and its ligands. Modulation of TREM-1 activation with many of
these inhibitors has been demonstrated as an effective approach
for attenuating sepsis severity (Table 1).

Soluble TREM-1 (sTREM-1)
The sTREM-1 molecule is the cleaved extracellular domain of
TREM-1 that was found to be increased in the blood during
sepsis (69, 73, 84, 85). In addition to being studied as a prognostic
indicator of sepsis severity, it has also been proposed to act as a
decoy receptor for TREM-1 by binding its ligands and reducing
its activation and the subsequent pro-inflammatory cytokine
release (73, 86–89) (Figure 1). To test this hypothesis, the gene
for recombinant porcine sTREM-1 was transfected into
Escherichia coli for cloning and expression (69). After
purification, it was administered to LPS-stimulated primary
porcine alveolar macrophages. Macrophages treated with
sTREM-1 had reduced mRNA expression of type-I and type-II
inflammatory cytokines, including TNF-a, IL-1b, IL-2, IL-4, IL-
8, IL-10, IL-12, IL-16, and IL-18 (69).

A similar method of genetic cloning was used to express and
purify murine sTREM-1, which was named recombinant
extracellular domain of TREM-1 (rTREM-1) (90). Mice were
then infected with Streptococcus suis, a bacterium that can
rapidly cause streptococcal toxic-shock-like syndrome (STSLS),
followed by treatment with rTREM-1. Conversely to the in vitro
study using porcine sTREM-1, mice inoculated with S. suis and
treated with rTREM-1 had worse outcomes. rTREM-1 treatment
was associated with increased 7-day mortality, and elevated IL1-
b, TNF-a, KC, and bacterial load in both blood and peritoneal
fluid (90). Interestingly, however, when rTREM-1 treatment is
combined with antibiotics, mice infected with S. suis had better
outcomes than with antibiotics alone (70). Mice that received
combination treatment of rTREM-1 and ampicillin had a higher
7-day survival, lower serum levels of IL1-b and TNF-a, and
attenuated acute lung injury compared to mice that received PBS
vehicle, just ampicillin, or rTREM-1 alone (70). These data
suggest that, while TREM-1 agonism may help clear some
bacterial infections, it is also a key contributor to the
detrimental inflammatory processes that culminate in acute
lung injury. Many of the following TREM-1 inhibitory
peptides developed as a treatment modality for sepsis are based
on amino acid (aa) sequences found in sTREM-1, further
June 2022 | Volume 13 | Article 907387
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demonstrating that sTREM-1 is effective as an anti-inflammatory
mediator (88).

TREM-1 Fc Fusion Protein
TREM-1/Fc, a fusion protein consisting of the extracellular
domain of mouse TREM-1 and the Fc portion of human IgG1,
was developed as a TREM-1 decoy receptor that can also
promote the clearance of TREM-1 ligands from the circulation
via Fc-receptor mediated endocytosis (8) (Figure 1). Mice
treated with TREM-1/Fc prior to LPS-induced endotoxemia
had decreased serum TNF-a and IL-1b and recruitment of
peritoneal neutrophils and macrophages (8). Additionally, mice
treated with TREM-1/Fc had improved 7-day survival in LPS,
Frontiers in Immunology | www.frontiersin.org 5
CLP, and Escherichia coli-induced sepsis (8). These findings
were reproduced in another study using intraperitoneal
administration of Pseudomonas aeruginosa to induce sepsis
(71). Treatment with TREM-1/Fc in these mice led to
improved survival and a significant reduction in serum pro-
inflammatory cytokines, including TNF-a, IL-1b, INF-g, and
MCP-1 (71). Additionally, TREM-1/Fc provided protection in
mice against sepsis after intravenous (i.v.) injection of
Streptococcus pyogenes (72). Mice treated 2 hours before and 2
hours after inoculation of S. pyogenes had prolonged survival and
decreased levels of IL-6 and TNF-a in the serum (72). In
addition to its TREM-1 inhibitory effects, it is possible that the
TREM-1/Fc fusion protein also enhances the phagocytic
TABLE 1 | TREM-1 pathway inhibitory strategies.

Treatment Sepsis Model Cell/Animal Effect Ref.

sTREM-1 LPS Macrophages ↓ mRNA of inflammatory cytokines (69)
S. suis
intraperitoneal

Mice ↓ serum TNF-a, IL-1b, ↓ acute lung injury, ↑ survival (when given with antibiotics) (70)

TREM-1 Fc
fusion protein

LPS Monocytes ↓ release TNF-a, IL-1b (8)

P. aeruginosa Macrophages ↓ release TNF-a, IL-1b, MCP-1 (71)
S. pyogenes Neutrophils ↓ release IL-6, TNF-a (72)
LPS intraperitoneal Mice ↓ serum TNF-a, IL-1b, ↓ recruitment of peritoneal macrophages and neutrophils, ↑ survival (8)
CLP Mice ↑ survival (8)
E. coli
intraperitoneal

Mice ↑ survival (8)

S. pyogenes
intravenous

Mice ↓ serum IL-6, TNF-a, ↑ survival (72)

P. aeruginosa
intraperitoneal

Mice ↓ serum IL-1b, TNF-a, MCP-1, ↑ survival (71)

LP17 LPS Monocytes ↓ release TNF-a, IL-1b (73)
E. coli Neonatal leukocytes ↓ release TNF-a, IL-6, IL-8 (74)
LPS intraperitoneal Mice ↑ survival (35)
CLP Mice ↓ serum TNF-a, IL-1b, ↑ survival (73)
S. pyogenes
intravenous

Mice ↑ survival (72)

LPS intraperitoneal Rats ↑ hemodynamics, ↓ serum TNF-a, IL-1b (35)
CLP Rats ↑ hemodynamics, ↓ TNF-a, IL-1b, IL-6, ↑ survival (35,

75)
P. aeruginosa
intratracheal

Rats ↓ serum and broncoalveolar lavage TNF-a, IL-1b, IL-6, lactic acidosis, hypoxia, ↑ hemodynamics, ↑
survival

(76)

GF9 LPS Macrophages ↓ release TNF-a, IL-1b, IL-6 (77)
LPS intraperitoneal Mice ↓ serum TNF-a, IL-1b, IL-6, ↑ survival (77)

SLC-TREM-1 LPS Endothelium ↓ TREM-1 expression, ↓ MCP-1, IL-8 release (78)
CLP Mice ↑ survival (78)

M3 LPS intraperitoneal Mice ↓ serum TNF-a, IL-6, ↑ survival (41)
CLP Mice ↓ serum AST, ALT, TNF-a, IL-6, ↓ acute lung injury, ↑ survival (41)
Cecal Slurry Neonatal Mice ↓ serum TNF-a, IL-1b, IL-6, INFg, ↓ cardiac and pulmonary IL-1b, IL-6, ↓ cardiac dysfunction, ↑

survival
(79)

N1 LPS Mononuclear Cells/
Monocytes

↓ mRNA TNF-a, IFNg, IL-1b, and IL-6 (80)

LPS intrabronchial Mice ↓ serum INFg, IL-4, ↓ lung damage (80)
LR17/LR12 LPS Granulocyte ↓ mRNA and protein TNF-a, IL-8, IL-10, ↓ ROS production (23)

LPS Monocytes ↓ release TNF-a (23)
LPS intraperitoneal Mice ↓ serum TNF-a, IL-6, IL-10, ↑ survival (23)
CLP Mice ↓ cytokines in serum, peritoneal and bronchoalveolar fluid, liver, lung, ↓ acute lung injury, ↓ bacteria

in spleen, blood, ↓ TREM-1 expression, ↑ survival
(23,
57)

Cecal Slurry Pigs ↑ cardiac function, ↓ coagulopathy, ↓ failure of lungs, liver, kidney, ↑survival (68)
LPS intravenous Monkeys ↑ hemodynamics, ↓ serum cytokines (81)

Nangibotide Sepsis Humans ↓ systemic IL-6, ↓ SOFA scores, minimal side effects (82,
83)
June 2022 | Volume 13 | Article 90
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clearance of pathogens by bridging peptidoglycan-bound
PGLYRP1 on the surface of bacteria with Fc-receptors on
macrophages and neutrophils.

LP17
LP17 was one of the first peptides developed to inhibit TREM-1
(73). It has a 17-aa sequence (LQVTDSGLYRCVIYHPP) derived
from on a highly conserved extracellular domain of TREM-1 in
both mice and humans, and is intended to operate through a
mechanism analogous to that of decoy receptors (35, 73, 76). To
demonstrate its intended function, flow cytometry was used to
show LP17 inhibits the binding of a fluorophore conjugated-
mTREM-1/IgG1 antibody to TREM-1 on murine peritoneal
exudate cells (35). There is evidence that it functions both as a
direct competitive inhibitor by binding to the receptor and thus
preventing its activation by the ligand, and as a decoy receptor by
binding TREM-1’s ligands before they are able to activate the
TREM-1 receptor (4, 68) (Figure 1). Efficacy was initially
demonstrated by reducing TNF-a and IL-1b release from
LP17-treated monocytes after stimulation with LPS in a dose
dependent manner (73). LP17 was further tested in vivo in mice
subjected to either endotoxemia or CLP-induced sepsis (73).
Mice treated with LP17 had decreased levels of serum TNF-a
Frontiers in Immunology | www.frontiersin.org 6
and IL-1b and improved survival after LPS injection and CLP
(73). LP17 improved survival in endotoxemic mice when given 1
hour before or 4 hours after LPS injection (35, 73). Additionally,
LP17 has been shown to improve survival in mice after i.v.
inoculation with Streptococcus pyogenes (72).

LP17 has also been shown to be efficacious in treating septic
rats. Rats treated with LP17 1 hour after LPS injection had
attenuated sepsis severity, measured by improved hemodynamic
parameters including mean arterial pressure, aortic blood flow,
mesenteric blood flow, pH, and serum lactate (35). Additionally,
these rats had lower concentrations of serum TNF-a, IL-1b, and
nitrates/nitrites (35). Rats treated with LP17 after CLP also had
improved hemodynamic parameters, serum TNF-a, IL-1b, IL-6
and nitrates/nitrites, and survival at 48 hours and 7 days (35, 75).
LP17 has also been shown to be an effective treatment for sepsis
secondary to Pseudomonas aeruginosa pneumonia in rats,
resulting in with improved hemodynamic status, attenuated
lactic acidosis and hypoxemia, reduced serum TNF-a, IL-1b,
and IL-6, and improved 7-day survival of the septic rats (76).

In addition to the studies in adult rodents, LP17 has been
considered as a potential therapeutic agent for neonatal sepsis
(74). In an in vitro study, leukocytes isolated from umbilical cord
blood from full term human neonates and treated with LP17 had
FIGURE 1 | Modulators of TREM-1 Activation. Activation of TREM-1 is inhibited by multiple agents: (1) GF9 and sneaking ligand construct to TREM-1 inhibit the
interaction of TREM-1 with its signaling partner DAP12. (2) LR12/nangibotide, LP17, and TREM-1/Fc fusion protein act as decoy receptors and compete for
binding with naturally occurring activating ligands. (3) Together with M3 and N1, LP17 also binds to TREM-1 and competitively inhibits ligand binding. M3
competitively inhibits TREM-1 binding to and activation by extracellular cold inducible RNA binding protein, while N1 inhibits TREM-1 activation by PGLYRP1
and HSP70. (4) soluble TREM-1 is generated from proteolytic cleavage of membrane bound TREM-1 by matrix metalloproteinases. Circulating soluble TREM-1
competitively binds TREM-1’s ligands and prevents further activation. All inhibitors prevent the downstream signaling cascade that upregulates the translation of
inflammatory cytokines and TREM-1 receptor. Image created with BioRender.
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decreased production of TNF-a, IL-6, and IL-8 after exposure to
Escherichia coli (74).

M3
M3 is another inhibitory peptide of TREM-1 that was developed
to specifically inhibit activation by its novel ligand, eCIRP (41).
Its 7-aa sequence (RGFFRGG) was designed based on an area of
homology between PGLYRP1 and CIRP (30, 41). Using a FRET
assay, M3 was shown to dramatically abrogate CIRP’s binding to
TREM-1 in both murine peritoneal macrophages and RAW264.7
cells (41) (Figure 1). To test this peptide in vivo, mice were
subjected to LPS-endotoxemia and those treated with M3 had
decreased levels of serum TNF-a and IL-6, and improved 7-day
survival (41). M3 was also protective in mice with CLP-sepsis,
measured by decreased levels of serum AST, ALT, TNF-a and
IL-6, and attenuated severity of sepsis-associated acute lung
injury (41, 91). Mice treated with intraperitoneal (i.p.) M3 at
the time of CLP or 90 minutes later also showed a 10-day survival
benefit (41).

Like LP17, M3 has also been shown to be effective in treating
sepsis in neonates (79). Using a cecal slurry model of sepsis,
neonatal mice treated with i.p. M3 had attenuated disease
severity, as measured by a reduction in serum IL-6, TNF-a, IL-
1b, and IFN-g, and improved pulmonary and cardiac
inflammation (79). Additionally, M3-treated neonates had
improved cardiac function, measured by cardiac output and
left-ventricular end diastolic diameter. Importantly, neonatal
mice treated with M3 at either the time of cecal slurry
injection or 2 hours later had improved 7-day survival (79).
Although M3 is a novel peptide requires further studies, it shows
promise in treating sepsis in both neonates and adults.

N1
N1 is a 10-aa inhibitory peptide based on the N-terminal aa
sequence (aa 77–86) of PGLYRP1 (80). Using affinity
chromatography, N1 was shown to bind sTREM-1
immobilized on CNBr-activated Sepharose (80). Using
immunoblotting, N1 was also shown to bind TREM-1 on the
surface of monocytes (80) (Figure 1). Monocytes and
lymphocytes exposed to PGLYRP1 and Hsp70, two previously
mentioned ligands of TREM-1, had decreased LDH release in the
presence of N1. Additionally, N1 treated cells had decreased
mRNA expression of TNF-a, IFNg, IL-1b, and IL-6 after
exposure to LPS (80). In mice with acute lung injury after
bronchial instillation of LPS and a-galactosylceramide, i.v.
treatment with N1 protected against the resultant cytokine
storm, leading to decreased serum levels of INFg and IL-4.
These mice also had reduced histologically evaluated
pulmonary inflammation (80). N1 is another novel peptide
that effectively inhibits TREM-1 induced inflammation, but
requires additional studies looking at its efficacy in a
polymicrobial model of sepsis to better evaluate it as a
treatment modality.

GF9
Moving away from the strategy of preventing ligands from
interacting with TREM-1, GF9 is a ligand-independent
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peptide (GLLSKSLVF) derived from murine TREM-1’s
transmembrane region, designed using the Signaling Chain
HOmoOligomerization (SCHOOL) model (92). It functions by
inhibiting the interaction between TREM-1 and its signaling
partner, DAP12 (77, 92) (Figure 1). Using a mouse model of
endotoxemia, the efficacy of i.p. GF9 was studied, administered
in its free form, and carried within high density lipoproteins
(HDL). Synthetic HDL was modified to target delivery and
uptake by macrophages, therefore delivering the GF9 directly
to the cell of interest. Mice subjected to endotoxemia had higher
survival after pretreatment with GF9 both in free form and
incorporated into macrophage-targeted HDL-like particles.
However, mice required a dose of 25mg/kg of free GF9 to see a
survival benefit compared to vehicle, where a significantly lower
dose of 5mg/kg of HDL bound GF9 was able to achieve the same
survival benefit. Additionally, incorporation of GF9 into HDL
prolonged the peptide’s half-life, which together with its targeted
macrophage delivery could contribute to its reduced effective
dose (77).

SLC-TREM-1
TREM-1 sneaking ligand construct (SLC-TREM-1) is another
protein that inhibits the interaction of TREM-1 with DAP12
(Figure 1), but it was specifically designed to target the
endothelium (78). It is composed of 3 portions: an E-selectin
targeting domain that binds to the surface of endothelial cells,
Pseudomonas aeruginosa exotoxin A to facilitate translocation
from the endosomal vesicular system into the cytosol, and a 7-aa
sequence (LSKSLVF) derived from the transmembrane region of
TREM-1, and actually contained within GF9 (77, 78, 93).
Endothelial cells stimulated with LPS in vitro had decreased
TREM-1 expression and activation after treatment with SLC-
TREM-1 (78). Additionally, treatment with this protein
intraperitoneally improved the 10-day survival in mice
subjected to CLP (78). GF9 and SLC-TREM-1 demonstrate
that targeting the interaction of TREM-1 with DAP12 is a
viable TREM-1 inhibitory strategy with potential for drug
development in sepsis.

LR17/LR12
LR17/LR12 are the most studied inhibitory peptides of TREM-1.
LR-17 is a 17-aa peptide (LQEEDAGEYGCMVDGAR) based on
a highly conserved sequence between TREM-1 and TREM-like
transcript-1 (TLT-1), a membrane bound protein found on the
surface of activated platelets (23, 68, 94) (Figure 1). After
demonstrating structural similarities between TREM-1 and
TLT-1 using crystallographic approaches, soluble TLT-1
(sTLT-1) was studied as a modulator of the inflammatory
response and shown to decrease human neutrophil production
of TNF-a, IL-6, and IL-8 after LPS stimulation (23, 94). LR17 was
subsequently shown to protect mice from LPS endotoxemia (23).
Mice treated with LR17 before or after LPS administration had
improved 10-day survival and decreased serum pro-
inflammatory cytokines (23). This peptide also has a protective
effect in mice with CLP-sepsis (23). Mice treated with LR17 had
decreased sepsis severity demonstrated by lower levels of IL-6,
TNF-a, and IL-10 in serum, peritoneal and bronchoalveolar
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fluid, and IL-6 and TNF-a in the liver, and lung (23). LP17 also
ameliorated sepsis-induced acute lung injury, reduced bacterial
load in the spleen and blood, and an improved 7-day
survival (23).

It was discovered that just 12 aa accounted for the LP17’s
anti-inflammatory effects, and a novel peptide containing this
sequence (LQEEDAGEYGCM) was created and named LR12 (4,
68). After confirming TREM-1’s expression on vascular
endothelial cells, the effects of LR12 on vascular reactivity
during sepsis was explored (57). Using both CLP-sepsis and
LPS endotoxemia, it was determined that LR12 prevents the
TREM-1 upregulation induced in the murine aortas and
mesenteric arteries of mice subjected to these models (57).
Additionally, LR12 treatment protected mice from sepsis-
induced vascular dysfunction, measured by improved vascular
contractility, and attenuated IL-6, TNF-a, and IL-10 expression
as well as NOS and COX signaling pathway activation in murine
aortas and mesenteric arteries (57).

The effects of LR12 during sepsis were further studied in adult
minipigs to better characterize its beneficial properties as a
therapeutic agent (68). Polymicrobial sepsis was induced using
a cecal slurry model. Pigs treated with LR12 had less
cardiovascular failure, measured by MAP, vasopressor use, and
cardiac index (68). Additionally, they had decreased
coagulopathy and organ failure in the lungs, liver, and kidney.
LR12 improved 24-hour survival in septic pigs from 40% to 100%
(68). The effects of LR12 was further explored in nonhuman
primates using an LPS model of endotoxemia (81). Monkeys
received an i.v. bolus of LPS followed by a continuous infusion of
LR12 or placebo for 8 hours. Monkeys treated with LR12 were
protected from hypotension and neutropenia and had reduced
plasma cytokine concentrations (81). One month after LR12
administration, no side effects were noted in the treated animals
(81). In addition to i.v. infusion, a sustained release implant was
tested as a novel administration route for LR12 in rats (95). An in
situ poly-lactide-co-glycolide (PGLA) or poly-lactide (PLA)
implant was used to deliver LR12 in a dimerized formulation
to diminish peptide degradation and allow sustained release (95).
In healthy rats, these in situ forming implants delivered a
therapeutic concentration of LR12 for 7 days, introducing an
effective method of administrating this otherwise short-lived
peptide (95).

Nangibotide
LR12 is the first TREM-1 inhibitor to have reached the clinical
stage. It is currently being studied in Phase 2 clinical trials of
sepsis, COVID-19, and acute myocardial infarction under the
name Inotrem (nangibotide) (16, 82, 83, 96–98). Nangibotide is
an immune modulator targeting the inflammatory response
amplification maintained by TREM-1 (82). In Phase 1 trials,
continuous i.v. administration of nangibotide was safe and well
tolerated at doses up 6 mg/kg/h for 7 hours and 45 mins
following a 15-minute loading dose of 5 mg/kg, with few
adverse events noted after 28 days of followup (83). In a Phase
2a multicenter, randomized, double-blind, placebo-controlled
clinical trial, patients received a continuous infusion of 0.3, 1.0,
or 3.0 mg/kg/h of nangibotide within 24 hours of the diagnosis of
Frontiers in Immunology | www.frontiersin.org 8
septic shock (82). Treatment was continued until the patient was
off vasopressors for 12 hours, or for a maximum of 5 days. There
was no difference in adverse events, tolerability, inflammatory
biomarkers and clinical efficacy between study groups (82).
Treatment with nangibotide, however, was associated with a
decrease in the serum levels of IL-6 (82). In a subgroup analysis,
patients with high sTREM-1 treated with nangibotide had
decreased SOFA scores after treatment (82, 98), suggesting that
sTREM-1 could be a potential biomarker to predict which septic
patients respond to nangibotide. A pivotal Phase 2b trial, looking
at the efficacy, safety, and tolerability of nangibotide in patients
with septic shock is currently underway (16, 97). Patients are
given two doses of the peptide for 3-5 days, depending on
vasopressor requirements. The primary endpoint being
evaluated is total SOFA score changes from baseline to day 5
in all patients, and will include a subgroup analysis of patients
with elevated sTREM-1 baseline levels (16). Larger studies are
still needed to investigate the efficacy of nangibotide in
attenuating sepsis severity, and to evaluate sTREM-1 as a
potential biomarker of patient response to nangibotide.
SUMMARY AND PERSPECTIVES

Over the last two decades, extensive research has revealed
TREM-1’s critical role as a mediator of inflammation in sepsis
and other diseases. Substantial work has been done to identify its
endogenous ligands and develop inhibitors to be used as
potential therapeutic agents for a range of diseases. There are
now a variety of inhibitory molecules, predominately
oligopeptides, that have shown promise as a treatment for
sepsis using various preclinical sepsis models in a number of
species. These peptides are capable of targeting TREM-1
activation at various points within its signaling cascade, from
acting as a decoy receptor and binding up its endogenous ligands,
to binding the extracellular domain and competitively inhibiting
the binding of endogenous ligands, to interrupting the
transmembrane association of TREM-1 with DAP12. Beyond
oligopeptides, other modulators of the TREM-1 pathway have
been studied in non-infectious inflammatory diseases (99).
Researchers in Sweden have developed an anti-TREM-1
antibody that reduces secretion of proinflammatory cytokines
from lamina propria cells isolated from patients with
inflammatory bowel disease (99). Targeted monoclonal
antibody treatment has been effective in treating a variety of
inflammatory diseases, and TREM-1 targeted antibodies may be
a beneficial approach to sepsis drug development. Future
research could benefit from investigating this novel anti-
TREM-1 antibody in septic preclinical models.

Although many TREM-1 inhibitory peptides have shown
promise in preclinical models, there are currently no FDA
approved treatments for sepsis. Strategies targeting
inflammatory mediators like TNF-a and IL-1b were not
effective in clinical trials for sepsis, despite efficacy in
experimental models (100). Further, drotrecogin alpha, the
only treatment to receive FDA approval for the treatment of
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sepsis was later withdrawn from the market (101). This
recombinant human activated protein C did not reduce
mortality in septic patients at 28 days in a follow-up phase 3
international, randomized, controlled trial, and is no longer
approved as a treatment for sepsis (101). There are likely many
barriers to creating effective sepsis treatments, including poor
translation between animal models and human disease,
heterogeneity of the patient population selected for clinical
trials, and the overall heterogeneity of the etiology of the
disease (102). The physiologic response to sepsis in mice differs
from humans, and mice are also more resistant to endotoxin and
resilient to infection. Further, many treatments tested in murine
models are given before, during, or shortly after infectious
exposure. Conversely, patients often present for treatment days
after infection, with sepsis developing over time. Additionally, in
preclinical models, treatments are often tested on sepsis from a
single, well-defined source of infection, where clinical trials often
include patients who present with sepsis from a wide variety of
etiologies. The host response has great variation based on the
location of infectious insult and inciting organism species.
Patients also have a variety of specific characteristics, like sex,
age, comorbidities, and medications that can all effect response to
an experimental treatment. In that regard, clinical trials of sepsis
treatments would possibly benefit from selecting patients
according to the source of infection and infectious agent.

LR12, a 12-aa peptide, has been studied extensively in mice,
rats, pigs, and nonhuman primates as a treatment for sepsis and
has been shown to be effective and safe when administered as an
i.v. bolus, continuous infusion, and an in situ forming implant. It
is currently in phase 2b clinical trials under the name
nangibotide and has so far been demonstrated to be safe and
Frontiers in Immunology | www.frontiersin.org 9
apparently effective in Phase-1 and Phase-2a studies. This
peptide shows significant promise as a treatment for septic
patients. It has demonstrated efficacy in seven preclinical
models and in four different species, and has been
administered up to 24 hours after onset of infection,
addressing key issues of translatability and time of treatment in
patients. Further, in the current trial, investigators are identifying
patients with elevated levels of plasma sTREM-1 to evaluate
whether these patients are better responder and, consequently,
are more likely to benefit from treatment. By identifying a
subgroup of patients who best respond to this treatment,
administration can be personalized and efficacy can be better
assessed. Sepsis has been called a “graveyard for pharmaceutical
companies”. Targeting the TREM-1 activation pathway,
however, shows great promise and may finally become the first
safe and effective therapeutic strategy to treat septic patients.
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aa Amino acid
AKT Protein kinase B
ALI Acute lung injury
ALT Alanine aminotransferase
AST Aspartate aminotransferase
BAL Bronchoalveolar lavage
BMDN Bone marrow-derived neutrophils
CIRP Cold-inducible RNA-binding protein
CLP Cecal ligation and puncture
DAMP Damage-associated molecular pattern
DAP12 DNAX activation protein 12
eCIRP Extracellular cold-inducible RNA-binding protein
ERK Extracellular signal-regulated kinase
FRET Fluorescence resonance energy transfer
HDL High density lipoprotein
HMGB1 High mobility group box 1
HSP70 70 kDa heat shock protein
IFN Interferon
IgG Immunoglobulin G
IkBa Nuclear factor of kappa light polypeptide gene enhancer in B-cells

inhibitor alpha
IL Interleukin
IP Intraperitoneal
ITAM Immunoreceptor tyrosine-based activation motif
IV Intravenous
KO Knockout
LDH Lactate dehydrogenase
LPS Lipopolysaccharides
MAP Mean arterial pressure
MAPK Mitogen-activated protein kinase
MCP Macrophage chemoattractant protein
MMP Metalloproteinases
mRNA Messenger ribonucleic acid
MyD88 Myeloid differentiation primary response 88
NET Neutrophil extracellular trap
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
PAMPs Pathogen-associated molecular patterns
PBMC Peripheral blood mononuclear cell
PBS Phosphate buffered saline
PGLA Poly-lactide-co-glycolide
PGLYRP1 Peptidoglycan recognition protein 1
PGN Peptidoglycan
PI3K Phosphatidylinositol 3-kinase
PLA Poly-lactide
PMN Polymorphonuclear leukocyte
PRR Pattern recognition receptor
RAGE Receptor for advanced glycation end products
RAS Reticular activating system
rm Recombinant murine
SCHOOL Signaling chain homooligomerization
SLC-
TREM-1

Triggering receptor expressed on myeloid cells-1 sneaking ligand
construct

SPR Surface plasmon resonance
sTREM-1 Soluble TREM-1
STSLS Streptococcal toxic-shock-like syndrome
Syk spleen tyrosine kinase
TLR Toll-like receptor
TLT-1 Triggering receptor expressed on myeloid cells-1-like transcript 1
TNF-a Tumor necrosis factor-a
TREM-1 Triggering receptor expressed on myeloid cells-1
WT Wild-type.
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