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Abstract: Inspired by natural materials, we developed an antibacterial surface on titanium (Ti)
using hydrothermal etching techniques and examined the effect of treated time on oxide layer
formation, its antibacterial properties, and surface defects. Hydrothermal etching was conducted
on Grade 2 commercially pure Ti immersed in 5M NaOH at 250 ◦C during a range of time of 0–12 h.
Nanopillars generated on the surface had ~100 nm thickness, which resulted in decreased attachment
and rupturing of the attached bacteria. The results also showed that 6 h and 8 h of etching time
provided a desirable uniform nanopillar structure with the most effective prevention of bacterial
adherence on the surface. Multiscale SEM observations revealed that the longer the etching was
conducted, the more cracks propagated, which led to an increase in dissociated fragments of the
oxide layer. In the 12 h of etching, a higher density of bacterial adherence was observed than that
of the untreated and the shorter time treated samples, indicating that etching took longer than 10 h
worsened the antibacterial properties of the nano-patterned surface of Ti. This study demonstrated
that the optimal time duration is 6–8 h for the oxide layer formation to maximize antibacterial activity
and minimize cracking formation on the surface. For future studies, we suggest exploring many
possible conditions to generate a more uniform nanopattern without structural defects to secure the
integration between a newly deposited oxide layer and the substrate.

Keywords: implant; antibacterial; nanotextured surface; biofilm

1. Introduction

Titanium (Ti) and Ti alloys are widely used materials as orthopedic and dental im-
plants due to their suitable properties, such as biocompatibility, lightweight, high strength,
high corrosion resistance, and lesser toxicity [1,2]. However, they frequently fail due to
bacterial infection. This infection can be derived from various causes, including surgical
equipment, skin, operating room, or implantation device itself [3]. Once bacterial contam-
ination occurs, microbes adhere to the surface, duplicate, develop as microcolonies over
the surface, and eventually become embedded within a self-secreted matrix of extracellu-
lar polymeric substances called biofilm [4,5]. The problem of biofilm lies on its extreme
antibiotics-resistance and increased risk of recurrent/chronic infection [6]. Resistance to
antimicrobial disinfectants and antibiotics is a severe issue resulting in 700,000 deaths each
year worldwide. This number is expected to increase to 10 million by 2050 [7]. In the
United States, up to 80% of infections are caused by biofilm, with more than 2 million cases
every year, resulting in $5 billion additional medical costs [8]. During the past two decades,

Biomimetics 2022, 7, 91. https://doi.org/10.3390/biomimetics7030091 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics7030091
https://doi.org/10.3390/biomimetics7030091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0000-0002-8375-0178
https://orcid.org/0000-0001-5595-6147
https://doi.org/10.3390/biomimetics7030091
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics7030091?type=check_update&version=3


Biomimetics 2022, 7, 91 2 of 14

many research efforts have led to the development of antibiotics and coating methods with
antibiotics, oxidants, or biocides. However, the infection problem is still significant [9,10].

Interestingly, it is known that living organisms ward off bacterial infection using
several means along with the innate immune system. In chemical approaches, plants
secrete antiseptic/antibacterial agents such as spices and oils [11,12], and animals defend
themselves by secreting antimicrobial peptides and chemicals found in their skin or cuti-
cle [13–15]. Another method found in nature is surface microstructures, such as insects’
cuticles, plant leaves, and mollusk shells. These are designed with nanopatterns to me-
chanically hinder bacterial attachment or kill microbes by perforation [16–19]. For example,
microtextured structures are found in the beetle’s elytra with the shapes of polygonal walls
and a diameter of ~5 µm [20,21], Cicada’s wings with bactericidal nanopillar patterns [22],
and the taro leaf with water-repellent nanostructures [23] (Figure 1).
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accessed on 3 July 2022. SEM image © 2017, W. Barthlott, Univ. Bonn. Reprinted/adapted with per-
mission from Ref. [23].). 
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cannot penetrate the inner part of the biofilm during antibiotic treatments, where bacteria 
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different physical models were developed to explain how to create the most effective sur-
faces to target bacteria, considering the size, shape, spacing, and density of the nanopil-
lars, and also the role of gravity and van der Waals forces in rupturing the bacterial cell 
wall in contact with nanopillars [16]. Furthermore, different techniques have been used to 
produce nanosurface, including hydrothermal synthesis and etching, plasma etching, var-
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Figure 1. Natural materials exhibiting antibacterial/hydrophobic nano-structured surfaces: (a) iron-
clad beetle’s nanopattern on the elytron surface providing anti-adhesive properties [20]; (b) ci-
cada’s wings (http://www.brisbaneinsects.com/brisbane_cicadas/FlouryBaker.htm, accessed on
2 July 2022) and its nanopillar structure to kill bacteria [22]; and (c) taro leaf with water-repellent
nanostructure (Taro leaf image: https://www.flickr.com/photos/14731015@N06/7278281538/, SEM
image: https://www.flickr.com/photos/lotus-salvinia/11081778403/in/album-72157638107887554/,
accessed on 2 July 2022. SEM image © 2017, W. Barthlott, Univ. Bonn. Reprinted/adapted with
permission from Ref. [23].).

Using nanosurface to prevent infection from the bacterial attachment stage has proven
to be an effective way of dealing with infection. It is more manageable to inhibit adhesion
and kill the bacteria upon attachment than repel them after attachment. When the biofilm
has been developed, removing it in full is very difficult [24]. The antibiotic cannot penetrate
the inner part of the biofilm during antibiotic treatments, where bacteria develop antibiotic
resistance [25–27]. Moreover, nanosurface modification can be prolonged for a long time
and can be used as a powerful complement to antibiotic treatment, especially when used
inside of the body, where antibiotics or non-surgical treatments can hardly reach.

Inspired by the nanosurfaces of biological materials, many attempts have been made
to develop antibacterial surfaces. In order to achieve the mechano-bactericidal properties,
different physical models were developed to explain how to create the most effective
surfaces to target bacteria, considering the size, shape, spacing, and density of the nanopil-
lars, and also the role of gravity and van der Waals forces in rupturing the bacterial cell
wall in contact with nanopillars [16]. Furthermore, different techniques have been used
to produce nanosurface, including hydrothermal synthesis and etching, plasma etching,
various types of lithography (soft lithography, nano-imprint lithography, laser interference
lithography, deep ultraviolet lithography, X-ray lithography, and colloidal lithography),
reactive-ion etching, focused ion beam milling, 3D nano printing, oxygen plasma treat-

http://www.brisbaneinsects.com/brisbane_cicadas/FlouryBaker.htm
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ment, electrodeposition, chemical and vapor deposition, micro-molding, vacuum casting,
sol-gel, etc. [6,16,22]. Of these numerous techniques, hydrothermal etching techniques are
relatively economical, very effective, and the byproduct of the process, TiO2, is comparably
biocompatible [28]. TiO2 is widely used for cosmetics, food products, pharmaceuticals,
and biomedical applications [29]. Also, the surface of Ti and Ti alloy reacts naturally with
oxygen in the air, resulting in a thin oxide film layer composed of TiO2. This oxide layer
acts as a protective layer to make Ti highly corrosion resistant. As the etching process only
adds the nanotextured pattern onto TiO2, the resulting material of the etching process does
not contain harmful compositions. Due to the non-toxicity of Ti and TiO2, etching processes
are highly recommended to advance the surface design of the implants.

While creating function-specific antimicrobial surfaces, the chemistry, biocompatibility,
toxicity, and durability of substrates are important factors to be considered [16,30,31].
In this study, we employed hydrothermal etching techniques to create and characterize
the nanotextured surface of orthopedic grade Ti. There have been several attempts to
generate antibacterial nanotextured surfaces for orthopedic and dental implants using
hydrothermal etching, and the previous studies report that the titanium surface produced
by this technique could successfully reduce the bacterial counts [6,18,28,32]. In this study,
we examined the effect of treated time of the etching on surface structure and antibacterial
properties using methicillin-resistant Staphylococcus aureus (S. aureus), since S. aureus is the
most common human pathogen causing recurrent and chronic infection in orthopedic and
dental implants by forming biofilm and building antibiotic resistance. This study aimed to
characterize the properties of nanotextured surfaces generated by different hydrothermal
etching conditions and examine the antimicrobial properties of those nontextured surfaces
against S. aureus.

2. Materials and Methods

2.1. Hydrothermal Etching Procedure to Generate TiO2 Surface

Grade 2 commercially pure Ti (cp-Ti) and Ti alloy (typically Ti-6Al-4V) exhibit similar
mechanical properties, osseointegration, and biomechanical anchorage, thus both are
used for orthopedic and dental implants widely [33,34]; Grade 2 cp-Ti was chosen for the
substrate in this study. Cp-Ti plates (McMaster-Carr, Elmhurst, IL, USA) with a thickness
of 0.3175 cm were cut into round-shape billets with a diameter of 1 cm using a waterjet
machine. The billets were then machine polished using Struers Labopo-2 and TegraPol-11
polishing machines with a silicon carbide 1200/4000 grinding paper, followed by fine
polishing with colloidal diamond powder (3µm). After polishing, the billets were cleansed
ultrasonically, first with ethanol, and then deionized water for 15 min each to eliminate
surface contaminants and particles. Each time, three of those polished and cleansed Ti
billets were placed inside a Teflon liner with 100 mL of 5 M NaOH solution, then placed
into a 200 mL stainless-steel reactor, which was put into a pre-heated furnace set to 250 ◦C
for hydrothermal etching process (Figure 2). Hydrothermal etching is usually conducted
using 1–10 M of alkali solution, 100–300 ◦C temperature, and 2–8 h, depending on the
final structural designs [35,36]. In this study, to examine the effect of treated time, the
authors designed the experiments with a range of treated time of 0–12 h (Table 1). Since it
is impossible to observe a nanocrystal’s growing status as a function of time during the
hydrothermal etching process, we set up seven different reaction times in 0 h (controlled),
2 h, 4 h, 6 h, 8 h, 10 h, and 12 h separately to determine the effect of the reaction time on the
growth of the TiO2.
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Figure 2. (a) The Grade2 commercially pure Ti billet with a 1 cm diameter round shape and a 0.315 cm
thickness was treated hydrothermally at 250 ◦C after being placed inside a (b) 200 mL Teflon liner
with 5M NaOH solution, which was put into (c) the stainless-steel reactor.

Table 1. Hydrothermal etching conditions.

Time (hours) Molarity Temperature

Control 0

5 Mol 250 ◦C

Condition 1 2

Condition 2 4

Condition 3 6

Condition 4 8

Condition 5 10

Condition 6 12

Once removed from the furnace, the reactors were placed into a cold-water bath to be
cooled for ten minutes. The billets were then removed from the reactor and placed into the
sonicator with deionized water for 15 min to remove any residual NaOH and particles on
the surface.

2.2. Surface Characterization

After the etching process was done, the surfaces of the samples were examined, namely
their micro- and nanostructures, using SEM analysis, elemental composition analysis,
surface roughness measurement, and contact angle analysis.

SEM micrographs were taken using Zeiss SUPRA-40 field emission gun (FEG)-SEM.
Three samples from each condition were fixed on stub using carbon tape and sputter-
coated with a gold/palladium mixture. Then, we assessed the surface structure at a meso-,
micro-, and nanoscale. The thickness of the nanopillars was measured via analyzing two-
dimensional images using IMAGE J software (National Institutes of Health, Bethesda, MD,
USA). The energy-dispersive X-ray spectroscopy (EDX) on the FEG-SEM was also used to
carry out chemical analysis on the surface of the samples that were not sputter-coated to
measure the relative amount of weight for each chemical component. 3D surface profiling
was conducted using Talysurf CLI 2000 (Taylor Hobson Ltd., Leicester, UK). Each billet
was analyzed at a spacing of 0.5 µm and a 1000-point resolution for a 300 µm × 300 µm
area. Each case was done with the testing on five billets, and two extreme cases of the
highest and the lowest values were excluded from the result data. In order to quantify
the hydrophobicity, the contact angle was measured using DSA 100 to capture the image
of the deionized water droplet of 0.5 µL liquid volume on the surface-treated Ti billets
six times. The contact angles of the water droplets were then analyzed using ImageJ
software (National Institutes of Health, Bethesda, MD, USA) with a plug-in for measuring
a contact angle.
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2.3. Bacterial Adherence Assay

Methicillin-resistant Staphylococcus aureus (S. aureus) LAC strain was obtained from
Network on Antimicrobial Resistance in Staphylococcus aureus (NARSA), USA300 LAC, a
well-characterized human isolate [37]. S. aureus was chosen because it is considered one
of the leading causes of infection in orthopedic and dental implants [38–40]. For a stable
visualization of bacterial adherence to the billets, S. aureus LAC strain containing chromo-
somally integrated green fluorescent protein (GFP) was generated by genetic modification,
as previously described [41], used for bacterial adherence assay.

In order to test the anti-adherence properties of the surfaces of the treated billets,
the bacteria were cultured in 5 mL brain heart infusion (BHI) broth at 37 ◦C overnight
with shaking at 200 rpm. Bacterial suspensions were adjusted to 1×106 colony forming
units (CFU) per mL of BHI broth. In the meantime, all the hydrothermally etched billets
were first sterilized in 70% alcohol. The sterile untreated (control) and treated billets were
immersed in 1 mL of bacterial suspension in each well of the 24-well cell culture plate and
incubated statically at 37 ◦C for 24 h. These billets were washed three times with 1 mL
of PBS on a microplate shaker to remove non-adherent bacteria. The images of adherent
bacteria on the billets in triplicates were collected by assessing the fluorescence of adherent
bacteria using an in vivo imaging system (IVIS) (IVIS Lumina XRMS II, PerkinElmer). Each
billet on the image was selected as regions of interest (ROIs) encompassing the circular
billet surface, and the average of radiant efficiency [p/s/cm2/sr]/[µW/cm2] from each
billet in triplicates was quantified using IVIS Image version 4 software. Then, adherent
bacteria on billets were placed in 1 mL of PBS, vortexed vigorously, and enumerated by
an agar plating method after 10-fold serial dilution. The statistical significance of data
from different treatment groups was analyzed by Student’s t-test for simple comparisons
against CT using GraphPad Prism (p < 0.05). Bacterial adherence assays were repeated
three times. For SEM analysis, billets with adherent bacteria were fixed with 1 mL of
4% paraformaldehyde for 24 h, and the micrographs were taken using SEM.

3. Results and Discussion
3.1. Characterization of Microstructure (SEM)

Nano-patterned surfaces were created using hydrothermal etching techniques. A hy-
drothermal etching process is simple, low-cost, and environmentally friendly compared
to many other nanostructure-generating techniques [30]. When pure Ti billets were im-
mersed in an alkaline solution at a high temperature (250 ◦C), Ti first dissolved into the
solution, which was later combined with Oxygen ion, growing titanium dioxide (TiO2) on
the surface [42,43]. Deposited TiO2 grew nanopillars of various heights, shapes, diameters,
and spacings depending on the initial conditions of temperature, pressure, and time dura-
tion [44–46]. After the hydrothermal etching process, the nanopillar structures on the sur-
faces were characterized and quantified by several assessments, including scanning electron
microscopy (SEM), surface roughness evaluation, contact angle measurement, and bacterial
adherence assay to evaluate the antibacterial properties of the nano-patterned structure.

In the controlled billets, which were not treated with hydrothermal etching, irreg-
ularities and defects that remained after the polishing procedure on the surface were
observed (Figure 3a). The possibility that these irregularities could affect the nanopillar
configurations was raised due to the random growth of nanopillars. The billets treated
with the hydrothermal etching for 2 h did not show significant new features at the meso
and microscale; however, at the nanoscale, it was observable that they started to grow
flake-like nanostructures shown in Figure 3b. In the 4 h samples, initiation of cracks on
the oxide layer were observed at the microscale. At the nanoscale, a nanopillar structure
was firstly observable, indicating that 4 h was the minimum time to treat hydrothermal
etching using 250 ◦C and 5 M NaOH solution. The nanopillars forming with diameters
100–500 nm were observed consistently after 4 h up to the 12 h reaction time without
significant variation in nanostructure (Figure 3c–g). The size and shape of the nanopillar
structures are consistent with other previous reports for antibacterial nanopillar structures.
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This size of the nanopillars is adequate to inhibit attachment or even to kill 1–10 µm of
microbes [18,19]. Tang et al. [47] also fabricated nanopillars with 60 nm diameter, showing
a 65.5–99.5% killing rate. Lee et al. [48] produced a nanopillar array with 570–710 nm,
demonstrating that this size worked to show antibacterial effect for both Gram-negative
(E. coli) and Gram-positive bacteria (S.aureus). In the 6 h samples, small cracks covered the
entire oxide layer, as shown in the microscale image. From the 8 h samples to 12 h samples,
the cracks became so severe that they could be observed at the mesoscale, and in the 12 h
sample, the oxide layer was dissociated from the substrate.
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Figure 3. Meso-, micro-, and nanostructures of the hydrothermal treated Ti after different reaction
times garnered from scanning electron microscopy: (a) 0 h, (b) 2 h, (c) 4 h, (d) 6 h, (e) 8 h, (f) 10 h,
and (g) 12 h. At the mesoscale and microscale, it can be seen that cracking on the oxide layer has
developed as the treated time increases. At the nanoscale, nanopillar structures were formed at 4–12 h
treated samples with a diameter of 100–500 nm and did not show significant variations in 4–12 h.

3.2. Surface Topography

Another depiction of the surface is shown in Figure 4, obtained from the surface
topography images and the averaged surface roughness for each reaction time from 0 h
to 12 h. Considering a resolution of 0.5 µm, this analysis enabled to examine the surface
modification as the etching processes carried on.

The greatest surface roughness was found in the controlled billets (2.28 ± 0.39 µm).
Since 3µm powder was used at the last step of the polishing, this roughness value is
plausible. The surface was evened out at 2 h billets due to the dissolving reaction, which
produced the lowest surface roughness (0.80 ± 0.16 µm). In 2–6 h, the surface roughness
was increased as TiO2 was precipitated and new nanopillar structures were generated.
From 6 h to 12 h, the averaged surface roughness stayed consistent. This result implies
that 6 h of the reaction time could saturate the precipitated structures, and after this point,
redundant nanostructures could be generated as deep ditches in the surface topography
were detected and increased at 8–12 h, as shown in Figure 4a, which was consistent with
the SEM analysis showing oversaturated precipitation and crack propagation throughout
the surface (Figure 3e–g).

3.3. Chemical Compositions (EDS)

The chemical compositions were also analyzed on the treated surface using the EDS
technique. Figure 5 shows that the main constituents of the oxide layer are titanium (Ti),
oxygen (O), and a small amount of sodium (Na) and potassium (P), indicating that titanium
oxide (TiO2) is well generated. The small amount of Na is the residue from the NaOH
solution. We also measured chemical compositions on the peeled-off region where the
oxide layer was dissociated when the hydrothermal etching was treated for more than 8 h.
The chemical composition of that region is pure Ti, which infers that there is no gradient
between the newly generated oxide layer and substrate.
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3.4. Wettability Test

In addition, a wettability test was conducted on the surfaces. All the treated billets
with the different reaction times of hydrothermal etching showed hydrophilic properties.
Overall, the hydrophilicity of the billets increased as the reaction time increased. Whereas
the controlled billets’ surface was least hydrophilic, 10 h treated billets showed the greatest
hydrophilicity with water contact angles of ~15◦ (Figure 6). It is supposed that the increased
hydrophilicity of the treated billets increased the surface area of water contact, subsequently
making the surface more susceptible to the water droplets. A hydrophilic nature is known to
promote bacterial growth; however, it has been found that when coupled with a nanopillar
nanosurface, the bacteria do attach but are killed upon attachment [49].

3.5. Antibacterial Effects

Lastly, to determine the antibacterial effects of the hydrothermal treated Ti surfaces
after different reaction times, a bacterial adherence assay was performed using methicillin-
resistant S. aureus (MRSA). In order to visualize the adherence of S. aureus on the Ti
surface, an S. aureus LAC strain containing chromosomally integrated green fluorescent
protein (GFP) was generated by genetic modification, as previously described [41], used for
bacterial adherence assay. The adherence was then assessed by GFP fluorescence intensity
and the quantification of adherent bacteria to each billet. As shown in Figure 7, compared
to non-treated controlled billets, 6 h, 8 h, and 10 h hydrothermally treated billets exhibited
significantly less adherence of S. aureus LAC with lower GFP fluorescence (Figure 7a,b)
and CFU (Figure 7c) (p < 0.001). Of those cases, 6 h and 8 h treated billets were the most
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efficient surface to minimize bacterial adherence. Compared to the 0 h samples, which
is considered as 100% of adherence, it reduced bacterial adherence to 20.7% at 6 h and
4.4% in 8 h samples. In contrast, 12 h treated billets increased bacterial adherence to a
level even greater than those in the controlled billets, with 159.9% (p < 0.001). This analysis
revealed that 6 h and 8 h treated time produced the best results with regard to minimizing
bacterial adherence.
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Figure 7. Adherence of methicillin-resistant S. aureus LAC on the surfaces of untreated and treated Ti
with different reaction times. (a) IVIS images showing adherent bacteria with the intensity of GFP
fluorescence. Higher intensity means more bacterial adherence to the surface. (b) Radiant efficiency
garnered from IVIS images. A higher number indicates more bacteria. (c) A graph representing
the percentage of adherent bacteria on the surface obtained from the CFU analysis, normalized
with non-treated controlled (CT) as 100%. Data represent the mean ± standard deviation (n = 9).
* Denoting p < 0.001 versus controlled sample.

3.6. Problem of Cracking on the Oxide Layer

Although the results in this study demonstrated that nano-structured oxide layers
are promising to inhibit bacterial adherence and thus biofilm formation, it should be
acknowledged that this technique also has concerns to address to further develop reliable
implant products. As our results show in Figure 7, the antibacterial function is most
effective in 6 h and 8 h samples because nanopillar structures developed in 6–8 h possess
optimized topologies to inhibit bacterial attachments. However, SEM micrographs also
show that it started to generate cracks on the oxide layer at the 4 h sample, and as the
etching continued further, at the 6 h sample, the cracks covered the entire surface in a
tile-like shape, with a diameter of 50–100 µm. In the 8 h sample, the cracks started to
fracture the oxide layer, resulting in the dissociation of the oxide layer from the substrate,
and this disintegration of the layer became more noticeable in the 10 h and 12 h samples.
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Once the oxide layer was disrupted by cracking, the antimicrobial properties were no
longer effective. After culturing the bacteria in the well with Ti billets and washing, the
bacteria were fixed by formaldehyde. Then, SEM micrographs were taken on the surface to
observe the attachment and proliferation of bacteria. Figure 8a shows the region where the
oxide layer was dissociated from the substrate at the 12 h sample. As shown in Figure 8b,
bacteria were observed in the exposed substrate region. The number density of S. aureus in
the peeled-off region is greater than that in the controlled sample, as depicted in Figure 7.
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Figure 8. SEM micrographs on 12 h sample: (a) oversaturated etching causes disturbance of the oxide
layer; and (b) the area where the oxide layer was peeled off provided a favorable surface condition
for S.aureus to attach and grow.

Another problem caused by the disintegration of the oxide layer is that the particles
and fragments of the oxide layer can cause harmful effects inside the body. There has been a
concern of metal particles falling apart in implants through wearing and corrosion-inducing
inflammatory reactions. It is reported that dissolved Ti particles from implants into the
surrounding bone induce inflammatory reactions in the adjacent bone, and specifically, the
inflammatory cytokine tumor necrosis factor-alpha (TNF-α) is expressed [50].

Through this study, we demonstrated the effect of nanotexture generated by hydrother-
mal etching in reducing bacterial adherence. However, this study lacks post-processing,
such as acid washing procedures or calcination processes, that could help to obtain a more
controlled and well-defined crystalline phase [51,52]. In future studies, it is suggested
to facilitate additional procedures to produce more reliable surface nanopillars, such as
adding post-treatment or vibration-assisted hydrothermal etching.

4. Conclusions

Inspired by nature’s surface design found in beetle’s cuticles, dragonfly wings, and
leaves, we produced surface patterns at the nanoscale using hydrothermal etching on
pure Ti and examined the time effect on the oxide layer formation. The testing was
performed at 250 ◦C using 5 M of NaOH solution at 0–12 h of a treated time with two-hour
intervals. Based on structural observation and microbial testing, the results demonstrated
that the hydrothermal etching with 6 h and 8 h treated time generated the most consistent
nanopatterns with the lowest average surface roughness, resulting in the least amount of
bacterial attachment on their surfaces. The 10–12 h samples produced nanopillar structures;
however, the over-precipitation of the oxide layer caused cracking on the surface, which
provided favorable sites for bacterial attachment. Thus, we conclude that the optimal
condition to produce reliable surface nanostructures was 6–8 h treated time, and the
nanotextured surface with well-established nanopatterns is promising in inhibiting bacterial
adherence and biofilm formation in implants. For future study, we suggest investigating
further to produce more reliable surface nanopillars without cracks and dissociation of the
oxide layers.
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