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Antigen cross-presentation, the process in which exogenous antigens are presented on
MHC class I molecules, is crucial for the generation of effector CD8+ T cell responses.
Although multiple cell types are being described to be able to cross-present antigens,
in vivo this task is mainly carried out by certain subsets of dendritic cells (DCs). Aspects
such as the internalization route, the pathway of endocytic trafficking, and the simultane-
ous activation through pattern-recognition receptors have a determining influence in how
antigens are handled for cross-presentation by DCs. In this review, we will summarize new
insights in factors that affect antigen cross-presentation of human DC subsets, and we will
discuss the possibilities to exploit antigen cross-presentation for immunotherapy against
cancer.
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INTRODUCTION
For the induction of antigen-specific CD8+ T cells, antigen needs
to be presented in MHC class I molecules in order to be rec-
ognized by the TCR/CD3 complex on CD8+ T cells. Peptides
derived from endogenous proteins degraded in the cytosol, that
are transported into the endoplasmic reticulum (ER), are loaded
on MHC class I molecules, which will be transported to the plasma
membrane as a stable peptide–MHC class I complex (1). The
presentation of endogenous-derived peptides allows the immune
system to detect cells that present altered self peptides or for-
eign peptides and is therefore an important defense mechanism
against cancer or viruses (2). Although peptide–MHC class I com-
plexes can be directly recognized by naïve CD8+ T cells, these
cells require adequate co-stimulation from antigen-presenting
cells (APCs) in order to become potent effector CD8+ T cells with
cytotoxic potential. Besides, APCs can also encounter exogenous
antigens, namely of microbial or tumor origin, which they inter-
nalize for processing and presentation in MHC class I molecules,
a phenomenon known as antigen cross-presentation.

Although multiple APCs are able to cross-present antigens,
dendritic cells (DCs) are the most efficient cells in vivo (3–5).
The potential of DCs to cross-present antigen has initiated many
research questions aimed at finding strategies to enhance cross-
presentation of DCs in order to improve tumor- and viral-specific
CD8+ T cell responses for the treatment of cancer or infectious dis-
eases. Several questions remain unanswered, such as the molecular
basis for the differences in cross-presentation efficiency observed
amongst different DC subsets, in steady-state or under inflamma-
tory conditions. In addition, recent studies also suggest that the
capacity to cross-present can be influenced by the type of anti-
gen and the presence and timing of inflammatory signals (6). This
would imply that antigen cross-presentation is not a functional
specialization of certain DC subsets, but a process that can occur

in many APCs under specific conditions. In this review, we will
discuss the factors that have been described to influence cross-
presentation of various human DC subsets, and their implication
in the design of immunotherapies against cancer.

CELL BIOLOGY OF ANTIGEN CROSS-PRESENTATION
A defining aspect of the adaptive immune system is its capacity to
elicit antigen-specific cellular immune responses by the instruc-
tion of antigen-specific CD4+ and CD8+ T cells. This property
is entirely based on the presentation of antigen in MHC mol-
ecules (the peptide–MHC complex) and its recognition by the
T cell receptor. The loading of extracellular antigen in MHC-II,
recognized by CD4+ T cells, occurs in a different intracellular
compartment than the loading of antigen in MHC-I, recognized
by CD8+ T cells. In the case of MHC-II, after its synthesis in the
ER, complexes are formed with CD74 (also known as the invariant
chain) to allow proper folding, trafficking, and protection of the
peptide-binding groove. CD74 helps guiding the CD74–MHC-II
complex move on to the endolysosomal pathway, where late endo-
somal proteases such as cathepsin S and L degrade CD74 and leave
MHC-II complexed to the peptide-binding groove part of CD74
(the CLIP peptide), which is later exchanged for an antigenic frag-
ment with the help of the chaperone HLA-DM (7). Although the
process leading to antigen presentation on MHC-I also involves
six basic steps (8); namely, acquisition of antigens (1); tagging of
the antigenic peptide for destruction (2), proteolysis (3), trans-
port of peptides to the ER (4), loading of peptides to MHC-I
molecules (5), and the display of peptide–MHC-I complexes on
the cell surface (6); the variety of intracellular compartments and
pathways involved in MHC-I antigen presentation is considerably
more complex than that of MHC-II.

The acquisition of antigenic peptides for MHC-I presentation
is a highly heterogeneous process and multiple pathways have been
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FIGURE 1 | Molecular pathways leading to cross-presentation in DCs.
DCs take up Ag by three general mechanisms, receptor-mediated
endocytosis, phagocytosis, or macropinocytosis. Once the Ag reaches the
endolysosomal pathway, depending of the specific routing, it may be
degraded by the concourse of the mild pH and different types of cathepsins
and other proteases. At this point, properly degraded Ag can be directly
loaded into recycling MHC-I in the phagosome (Vacuolar pathway). Ag that
still needs further processing must be transported to the cytosol (Cytosolic
pathway) where it is degraded, together with endogenous proteins and
DRiPs, by the proteasome. The peptides generated by the proteasome are

transported by TAP or a yet uncharacterized transporter into the ER where
they are loaded into MHC-I with the help of the peptide-loading complex.
Further trimming in the ER prior to loading, it is possible by the presence of
ER-localized endopeptidases (ERAP1 and 2). R, ribosome; CNX, calnexin; CRT,
calreticulin; b2m, b2microglobulin; UGT1, UDP-glucose:glycoprotein
glucosyltransferase 1; ERAP1/2, ER-aminopeptidases 1/2; PLC,
peptide-loading complex; ERp57, protein disulfide isomerase 3; TAP1/2,
transporter associated with antigen-presenting 1/2; DRiPs, defective
ribosomal products; ROS, reactive oxygen species; NOX2, NADPH oxidase 2;
CLR, C-type lectins; FcR, Fc receptors; SR, scavenger receptors.

described so far. There are two main sources of antigens for MHC-
I presentation, intracellular and extracellular (Figure 1). Antigenic
peptides derived from cytosolic proteins, e.g., viral proteins, are the
prime source of peptides for MHC-I (9), but other proteins car-
rying signal sequences targeting to the secretory pathway can also
be presented on MHC-I, either from defective ribosomal products
(or DriPs) (10) or from mature proteins (11). These mechanisms
are at play on all cells expressing MHC-I. However, what makes

DCs and, to a lesser extent also macrophages and B cells, best at
cross-presentation is their capacity to use extracellular antigens as
source of peptides for MHC-I presentation. The uptake of extra-
cellular antigens by APCs is achieved by three main transport path-
ways, namely receptor-mediated endocytosis, phagocytosis, and
macropinocytosis; although there are differences in the efficiency
of each of these pathways amongst DCs, B cells, and macrophages.
Thus, macrophages seem to be best at phagocytosis, whereas DCs
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prefer receptor-mediated endocytosis. Amongst the many classes
of receptors that mediate endocytosis of antigens are the B cell
receptor (specific for B cells), Fc receptors, heat-shock protein
receptors, scavenger receptors, and the C-type lectin receptors
(CLRs). In general, these receptors mediate internalization of anti-
gens to endosomes,however, the nature of the endosomes and their
fate seems to vary for the different receptor types involved and,
consequently, also their efficiency in inducing cross-presentation.
Furthermore, many of the receptors involved in antigen uptake
for cross-presentation are also able to mediate signaling and, in
several cases, it has been demonstrated that signaling is neces-
sary for cross-presentation. This was elegantly demonstrated in
experiments where bacteria were opsonized with either antibod-
ies or complement. Although both opsonization modalities lead
to efficient phagocytosis, only the Fc receptor-mediated resulted
in effective CD8+ T cell responses (12). Signaling through other
receptors, such as the C-type lectins, Dectin-1 (13) or DNGR-1
(also known as Clec9A) (14) also enhances cross-presentation.

Both endogenous and to a minor extent exogenous antigen
can thus be loaded on MHC class I. A factor that conditions the
access of peptides to MHC-I is the biosynthetic pathway of the
MHC-I molecule. The MHC-I complex consists of a heavy chain,
a transmembrane glycoprotein with a short cytoplasmic domain
that, upon translation in the ER, assembles with β2-microglobulin
into a heterodimer. This process is integrated with the incor-
poration of the peptide into the peptide-binding groove of the
heavy chain, and requires the participation of the peptide-loading
complex, which consists of multiple components, including the
ABC peptide transporter TAP that allows the transport of pep-
tides from the cytosol into the ER (15). The key concept is that
to this process, the MHC-I heterodimer is stabilized until a high-
affinity peptide is incorporated into the peptide-binding groove. In
most cases, cross-presentation is TAP- and proteasome-dependent
(16), also called the cytosolic pathway. The proteasome is a self-
compartmentalized, energy-dependent nanomachine that works
as a protease to degrade misfolded, damaged, and inaccurately
synthesized proteins (17). In the context of IFN-γ or DC matu-
ration (18), the proteasome undergoes structural changes in its
substrate-binding pockets that contribute to optimizing the qual-
ity and quantity of the generated peptides (19). Still, peptides
generated by the proteasome may require further trimming by
two ER-resident aminopeptidases (20). To make it more complex,
proteasome-dependent, yet TAP-independent cross-presentation
has been recently described, suggesting the existence of a still
unidentified peptide transporter (Figure 1) (21).

A cross-presentation pathway referred to as vacuolar uses
endolysosomal proteases to degrade internalized bacteria and
other antigens, frequently particulated, in order to allow loading
on MHC-I molecules recycled from the extracellular membrane
(22). Also proteasome-derived peptides may enter the vacuolar
pathway (23, 24). Data obtained from TAP−/− DCs, that are
unable to incorporate peptides via TAP into the ER, indicates that
cross-presentation is still possible, though to a lesser extent (25).

Several questions remain unsolved, such as the mechanism by
which antigens are exported from endosomes into the cytosol for
proteasomal degradation (9), whether hybrid organelles resulting
from the recruitment of TAP and the peptide-loading complex

to phagosomes and endosomes exist (26–28), and if intercon-
nected ER-phagosomes are involved in cross-presentation (29).
Regardless of this issue, evidence indicates that the accumulation
of antigen in endosomes with low (but steady) proteolytic and
relatively high pH conditions favors cross-presentation (30–32).
In this respect, it has been proposed that limited antigen degra-
dation correlates with efficient cross-presentation (30). Primarily
decreased proteolysis is found in the endocytic compartments of
DCs compared to other phagocytes, which is due to low levels of
lysosomal proteases, or decreased protease activity. These can be
regulated by high pH present, or high activity levels of the NADPH
oxidase 2 (NOX2) in endosomal and phagosomal compartments
of DCs.

HUMAN DC SUBSETS AND ANTIGEN CROSS-PRESENTATION
Two main subsets of human DCs have been described: plasma-
cytoid DCs (pDCs) and myeloid DCs (mDCs, also known as
conventional DCs). The majority of pDCs are located in the blood
and their main function is the production of type I IFN upon
microbial infection (33). Recent data also show that human pDCs
are capable to cross-present antigens either derived from apop-
totic cells (34) or when antigens are encapsulated in nanoparticles
and targeted to specific uptake receptors expressed by pDCs (35).
Next to pDCs, two major populations of mDCs can be identified
in blood: BDCA1+/CD1c+ DCs and BDCA3+/CD141+ DCs. The
BDCA3+ DCs are described as potent inducers of CD8+ T cell
responses in vitro and in vivo (36–39); however, it is not yet clear
how this capacity relates to the other human DC subsets (39–41).
A recent publication showed that blood BDCA3+ DCs are more
potent in cross-presentation compared to BDCA1+ DCs when
antigens of necrotic cells or soluble antigen were given that ended
up in late endosomes and lysosomes (41, 42). In contrast, when
antigens were targeted to early endosomes, using antigens conju-
gated to an anti-CD40 monoclonal antibody, BDCA1+ DCs were
as efficient at cross-presentation as BDCA3+ blood DCs. These
results suggest that the capacity of DC subsets to cross-present is
not intrinsic, but might also be determined by the route of anti-
gen uptake and subsequent accumulation of the antigen in early
endocytic compartments.

Due to the small number of mDCs in tissues, studies on human
mDCs have been hampered, with the exception of the human skin.
Based on the expression of CD1a and CD14, the human skin con-
tains at least three main subsets of DCs: CD1a+/CD1c+ dermal
DCs (dDCS), CD14+ dDCs, and CD1aHigh epidermal Langer-
hans cells (LCs), which all migrate to the skin-draining lymph
nodes upon activation (43). LCs and CD1a+ dDCs seem to be
more efficient at cross-presentation, as compared to the CD14+

dDCs (44, 45). In addition to the three main populations of skin
DCs, a minor BDCA3HighCD14−CD111clow-int subset of DCs is
recently identified in human skin, lung, and liver. Parallel phe-
notypic analyses suggest that these cells are potentially related
to blood BDCA3+ DCs. The skin BDCA3High DCs have shown
to be superior in cross-presentation of soluble antigens when
compared to the other skin DC subsets, as well as compared to
BDCA3+ DCs, BDCA1+/CD1c+ DCs, and CD14+ monocytes
derived from blood (41). Care should be taken not to confuse
the BDCA3High skin DCs described by Haniffa et al. with the
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dermal BDCA3+CD14+ DCs described by Chu et al. (46). The
latter are immunoregulatory tissue-resident DCs characterized by
the constitutive secretion of IL-10 (46).

Altogether, findings on cross-presentation capacity of human
DC subsets show that most subsets are capable to cross-present
antigens. However, it becomes clear that other factors also influ-
ence the capacity to cross-present, like the antigen formulation,
the mode of delivery, and the intracellular routing of the antigen,
as well as the activation signals for the DCs.

FACTORS DETERMINING CROSS-PRESENTATION
The capacity of DC to cross-present antigens is not only dictated
by characteristics of a given DC subset, but it starts to become clear
that additional factors influence the cross-presentation capacity of
these DC subsets as well. It must be mentioned however that most
knowledge about human DC function is obtained from in vitro
studies and thus may not fully reflect their behavior in vivo.

MODE OF ANTIGEN INTERNALIZATION
Antigens can be taken up by DCs via multiple mechanisms, includ-
ing non-specific, receptor-independent processes, like pinocytosis
and phagocytosis, or via specific, receptor-mediated processes such
as uptake through CLRs, Fc receptors, and scavenger receptors.
Blood BDCA3+ DCs are reported to be able to cross-present
untargeted pp65 recombinant protein to a lesser extent than blood
BDCA1/CD1c+ DCs in vitro. However, when the cells were stim-
ulated with polyI:C, the BDCA3+ blood DCs became more potent
to cross-present the pp65 protein compared to CD1c+ blood DCs
(39). These results were confirmed by Mittag et al., who showed
that CD1c+ blood DCs are more potent in cross-presenting solu-
ble influenza protein without TLR stimulation, but in the presence
of polyI:C the BDCA3+ blood DCs became more potent (47).
Surprisingly, they also show that pDCs were able to cross-present
soluble protein in the absence of polyI:C. Whether human blood-
derived pDCs are capable to cross-present soluble proteins is ques-
tionable, since others provided evidence that pDCs were unable to
cross-present soluble proteins in the presence and absence of TLR
stimulation (48–50).

In addition, cross-presentation of NY-ESO-1 antigen admin-
istrated as antigen-antibody immune complexes (IC), allowing
Fcγ receptor-mediated uptake, did not enhance antigen-specific
CD8+ T cell responses by pDCs (50). In comparison, BDCA1+

blood DCs cross-presented the Fcγ receptor-targeting NY-ESO-
1/IC more efficiently compared to the soluble protein formulation.
Another study also showed that Fcγ receptor-mediated uptake
of pp65-IC enhanced the cross-presentation capacity of both the
BDCA1+ and BDCA3+ DCs compared to the uptake of HCMV
pp65 protein (50, 51). These studies indicate that the mode of
antigen internalization and antigen formulation have a profound
impact on cross-presentation capacity.

Besides the uptake of antigen via Fcγ receptors, receptor-
mediated uptake is also often studied using CLRs to stimulate
antigen cross-presentation and CD8+ T cell responses. CLRs are
a family of pattern-recognition receptors expressed by DCs and
recognize various carbohydrate structures. Upon recognition and
binding to the receptor, most CLRs respond by internalization and
processing of the antigen (52). Their specific expression on certain

DC subsets and the capacity to internalize antigens, make CLRs
interesting targets to induce cross-presentation.

Targeting of antigen to the CLR DCIR, which is expressed by
all human DC subsets tested, including LCs and blood mDCs and
pDCs, resulted in improved cross-presentation by all subsets (53).
Again, the blood mDC subset induced the highest percentages of
tetramer-positive CD8+ T cells, indicative of a superior capac-
ity to cross-present antigens, also when they are taken up in a
receptor-mediated fashion. However, not all receptors show the
same effects on antigen cross-presentation, as shown by Cohn
et al. (42). Their study showed that BDCA3+ DCs were superior
in cross-presentation of antigens taken up via the CLR DEC-205,
which routes antigen to late endosomes and lysosomes, com-
pared to BDCA1+ DCs and pDCs. However, when antigens were
delivered to early endosomes through conjugation to CD40 or
CD11c, BDCA1+ DCs and pDCs were as efficient in antigen cross-
presentation as the BDCA3+ DCs (42). Furthermore, Chatterjee
et al. have shown that targeting antigen to CD40 resulted in the
most efficient cross-presentation in human moDCs and BDCA1+

DCs, despite the fact that CD40 was least efficient in antigen inter-
nalization compared to DEC-205 or mannose receptor (MR) (54).
These results indicated that routing of antigen to more degrada-
tive, late endosomes, via DEC-205- or MR-mediated uptake, may
have a negative effect on cross-presentation compared to antigen
routing to early endosomes. Altogether, the results demonstrate
that the intracellular routing of antigens is of importance for anti-
gen cross-presentation. Thus, all human DC subsets seem to have
the capacity to cross-present antigens, provided that the antigen is
given in a suitable formulation under appropriate conditions.

ANTIGEN FORMULATION
The antigen form and mode of delivery is crucial in determining
the efficiency of cross-presentation. As DCs encounter antigens
in many sizes and shapes, derived form various sources, multiple
antigens might be differently handled by DCs, which might result
in modification of the intracellular routing of antigen, thereby
affecting the potency to cross-present. As described above, anti-
gen can be soluble, as synthetic long peptides, protein, or it can
be included in a pathogen/viral structure, as necrotic cells or as
immune complex. Alternatively, antigens can be conjugated to
antibodies specific for DC uptake receptors, or glycans that inter-
act with CLRs. These different antigen formulations may affect
the size of the antigen and receptor-targeting specificity, possibly
affecting the type of DC that interacts with the antigen and the
mode of uptake and intracellular routing.

To achieve and promote cross-presentation, different antigen
formulations have been studied, such as nanoparticles, apoptotic
cells or monoclonal antibodies, or glycans conjugated to anti-
gens as discussed earlier. Targeting antigen to DNGR-1/CLEC9a,
which expression in humans and mouse is restricted to CD8α+-
like DCs (55), using PLGA nanoparticles conjugated to CLEC9a
Moabs increased cross-presentation compared to isotype-control
PLGA nanoparticles, implying that antigen uptake via CLEC9a
enhances routing of the antigen to the cross-presentation machin-
ery (53). Our own results show that targeting antigen to the CLR
DC-SIGN using glycan- or antibody-modified liposomes results
in enhanced cross-presentation capacity of DCs in vitro and in vivo
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(56). Furthermore, dendrimer technology has shown that a mul-
tivalent presentation of antigen, as well as particle size, enhances
cross-presentation by DCs. Glycosylation of dendrimers enhances
the DC-SIGN-mediated uptake of the particles, favoring enhanced
CD4+ and CD8+ T cell responses (57).

There is evidence that also for LCs, the antigen formulation is
crucial in order to allow cross-presentation by LCs. It has been
shown that isolated human LCs were incapable to cross-present
heat-inactivated measles virus, which is specifically taken up via
Langerin (58). In contrast, others have shown that skin-derived
human LCs were capable to cross-prime influenza-specific CD8+

T cells after targeting with an influenza protein conjugated to anti-
Langerin antibodies (48), demonstrating that there is an inconsis-
tency whether human LCs can cross-present or not and under
which circumstances. Altogether, these findings demonstrate that
the formulation of antigen (either small peptides or bigger parti-
cles, like viral- or bacterial-antigens, necrotic cells, and nanopar-
ticles) has proven to have an influence on the cross-presentation
capacity of various DC subsets.

ADJUVANTS AND DC MATURATION STATUS
In general, DC maturation enhances the potency of DCs to cross-
present antigen. A large set of TLR ligands are known that act
as adjuvants and stimulate cross-presentation. Because each DC
subset may express a specific set of TLR receptors, they may differ-
ently respond to TLR ligands, influencing the induction of cross-
presentation. For example, isolated human LCs show increased
cross-presentation of antigenic peptides in the presence of the
TLR3 ligand polyI:C, whereas addition of the TLR4 adjuvant LPS
or the TLR7/8 adjuvant R848 does not enhance the capacity to
cross-present (Fehres et al., submitted). For instance the human
skin, an attractive site for vaccination because it harbors many,
easy-accessible DCs, is currently studied to identify suitable adju-
vants to trigger and activate skin DCs for cross-priming. We and
others have shown that intradermal administration of soluble
TLR ligands does not induce DC maturation as observed with
in vitro generated monocyte-derived DCs (59). The discrepancy
between DC maturation after TLR activation in vitro and in situ
might be caused by specific, local suppression within the skin
microenvironment. Ideally, the adjuvant simultaneously stimu-
lates several cell types, resulting in a mix of activated immune cells,
cytokines, and chemokines at the vaccination site. Most promis-
ing into this respect seems Aldara, an FDA-approved immune
response modifier skin cream, containing 5% of the TLR7 ago-
nist imiquimod. Aldara is mostly used to treat non-melanoma
skin tumors. Recently it was shown that application of Aldara
cream results in inflammasome activation and IL-1 release by ker-
atinocytes in naïve murine skin (60). This effect was mediated
independent of TLR7 activation and attributed to isostearic acid,
the major component of the vehicle. However, for induction of
full inflammation, both imiquimod and the vehicle cream were
shown to be required. Following topical application of Aldara skin
cream to human skin explant, we observed enhanced migration
and maturation of dermal DCs (Fehres et al., submitted). Com-
bining the Aldara skin cream with Mart-1-peptide vaccination
in human skin affected the migratory potential of CD14+ skin
DC, which was associated with up-regulation of co-stimulatory

molecules and increased activation and IFN-γ secretion of Mart-
1-specific CD8+ T cells. Notably, the enhanced effects on DC and T
cell activity were not observed when injecting soluble TLR7 and/or
8 ligands intradermally.

Besides being used as adjuvant in cancer vaccines, the afore-
mentioned DC stimuli have also been used as stand-alone
immunotherapeutics. It is anticipated that application of adju-
vants at the tumor site reverses the immune-inhibitory pheno-
type of tumor-infiltrated DCs that ingest tumor antigens (TA),
herewith restoring TA-specific T cell priming and anti-tumor
immunity. An advantage of local delivery is a strong reduction in
immune-related adverse events such as cytokine release syndrome
and liver toxicity observed with systemic treatment. Indeed, topi-
cal application of the imiquimod containing cream led to residual
tumors in 8% of patients in basal and squamous cell carcinoma
patients (61). Furthermore, near tumor injection of low doses
of agonistic anti-CD40 antibodies in a slow-release formulation
was shown to activate TA-specific CD8+ T cells, which were able
to act systemically and eradicate distant tumors (62). In addi-
tion, intra-tumoral injection of a TLR2/6 agonist spectacularly
prolonged survival of pancreatic cancer patients with 9 months
(63). The beneficial effects of TLR2/6 treatment were attributed to
emergence of a strong immune response. Increased NK cytotoxic
activity as well as elevated levels of TNF and IL-6 were noted.

Although soluble TLR ligands do not evoke strong maturation
of skin DCs when injected into the skin as adjuvant, the discovery
that tumor cells express TLRs has evoked interest in application of
TLR agonists as monotherapy at the tumor site (64). Administra-
tion of a TLR3 agonist in melanoma lesions limits cell proliferation
directly. Additionally, combined with a protein synthesis inhibitor
even tumor cell death was induced (65).

The use of intradermal injected cytokines as immunostim-
ulators has been explored (66, 67). In particular, granulocyte-
macrophage colony-stimulating factor (GM-CSF) enhanced
recruitment of DCs to the vaccine administration site, which
ensures presentation of the administered TA by professional DCs
and consequently priming of TA-specific T cells (66, 68). Fur-
thermore, clinical trials have been conducted and/or are ongoing
in which patients receive irradiated tumor cells genetically engi-
neered to over-express GM-CSF (69). A small number of responses
were demonstrated in Phase I trials in renal cell carcinoma and
melanoma patients (68). However, in subsequent studies, GVAX
monotherapy did not result in clinical responses. Indeed, the effi-
cacy of GVAX might be improved by combining with immune
check-point inhibitors, which aim to prevent inhibition of effec-
tor T cells and/or to silence Tregs. In murine pre-clinical models,
GVAX combined with anti-CTLA-4 treatment enhanced efficacy
and tumor regression in the B16 melanoma model, along with
the presence of certain toxicities, such as skin depigmentation
(70). Recently, a phase I study was completed showing dose
escalation and safety, warranting further investigation of treating
patients with this combination. Alternatively,GVAX has been com-
bined with chemotherapeutic agents such as cyclophosphamide,
which is currently being tested in clinical trials in metastatic
melanoma patients. However, chemotherapy has been associated
with immunosuppressive effects at standard doses, rendering
issues related to dosing and timing of application critical.
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The effect of GM-CSF may be further enhanced by co-
administration of IL-2. Adjuvant activity has also been attributed
to IL-2, which has been widely used in clinical trials and usually
is administered systemically. However, in murine tumor models
GM-CSF and IL-2 were shown to act synergistically when applied
intradermal in emulsion along with a peptide, leading to improved
and long-lasting peptide-specific CTL responses (66).

However, care should be taken using IL-2 as it may negatively
impact on anti-cancer responses (e.g., promoting the accumula-
tion and/or activation of Tregs). Recently, attention has focused on
another cytokine belonging to the common gamma chain fam-
ily: IL-21. IL-21 can exert potent anti-tumor effects due to its
ability to induce and expand CD8+ CTLs and NK cells. Impor-
tantly, IL-21 suppresses FOXP3 expression and the expansion of
regulatory T cells (Tregs). Recently, it has been shown that tumor-
infiltrating lymphocytes expanded ex vivo with APCs engineered
to secrete IL-21 performed better than those expanded in the pres-
ence of IL-2 (71). Moreover, the CD8+ T cells expanded in the
presence of IL-21 exhibited a less differentiated, “young” pheno-
type. To date, there are no studies describing inclusion of IL-21 in
therapeutic vaccines. Yet, promising results have been obtained
in vitro: mature DCs transfected with IL-21 were superior in
priming naïve CD8+ T cells than non-transfected DCs (72).

MICROMILIEU RENDERING T CELLS DYSFUNCTIONAL
Both, chronic antigen expression and suboptimal priming in
the tumor-environment renders TA-specific T cells dysfunctional.
Chronic exposure to TA leads to exhausted T cells while subop-
timal priming due to poor antigen presentation at tumor sites
drives T cells into anergy (73, 74). These different aspects of T cell
function can be discerned by addressing expression of specific sets
of inhibitory receptors on TA-specific T cells. TA-specific CTLs
present in peripheral blood lymphocytes (PBL) or at tumor sites
have been shown to up-regulate PD-1 expression, which regulates
their expansion (75–77). Next to PD-1, also the inhibitory recep-
tors Tim-3 and LAG-3 can be upregulated on tumor-infiltrating T
cells and serve as markers for exhausted T cells. By contrast, anergic
T cells are characterized by BTLA expression (78). Notably, BTLA
has been detected on spontaneous Mart-1- and NY-ESO1-specific
CD8+ T cells in advanced melanoma patients (79, 80).

Expression levels of PD-1 on exhausted T cells correlate with
inhibition of different aspects of CTL function (81). As blocking
Abs display most affinity for PD-1high expressing cells, functions
inhibited due to low and/or intermediate PD-1 levels will not be
regained (i.e., IL-2, TNF-α production and proliferation and cyto-
toxic activity, and IFN-γ production, respectively). The observa-
tion that PD-1 block does not alleviate the function of TA-specific
CTLs on a per-cell basis argues in favor of combining this strategy
with blocking other immune check-point inhibitors. Indeed, stud-
ies performed in patients and in mice with advanced melanoma
showed that blockade of both PD-1 and Tim-3 acts synergisti-
cally to enhance TA-specific CD8+ T cell numbers and functions,
resulting in decreased tumor growth (82–84). Likewise, combin-
ing Lag-3 blockade with PD-1 blockade may enhance activity of
PD-1 blockade.

It has been shown that TA-specific CD8+ T cells exhibited
variable levels of dysfunction, which correlated with a specific

expression pattern of markers (80). BTLA blockade has been
shown to act in concert with PD-1 and Tim-3 blockades to further
enhance NY-ESO-1-specific CD8+ T cell expansion and function
(80). The specific combination of inhibitory and anergy-related
molecules might indicate a hierarchical loss of T cell function in
patients with advanced melanoma in context of chronic antigen
stimulation. Moreover, BTLA expression is inversely correlated
with CD8 T cell maturation and thus anergic BTLA+ T cells are
likely to represent young TA-specific CTLs. Recently, a positive
association of CD8+ T cells expressing BTLA with clinical response
to adoptive T cell therapy in late-stage melanoma patients has been
suggested by Haymaker (85).

Alternatively, these approaches may be even more active when
combined with other agents that activate or inhibit key molecular
regulators of T cell function, such as, for example, the trypto-
phan converting enzyme indoleamine-2,3-dioxygenase (IDO) and
the membrane-bound CD39 and CD73 that breakdown arginase.
IDO is highly expressed in both tumor cells and immune cells in
the tumor-environment and implicated in inhibiting anti-tumor
immunity by promoting the induction of anergic and/or reg-
ulatory T cells (86–89). Importantly, using pre-clinical animal
melanoma models it was recently shown that IDO is responsible
for mediating resistance to anti-CTLA-4 and anti-PD-1 ther-
apy (90). Two IDO inhibitors have entered clinical trials: the
tryptophan analog 1-methyl-tryptophan (1-MT) and the enzy-
matic inhibitor of IDO termed INCB024360. Both IDO inhibitors
have been effective in pre-clinical models, attenuating tumor
growth in wild type but not immuno-deficient mice (91, 92).
INCB024360 has now entered Phase II trials, where it will be
tested as a monotherapy in ovarian cancer and as a combination
therapy with ipilimumab (anti-CTLA-4) for metastatic melanoma
(Figure 2).

IMPLICATIONS FOR THERAPY DESIGN – FUTURE
DIRECTIONS
Our understanding in the mechanism of cross-presentation is
crucial in the design of vaccination strategies aimed to induce
protective immunity in the field of infectious diseases and can-
cer, which depends on the induction of both effector CD4+ and
CD8+ T cells. Enhanced immune protection was obtained by long
synthetic peptides compared to short peptides, which required
cross-presentation of DC, resulting in long-lasting T cell stimula-
tion that leads to the eradication of tumors (93, 94). Studies on
improving cross-presentation-based vaccinations have emerged as
a promising tool for immune intervention, based on many human
in vitro studies and murine in vivo work. Strong focus on DC-
targeting receptors in vivo that mediate endocytosis show potential
of efficient induction of CD8+ T cell cross-priming, but can also
lead to CD8+ T cell cross-tolerance. This fine tuning between
the induction of immunity or tolerance is dictated by the vari-
ous parameters that affect cross-presentation as mentioned under
the Sections “Human DC Subsets and Antigen Cross-Presentation
and Factors Determining Cross-Presentation,” the vaccine formu-
lation, DC subset, receptor-targeting, endocytosis, and maturation
stimuli. Many in vivo DC-targeting studies have been performed in
mice that have demonstrated effective induction of tumor CD8+

effector T cell responses through targeting of CLRs, such as CD205,
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FIGURE 2 | Immunotherapeutic strategies to enhance anti-tumor
immunity. Generation of a large pool of effector TA-specific T cells is
induced by the intradermal injection of anti-tumor vaccines. Targeting of the
vaccine to a particular skin DC subset is facilitated by modification with
specific glycans that bind either to DC-SIGN or Langerin. Subsequent
vaccine internalization induces presentation of TA-Ag and maturation of the
DCs. Matured DCs migrate to draining lymph nodes to prime TA-specific
CD8+ T cells and CD4+ T helper cells, leading to a large pool of cytotoxic
effector T cells that are capable to infiltrate the tumor lesion and lyse tumor
cells. Priming of TA-specific T cells may be enhanced by inclusion of

immunostimulators such as GM-CSF and IL-21 in the DC-targeting vaccine.
Systemic or intra-tumoral administered check-point inhibitors, such as
anti-PD-1 and anti-CTLA-4, release the break on the anti-tumor immune
response by limiting the activity of suppressive Treg and alleviate the
priming and/or function of TA-specific CTLs. Similarly, anti-tumor immunity
may be enhanced by manipulation of the local micromilieu via
administration of DC activating antibodies (e.g., anti-CD40) or of TLR
ligands that act directly on the tumor cells. It is anticipated that these
strategies may enhance the efficacy of DC-targeted vaccination. Tc,
cytotoxic CD8+ T cell; Th, T helper cell.

MR, CD207 (Langerin), CD209 (DC-SIGN), CLEC9A or other
cell-surface receptors like integrins, HSP receptors, and glycol-
ipids. In contrast, only a few of these DC-targeting vaccines have
been tested in human clinical trails. Easy translation from mouse
models to humans is complicated by the different expression levels
of DC-targeting receptors and DC restriction and usage of TLRs
between mouse and human. Moreover, still little is known on the
cross-presenting capacity of human DC in situ. This has hampered
the development of novel-targeted vaccination strategies for clin-
ical applications, and is a complicated task to fulfill in the coming
years. Highly effective DC-targeting therapies should overcome
the mechanism of immune escape dictated by the tumor microen-
vironment. Therefore, combined regimens consisting of strategies
to improve DC-induced T cell responses, increasing the frequency
of anti-tumor T cells, reversing T cell exhaustion that stimulate
trafficking to the tumor site, along with a blockade of immune-
inhibitory pathways, all may be necessary to achieve clinical benefit
for cancer patients.
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