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Abstract

The traditional scale invariant feature transform (SIFT) method can extract distinctive fea-

tures for image matching. However, it is extremely time-consuming in SIFT matching

because of the use of the Euclidean distance measure. Recently, many binary SIFT

(BSIFT) methods have been developed to improve matching efficiency; however, none of

them is invariant to mirror reflection. To address these problems, in this paper, we present a

horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addi-

tion to a novel image matching approach. First, 16 cells in the local region around the SIFT

keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is

transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT

descriptor is obtained after binarization and reverse coding. To improve the matching speed

and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching

strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed.

Experimental results on the UKBench dataset show that the proposed method not only

solves the problem of mirror reflection, but also ensures desirable matching accuracy and

speed.

Introduction

The local feature point has been successfully used in pattern recognition and computer vision

applications, such as image retrieval [1], object recognition [2], gesture recognition [3], texture

recognition [4], 3-D reconstruction [5], building panoramas [6], and wide baseline matching

[7,8]. Image matching based on local features generally consists of three stages: feature point

extraction, description, and matching. In feature point extraction, reliable points of interest in

the image are extracted as feature points. A good descriptor should be robust to photometric

transformations, such as brightness and highlight, while being invariant to geometrical trans-

formations, such as rotation, scaling, viewpoint, and reflection [9].

Until recently, numerous feature descriptors have been proposed, of which the scale invari-

ant feature transform (SIFT) descriptor proposed by Lowe [10] is one of the most successful
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and popular local image feature descriptors. The SIFT descriptor, which is generated with the

gradient distribution of the local region, was proven to be the best local invariant feature

descriptor by Mikolajczyk and Schmid [11]. However, its matching inefficiency slows down

the entire process. Much research has been conducted on improving the SIFT algorithm. The

PCA-SIFT [12] descriptor improves the efficiency of the SIFT algorithm by reducing the

dimension of the SIFT descriptor vector from 128 to 36. Additionally, GLOH [11] is an exten-

sion of the SIFT descriptor that is designed to increase its robustness and distinctiveness, to a

certain extent. Morel and Yu [13] proposed an affine SIFT, which simulates all the distortions

caused by variations in the direction of a camera’s optical axis.

In the matching procedure, the 128-dimensional (128-D) descriptors of all keypoints in two

images are extracted. The 128-D descriptor of each keypoint in the first image is compared

with that of the second image. The Euclidean distance is used as the similarity measurement of

the two descriptors to locate the nearest matching keypoint. However, the SIFT algorithm usu-

ally generates hundreds to thousands of keypoints for each image. Hence, the SIFT features

could be numerous in a large-scale image database. Moreover, the distance computation

involves calculating the square root. Thus, image matching in the SIFT method for a large-

scale image database would be extremely time-consuming. To solve this problem, several

binary SIFT (BSIFT) methods, which convert the SIFT descriptors to a binary representation,

have been proposed in the last few years. The Hamming distance is used to measure the dis-

tance between two BSIFT descriptors, which takes advantage of bit-wise operations instead of

the root mean square, and leads to a significant decrease in feature matching time. Ni [14] first

proposed a binary string approach for SIFT keypoints. His method exploited the Hamming

distance to measure the similarity of two BSIFT vectors. Chen et al. [15] proposed comparing

the absolute difference between two adjacent values in a descriptor with the threshold, and

then representing the comparison result with binary digits (zero or one), which generated a

128-bit BSIFT descriptor string. This approach was simple, while drastically decreasing the

matching time; however, the matching accuracy rate also decreased. Zhou et al. [16] compared

the 128 values of the SIFT descriptor individually with two threshold values. The comparison

results were represented by three combinations: 11, 10, and 00. Correspondingly, a 256-bit

BSIFT descriptor string was obtained. This approach improved matching accuracy to some

extent; however, the matching time increased compared with the approach proposed by Chen

et al.

The aforementioned BSIFT methods and their improved algorithms mostly ignore the

problem of mirror reflection, which results in a significant increase in the mismatch rate for a

mirror image pair. Guo [17] presented a mirror reflection invariant descriptor (MIFT), which

was inspired by SIFT. However, the matching time of MIFT is comparable to that of SIFT.

To address these problems, this paper presents a new horizontal or vertical mirror reflec-

tion invariant binary descriptor named MBR-SIFT, in addition to a novel image matching

approach. MBR-SIFT not only binarizes the SIFT descriptor, but also takes into consideration

the problem of mirror reflection. First, 16 cells in the local region around the SIFT keypoint

are reorganized, and then a 128-D vector of the SIFT descriptor is transformed into a recon-

structed vector called R-SIFT according to eight directions. Finally, MBR-SIFT is obtained

after R-SIFT binarization and reverse coding. To improve the matching speed and accuracy, a

fast matching algorithm that includes a coarse-to-fine two-step matching strategy and two

types of similarity measure for the MBR-SIFT descriptor are proposed. To examine the

effectiveness of the proposed MBR-SIFT descriptor, it is also compared with other local

descriptors.

MBR-SIFT
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Related work

The SIFT algorithm extracts image features by searching the keypoints in the image, and then

calculates the descriptors from the local region around the keypoints. As shown in Fig 1a, the

local region is first divided into 16 cells with eight directions in each cell, and each direction is

given a value. Finally, the 128-D SIFT descriptor, as shown in Fig 1d, isobtained.

Fig 1. Illustration of the descriptor organization of SIFT with and without mirror reflection.

https://doi.org/10.1371/journal.pone.0178090.g001
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The SIFT binarization approach is to transform the 128-D descriptor (d0, d1,. . ., d127) into a

set of binary numeric strings. The commonly used binarization approaches can be classified

into two common categories. The first category is proposed to compare the differential value

Adi of the two adjacent values in a descriptor with the predefined threshold M:

Adi ¼
jdiþ1 � dij; if i < 127

jd0 � d127j; otherwise

(

ð1Þ

bi ¼
0; if Adi � M

1; otherwise

(

ð2Þ

The comparison result bi is zero or one, which is only denoted by one bit [15].

The second category directly compares each di of the 128-D descriptor (d0, d1,. . ., d127) with

two thresholds, M1 and M2:

bði; iþ 128Þ ¼

ð1; 1Þ; if di > M1

ð1; 0Þ; if M2 < di � M1

ð0; 0Þ; if di � M2

8
><

>:
ð3Þ

The comparison result is 11, 10, and 00, which is denoted by two bits [16]:

In essence, the first category converts the original 128 decimal values to a 128-bit binary

value, which decreases the memory requirements and reduces the matching time. The problem

of this type of approach is that it weakens the discriminative power of the SIFT descriptors.

Regarding the discriminative power of SIFT descriptors, the second category is better than the

first; however, its matching speed relative to the first category is slower.

The number of mismatched pairs would significantly increase for a mirror image pair,

whether the matched features are SIFT descriptors or BSIFT descriptors. As shown in Fig 1b,

once the local region around the keypoint is horizontally reflected, four columns comprised of

16 cells, in addition to eight directions in each cell are correspondingly horizontally reflected,

and the corresponding 128-D SIFT descriptor is shown in Fig 1e. By comparing Fig 1e with

Fig 1d, we can easily identify that the difference between both SIFT descriptors is large, which

implies that SIFT is not horizontal mirror reflection invariant. Once the local region around

the keypoint is vertically reflected, as shown in Fig 1f, the corresponding 128-D SIFT descrip-

tor is the same as the scenario with the horizontal mirror reflection. Thus, SIFT is also not ver-

tical mirror reflection invariant. Similarly, the binary SIFT descriptor is also not horizontal or

vertical mirror reflection invariant.

Our approach

An intuitive idea to make a BSIFT descriptor mirror reflection invariant is to artificially reflect

one of the matching image pairs and perform image matching once again. This approach is

simple; however, the time for matching is increased because of the repetitive execution of the

SIFT algorithm and binarization operation. The BSIFT descriptor of the mirror reflection

image can be achieved if we conduct a simple operation on the original BSIFT descriptor,

which leads to savings in computational time. The proposed binarization method, MBR-SIFT,

is based on this idea.

MBR-SIFT
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SIFT descriptor reconstruction

By analyzing the structure of the SIFT descriptor, we found that the connection between the

BSIFT descriptors before and after mirror reflection can be built by reconstructing the SIFT

descriptor.

As shown in Fig 2a, the second and fourth columns of the 16 cells are reorganized in the

reverse of their original order in Fig 1a, and correspondingly, in Fig 2b, the SIFT descriptor is

reconstructed, in which the order of the 16 cells is “1,2,3,4,8,7,6,5,9,10,11,12,16,15,14,13.” Simi-

larly, in Fig 2c and 2d, the order of the 16 cells in the horizontal or vertical mirror image is

reconstructed as “13,14,15,16,12,11,10,9,5,6,7,8,4,3,2,1.” It can be observed that the order of

the 16 cells for the image and its mirror image just meets the reversal relation. Additionally,

each cell consists of eight oriented gradients, that is, “A1B1C1D1E1F1G1H1” for the first cell in

Fig 1a and “A1H1G1F1E1D1C1B1” for the same cell after mirror reflection in Fig 1b and 1c. It

can be observed that there is no reversal relation. To ensure the reversal relation, eight oriented

gradients in 16 cells in Fig 2a are reorganized by their respective directions, and the reorga-

nized SIFT descriptor, hereinafter referred to as the R-SIFT descriptor, is obtained, as shown

in Fig 2e and 2f. The 128 elements of the original SIFT descriptor are organized by 16 cells and

then eight directions. By contrast, the 128 elements of the R-SIFT descriptor are organized by

eight directions and then 16 cells, which ensures the reversal relation between 16 elements in

same direction for the original image and its mirror image.

R-SIFT binarization

We denote the R-SIFT descriptor by the 128-D vector (D0, D1,. . ., D127) and the differential

value by ADi(i = 0, 1,. . ., 127), given by

ADi ¼
Diþ1 � Di if modðiþ 1; 16Þ 6¼ 0

Di� 15 � Di otherwise

(

ð4Þ

Fig 2. Illustration of the descriptor organization of R-SIFT with and without mirror reflection.

https://doi.org/10.1371/journal.pone.0178090.g002
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The modulo operation in Eq (4) ensures that ADi is the difference between adjacent values in

the same direction.

Two SIFT binarization methods for ADi are proposed to work with the following fast

matching algorithm. The first is to compare ADi with zero, and the comparison result is zero

or one, only denoted by one bit. Thus, the 128-D R-SIFT descriptor is transformed into a

128-bit binary string denoted as BR-SIFT1: fb1
0
; b1

1
; . . . ; b1

127
g. This procedure can be illustrated

as follows:

b1

i ¼
1 if ADi � 0

0 otherwise

(

ð5Þ

The second SIFT binarization method is to compare ADi with a threshold (±T), and the

comparison result is 00, 01, 10, or 11, represented by two bits. Thus, the 128-D R-SIFT descrip-

tor is transformed into a 256-bit binary string denoted as BR-SIFT2: fb2
0
; b2

1
; . . . ; b2

254
; b2

255
g.

This procedure can be illustrated as follows:

ðb2

2�i; b
2

2�iþ1
Þ ¼

ð0; 0Þ if ADi � ð� TÞ

ð0; 1Þ if ð� TÞ < ADi < 0

ð1; 0Þ if 0 � ADi < T

ð1; 1Þ if ADi � T

8
>>>><

>>>>:

ð6Þ

where T is a positive value defined as

D ¼

X127

j¼0

Dj

128
ð7Þ

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X127

j¼0

ðDj � DÞ2

128

v
u
u
u
u
t

ð8Þ

T ¼ a� sþ b ð9Þ

where D and σ are the mean and standard deviation of the 128-D R-SIFT descriptor

(D0, D1,. . ., D127), respectively; and a and b are constants. Through numerous experiments,

the optimal a and b values were determined to be 2.3 and 0, respectively.

Reverse coding

After constructing the BR-SIFT1 and BR-SIFT2 descriptors for the original image, we illustrate

how to construct their corresponding descriptors for its horizontal and vertical mirror image

denoted as MBR-SIFT1 and MBR-SIFT2, respectively.

From Table 1, it can be observed that the R-SIFT descriptors of the original image and its

mirror image have a reversal relation. Thus, after the differential operation, with the exception

that b1
15

is changed into ~b1
15

, where ~ represents the NOT operator, the remaining bits in

direction A of the BR-SIFT1 and MBR-SIFT1 descriptors are a mirror of each other. Regarding

the first 15 bits in direction A, the MBR-SIFT1 descriptor can be recovered by scanning the

BR-SIFT1 descriptor in reverse order and then performing the bitwise NOT operation. Addi-

tionally, the order of the eight directions in the BR-SIFT1 descriptor for the original image is

MBR-SIFT
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“ABCDEFGH.” Despite this, the order of the eight directions in the MBR-SIFT1 descriptor for

its mirror image is “AHGFEDCB;” therefore, we must exchange 16 binary values of directions

B and H, directions C and G, and directions D and F in the BR-SIFT1 descriptor. Under this

scheme, the MBR-SIFT1 descriptor is constructed from the BR-SIFT descriptor. Similarly,

MBR-SIFT2 can also be constructed from BR-SIFT2; the difference is that the length of the

descriptor for BR-SIFT2 is 256 bits. In Eq (6), it can be observed that if two differential values

are symmetric with respect to the axis, their encoding value is also inverse, that is, (0,0) and

(1,1), and (0,1) and (1,0). Therefore, in the procedure of the bitwise NOT operation, (0,0) and

(1,1), and (0,1) and (1,0) are exchanged.

We compare the time complexity between the proposed MBR-SIFT method and original

BSIFT method. Both the MBR-SIFT and BSIFT methods achieve 128-bit or 256-bit binary

descriptors after the differential operation. Unlike BSIFT, to improve matching efficiency and

accuracy, the MBR-SIFT method obtains two types of binary descriptors, BR-SIFT1 and

BR-SIFT2, from the differential values. Instead of performing the SIFT algorithm on the mir-

ror reflected image, the MBR-SIFT1 and MBR-SIFT2 binary descriptors for the mirror

reflected image are directly constructed from BR-SIFT1 and BR-SIFT2, respectively, by inverse

coding, which significantly reduces the computational time. The proposed binarization algo-

rithm includes bitwise operations, such as binary digits exchange. The computational speed of

MBR-SIFT is faster than that of SIFT and slightly lower than that of BSIFT.

Two-step matching

To consider matching accuracy and computational efficiency, we present a coarse-to-fine two-

step matching strategy. Coarse matching is performed based on the BR-SIFT1 and MBR-SIFT1

descriptors. The Hamming distance is used to measure the similarity between descriptors. The

keypoints that correspond to the minimum distance are selected as the candidate keypoints for

further use. Then, in the refining stage, the matching pair is selected from the candidate key-

points using the improved Hamming distance as the similarity measurement between the

BR-SIFT2 and MBR-SIFT2 descriptors.

Coarse matching

Suppose I1 and I2 are an image pair to be matched. For example, let B1
1

denote the BR-SIFT1

descriptor of keypoint a1 in I1, and B1
2

and M1
2

denote the BR-SIFT1 and MBR-SIFT1 descrip-

tors, respectively, of keypoint a2 in I2. Then calculate the Hamming distance between B1
1

and

B1
2
, and B1

1
and M1

2
, and take the smaller value as the distance between keypoints a1 and a2. In

coarse matching, the BR-SIFT1 descriptor of each keypoint in I1 is compared with that of both

the BR-SIFT1 and MBR-SIFT1 descriptors in I2. Finally, the first n keypoints with the smallest

Table 1. Comparison of descriptors with or without reflection in the A direction.

original R-SIFT

descriptor

A1 A2 A3 A4 A8 A7 A6 A5 A9 A10 A11 A12 A16 A15 A14 A13

original Differential

value

A2- A1 A3- A2 A4- A3 A8- A4 A7- A8 A6- A7 A5- A6 A9- A5 A10- A9 A11- A10 A12- A11 A16- A12 A15- A16 A14- A15 A13- A14 A1- A13

original BR-SIFT1

descriptor

b0
1 b1

1 b2
1 b3

1 b4
1 b5

1 b6
1 b7

1 b8
1 b9

1 b10
1 b11

1 b12
1 b13

1 b14
1 b15

1

mirror R-SIFT

descriptor

A13 A14 A15 A16 A12 A11 A10 A9 A5 A6 A7 A8 A4 A3 A2 A1

mirror Differential

value

A14- A13 A15- A14 A16- A15 A12- A16 A11- A12 A10- A11 A9- A10 A9- A9 A6- A5 A7- A6 A8- A7 A4- A8 A3- A4 A2- A3 A1- A2 A13- A1

mirror MBR-SIFT1

descriptor

~b14
1 ~b13

1 ~b12
1 ~b11

1 ~b10
1 ~b9

1 ~b8
1 ~b7

1 ~b6
1 ~b5

1 ~b4
1 ~b3

1 ~b2
1 ~b1

1 ~b0
1 ~b15

1

https://doi.org/10.1371/journal.pone.0178090.t001
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distance in I2 are selected as the candidate keypoints, where n is computed as

n ¼
2 if dmin < d0min � ratio

5 otherwise

(

ð10Þ

where dmin and d0min represent the smallest distance and second smallest distance, respectively,

and ratio 2 [0, 1] is a predefined threshold value. If ratio is equal to one, n has a higher proba-

bility of being two, while too few candidate keypoints affect the matching accuracy. By con-

trast, if ratio is equal to zero, n has a higher probability of being five, while too many candidate

keypoints decrease the matching speed. Considering these two aspect of the matching prob-

lem, ratio is set to 0.5.

Fine matching

We redefine the similarity measurement between two keypoints based on the Hamming dis-

tance. As shown in Algorithm 1, the new similarity measurement is designed for 256-bit

BR-SIFT2 or MBR-SIFT2 descriptors. For these 256-bit binary descriptors, the Hamming dis-

tance is calculated once per four bits. If the result is zero, counter counter1 or counter2 is

increased by one, which can further improve matching accuracy.

Algorithm 1: Similarity Measurement
Input:Imagepair to be matchedI1 and I2, BR-SIFT2descriptorfb2

1;0
; b2

1;1
; . . . ; b2

1;255
g

of SIFT keypointa1 in I1, BR-SIFT2binarydescriptorfb2
2;0
; b2

2;1
; . . . ; b2

2;255
g and

MBR-SIFT2binarydescriptorfm2
2;0
;m2

2;1
; . . . ;m2

2;255
g of candidatekeypointa2 in I2.

Output:DistanceD betweenkeypointsa1 and a2.
For i = 0 to 63

t1 ¼ fb2
1;i�4; b

2
1;i�4þ1

; b2
1;i�4þ2

; b2
1;i�4þ3

g

t2 ¼ fb2
2;i�4; b2

2;i�4þ1
; b2

2;i�4þ2
; b2

2;i�4þ3
g

t3 ¼ fm2
2;i�4;m

2
2;i�4þ1

;m2
2;i�4þ2

;m2
2;i�4þ3

g

If Hamming(t1, t2) = 0
counter1= counter1+ 1

If Hamming(t1, t3) = 0
counter2= counter2+ 1

End For
If counter2> counter1
counter= counter2

else counter= counter1
D = arccos(counter/64)

In fine matching, the BR-SIFT2 descriptor of each keypoint in I1 is compared with the cor-

responding n candidates in I2 and then we determine the matching pairs according to

match or not?
match if valsð1Þ < valsð2Þ � distratio

not match otherwise

(

ð11Þ

where vals(1) and vals(2) represent the smallest distance and second smallest distance,

respectively. Additionally, the predefined threshold distratio is empirically set to 0.84 in the

experiment.

Experiment

We evaluated the proposed approach, MBR-SIFT, on a public dataset, the UKBench dataset

[18], which contains 10,200 images from 2,550 object/scene groups. Each group consists of

four images taken from different views or in different imaging conditions.

MBR-SIFT
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To demonstrate the effectiveness of the improved similarity measurement, we also imple-

mented another version called MBR-SIFT’, which still used the Hamming distance instead of

the improved Hamming distance for fine matching. Moreover, we also implemented the origi-

nal SIFT, and Chen’s [15] and Zhou’s [16] methods to compare accuracy and efficiency. More-

over, several local binary features, such as CS-LBP [19], BRIEF [20], BRISK[21], and FREAK

[22], have been proposed recently with promising performance in image matching, and we

also implemented them to compare their potential with BSIFT in image matching. All of these

methods used Eq (11) to determine whether the keypoint pairs were matched.

The results are presented with recall versus 1-precision [11,12] given by

recall ¼
tn
en

ð12Þ

1 � precision ¼
fn
qn

ð13Þ

where tn and en represent the number of correct matches and ground truth number of

matches between the images, respectively, and fn and qn represent the number of false matches

and total number of matches between the images, respectively. To evaluate the performance of

the image matching method, we need to determine matching pairs as much as possible with

high accuracy [23], that is, when 1-precision is the same, the performance for the method with

a higher recall is better.

Mirror reflection

Fig 3 contrasts the matching performance of CS-LBP, BRIEF, BRISK, FREAK, SIFT, Chen’s

method, Zhou’s method, and MBR-SIFT for images that had undergone reflection transforma-

tions (the first row in Fig 3a–3d shows the matching results of the first four methods, and the

second row shows the matching results of the latter four methods), in which the blue lines and

red thick lines represent the correct matches and false matches, respectively. Table 2 shows the

matching results over the mirror reflection. It can be observed from Table 2 that the perfor-

mance of MBR-SIFT is superior to the other methods in terms of accuracy and recall. Addi-

tionally, the image pairs of Fig 3a and 3b were generated from an artificial reflection. By

contrast, the image pairs of Fig 3c and 3d originated from a mirror image, which implies lower

similarity. Therefore, in terms of MBR-SIFT, the recall of Fig 3a and 3b is much higher than

that of Fig 3c and 3d. In terms of CS-LBP and BRIEF, the accuracy and recall of Fig 3a–3d are

zero, which demonstrates the worst performance. The main reason is that both CS-LBP and

BRIEF are not robust to rotation and scaling.

Matching accuracy and efficiency

To evaluate the accuracy performance of MBR-SIFT, the nine methods, CS-LBP, BRIEF,

BRISK, FREAK, SIFT, Chen’s method, Zhou’s method, MBR-SIFT’, and MBR-SIFT, were

used in the matching experiments. We randomly selected 200 image pairs for the matching

experiments. Some examples of image pairs with rotation, scale, viewport, lighting, and blur

variance from the UKBench dataset are shown in Fig 4.

We calculated recall and 1-precision under different values of distratio for the several image

pairs. With the threshold distratio ranging from 0.45 to 0.85, with an interval of 0.05 for the

SIFT method, and from 0.72 to 0.88 with an interval of 0.02 for the remaining methods, we

achieved the average results shown in Fig 5.
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First, we compared five methods: SIFT, Chen’s method, Zhou’s method, MBR-SIFT’, and

MBR-SIFT. Compared with the other methods, it can be observed from Fig 5 that MBR-SIFT

achieved the highest matching accuracy. This is mainly because the improved distance mea-

surement was used, which led to a stricter matching criteria than that of the other methods,

and thus achieved higher matching accuracy. Despite this, recall was slightly decreased

Fig 3. Comparing the matching performance of CS-LBP, BRIEF, BRISK, FREAK, SIFT, Chen’s method, Zhou’s

method, and MBR-SIFT under mirror reflected transformation.

https://doi.org/10.1371/journal.pone.0178090.g003
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compared with other methods. However, matching accuracy is more important than recall in

image matching.

Moreover, we also compared CS-LBP, BRIEF, BRISK, and FREAK with SIFT in addition to

its variants. As shown in Fig 5, all of the four methods, CS-LBP, BRIEF, BRISK, and FREAK,

performed much worse than SIFT and its variants in accuracy and recall. This is mainly

because their discriminative power is not as good as SIFT and its variant feature BSIFT.

As shown in Table 3, the efficiency of the SIFT method was the lowest among the nine

methods. Regarding MBR-SIFT, its computational time was approximately the same as that of

MBR-SIFT’, slightly higher than that of Chen’s method, and lower than that of Zhou’s method.

This is because Chen’s and Zhou’s methods generated 128-bit and 256-bit binary descriptors,

respectively, whereas MBR-SIFT and MBR-SIFT’ generated binary descriptors that included

both 128 bits and 256 bits. The efficiency of the other four methods, CS-LBP, BRIEF, BRISK,

and FREAK, was higher than that of SIFT and its variants. This is because the number of fea-

tures extracted by the four methods was significantly lower than that of SIFT and its variants.

Table 2. Matching results over mirror reflection.

Image pair Method # of feature points (left/right) or (up/ down) # of matches # of false matches Accuracy (%) Recall (%)

(a) CS-LBP 200/289 1 1 0 0

BRIEF 196/287 10 10 0 0

BRISK 255/253 10 10 0 0

FREAK 301/296 33 31 6.06 0.67

SIFT 1051/1072 18 2 88.89 1.52

Chen’s 1051/1072 36 22 38.89 1.33

Zhou’s 1051/1072 15 9 40.00 0.57

MBR-SIFT 1051/1072 214 5 97.66 19.90

(b) CS-LBP 126/122 1 1 0 0

BRIEF 125/121 13 13 0 0

BRISK 138/133 14 10 28.57 3.01

FREAK 151/148 35 25 28.57 6.76

SIFT 926/900 15 6 60.00 1.00

Chen’s 926/900 27 21 22.22 0.67

Zhou’s 926/900 17 12 29.41 0.56

MBR-SIFT 926/900 367 4 98.91 40.33

(c) CS-LBP 141/153 1 1 0 0

BRIEF 131/148 11 11 0 0

BRISK 145/150 7 5 28.57 1.38

FREAK 215/225 30 25 16.67 2.33

SIFT 350/334 8 4 50.00 1.19

Chen’s 350/334 21 16 23.81 1.50

Zhou’s 350/334 13 7 46.15 1.80

MBR-SIFT 350/334 23 3 86.96 5.99

(d) CS-LBP 31/37 0 0 0 0

BRIEF 30/36 0 0 0 0

BRISK 101/89 7 7 0 0

FREAK 156/162 24 24 0 0

SIFT 225/354 0 0 0 0

Chen’s 225/354 1 1 0 0

Zhou’s 225/354 2 2 0 0

MBR-SIFT 225/354 13 1 92.31 5.33

https://doi.org/10.1371/journal.pone.0178090.t002
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Fig 4. Examples of image pairs.

https://doi.org/10.1371/journal.pone.0178090.g004
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Parameter analysis

Next, we conducted the experiments on 200 image pairs to investigate the impact of the num-

ber of candidate keypoints n on efficiency and accuracy.

For convenience, we ignored the criteria in Eq (10), where n is set in the range (0,40). In

terms of efficiency, as shown in Fig 6a, the matching time increased as n increased. It can be

observed from Fig 6b that the accuracy first increased as n increased to four, and then

remained stable as n continued to increase. This implies that the candidate keypoints through

coarse matching contained the correct matching pairs when n was greater than a certain value.

In considering both matching time and accuracy, the maximum of n was set to five.

To improve matching efficiency, n is equal to either two or five in Eq (10). The value of n is

determined by ratio. Fig 7a and 7b show the matching time and accuracy for different ratios,

respectively. It can be seen from Fig 7a and 7b that both the matching time and accuracy

decreased as the ratio increased, that is, the smaller the value of ratio, the longer the matching

time and the higher the matching accuracy, and vice versa. Ratio is in the interval [0,1]. When

ratio was set to zero, the value of n was five. When ratio was set to one, the value of n was two.

This implies that the value of ratio only affected the matching time and accuracy for n between

two and five. Therefore, in considering both the matching time and accuracy, ratio was set to

0.5.

Conclusion

In this paper, we presented a binary SIFT descriptor (MBR-SIFT), which was achieved by

reconstructing the SIFT descriptor. The MBR-SIFT descriptor is invariant to mirror reflection

Fig 5. Recall versus 1-precision for nine methods.

https://doi.org/10.1371/journal.pone.0178090.g005

Table 3. Performance for the nine methods.

- CS-LBP BRIEF BRISK FREAK SIFT Chen’s Zhou’s MBR-SIFT’ MBR-SIFT

Avg. matching time for an image(s) 7.89 1.20 4.09 5.86 34.72 13.42 23.15 15.88 15.91

Matching speedup ratio(relative to SIFT) 4.40 28.93 8.49 5.92 1 2.59 1.50 2.19 2.18

https://doi.org/10.1371/journal.pone.0178090.t003
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while being robust to rotation, scaling, viewpoint, lighting, and blur changes. Additionally, we

also presented a coarse-to-fine two-step matching strategy, in addition to a novel similarity

measure to further improve the performance of image matching. The experimental results

show that the proposed method can achieve higher matching accuracy, whereas recall is

slightly lower. In future research, we will consider how to ensure both high accuracy and

recall.
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