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Abstract: This study investigates the gait characteristics of elderly women, aged more than 65 years,
with subthreshold insomnia stage at various walking speeds. A total of 392 participants (insomnia:
202 and controls: 190) wearing shoe-type inertial measurement units completed walking tests on a
treadmill for a duration of 1 min at slower, preferred, and faster speeds. The insomnia group indicated
lower pace parameters (range of Cohen’s d: 0.283–0.499) and the single support phase (Cohen’s d:
0.237), greater gait variability (range of Cohen’s d: 0.217–0.506), and bilateral coordination (range
of Cohen’s d: 0.254–0.319), compared with their age-matched controls; the coefficient of variance
(CV) of the stance phase at the faster speed condition was a crucial variable for distinguishing
between insomnia and control groups. In addition, the insomnia group demonstrated insufficient
gait adaptation at the slower and preferred speeds, as indicated by the CVs of the stride length,
stride time, and step time. In particular, participants with worsened insomnia symptoms or sleep
problems showed that these worse gait patterns may increase the potential risk of falling in elderly
women. Thus, elderly women with subthreshold insomnia stage need to improve their sleep quality
to enhance their physical functions.

Keywords: sleep quality; menopause; dynamic stability; inertial measurement units (IMU); walking
speed; gait variability

1. Introduction

Gait, which is a task involving forward movement and maintenance of stability during walking,
is one of the fundamental motor functions in humans [1]. Gait analysis has been performed to evaluate
various health-related factors such as physical functions, health status, and quality of life, as well as
disease progression [2,3]. In addition, it has been used to investigate the effect of gait disturbances
on healthy individuals as well as pathological patients [3]. For instance, a slower walking speed
indicates the decline of gait stability in older adults [3–6]. In addition, gait variability (GV) [7,8] and
the parameters of bilateral coordination, such as gait asymmetry (GA) and phase coordinate index
(PCI) [9,10], are used to evaluate dynamic stability during gait tasks. Many studies have reported that
slower walking speed and greater GV may indicate the decline of gait ability [3–7,10], which may
increase the risk of falling in elderly adults.
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Insomnia is defined as a sleep dissatisfaction, either qualitatively or quantitatively [11,12]. It is the
most common sleep disorder, occurring in 6–18% of the general population [13]. Insomnia is common
in elderly adults [7] in particular, with an overall prevalence of 30–48% [14,15]. Insomnia symptoms,
such as difficulty in initiating sleep, difficulty in maintaining sleep due to frequent awakening,
or problems returning to sleep after awakening, and early-morning awakening with an inability to
return to sleep [11], result in lesser sleep time and poorer sleep quality [12]. These insomnia symptoms
may also be associated with mental disorders such as depression, anxiety [11,12], and cognitive
function [11,16].

The previously reported significant factors related to insomnia include gender, age, socioeconomic
status, and psychiatric comorbidities [15]. The number of menopausal elderly women suffering from
sleep disturbances or insomnia is higher, compared to the number of elderly men of the same age,
due to estrogen hormone deficiency [12]. Physical activity (PA) can reduce insomnia symptoms and
enhance sleep quality [17,18]; however, menopausal elderly women have muscle weakness, which may
lead to reduced PA [19,20]. In addition, previous studies reported insomnia symptoms and sleep
disturbances are associated with the falling risk in elderly adults [21,22]. Thus, elderly women with
insomnia may impose a potential societal cost [12,23], which may decrease the quality of life.

Insomnia may also affect the gait stability in older adults, because it may indicate a poor sleep
quality [11]; Agmon et al. [24] reported that poor sleep quality in older adults decreased the walking
speed and increased GV values during dual tasks, indicating a potential risk of falling in elderly adults.
However, they suggested further studies to elucidate the relationship between sleep quality and gait
characteristics. Participants who faced the subthreshold insomnia stage are not clinical insomnia
patients, but they may suffer from poor sleep quality and sleep problems. Thus, the evaluation of gait
ability with respect to subthreshold insomnia should be utilized as a reference to mitigate falling risks
and implement intervention programs to enhance gait ability in elderly women.

Moreover, most previous studies used averaged data through repeated trials to collect multiple
steps (not continuous steps); however, with this method, it may be difficult to replicate the natural
walking patterns of individuals [25]. Recently, a significant decline in gait ability has been reported,
based on the quantitative speed value range (e.g., ±20% of the individual’s preferred walking
speed); this speed value range has been validated in healthy young adults [26], elderly adults [27],
and Parkinson’s patients [28]. Thus, gait stability at slower, faster speeds, and self-preferred speeds may
be beneficial to understanding the gait characteristics in elderly women with subthreshold insomnia.

In view of the above, this study investigated gait characteristics in elderly women aged over
65 years in the subthreshold insomnia stage under various conditions, such as slower, preferred,
and faster speeds. We hypothesize that our insomnia group, which exhibited a subthreshold insomnia
stage, would exhibit reduced gait stability, indicated by a higher GV and bilateral coordination at
slower or faster speed conditions. In addition, we hypothesize that this group would exhibit an
insufficient gait adaptation ability with an increase in walking speed.

2. Materials and Methods

2.1. Study Population

Participants were recruited as part of a community-wide survey in Busan metropolitan city from
February to December 2019. We contacted 1200 elderly women over 65 years living in the community,
and 700 people responded (response rate: 58.3%). Eventually, we recruited 420 participants (insomnia
group: 220, controls: 200) for this study (recruitment rate: 60.0%). Twenty-eight participants were excluded
from the study, because they either could not complete the three treadmill test trials (n = 13) successfully
or withdraw for the personal reasons in the test day (n = 15). In total, 392 participants (insomnia: 202,
controls: 190) successfully performed the three treadmill trial walking tests (Figure 1 and Table 1). None of
the participants had a history of musculoskeletal or neurological problems that affect gait, and all could
walk without support. All the participants read and signed an informed consent form approved by the
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Institutional Review Board of Dong-A University (IRB number: 2-1040709-AB-N-01-201901-HR-011-02).
Moreover, this study was carried out in accordance with the Declaration of Helsinki and the ethical
guidelines for human subjects of the Institutional Review Board of Dong-A University.
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Figure 1. Recruitment process flowchart. 

Table 1. Demographic characteristics of the study participants. 

Variables 
Insomnia 
(n = 202) 

(min to max, 95% CI) 

Controls 
(n = 190) 

(min to max, 95% CI) 

T-Test 
p-Value Cohen’s d 

Age (years) 
71.3 ± 4.6 

(70.7 to 72.0) 
71.4 ± 4.9 

(70.7 to 72.1) 
0.876 0.016 

Height (cm) 
155.5 ± 5.3 

(154.7 to 156.2) 
154.9 ± 5.9 

(154.1 to 155.8)  
0.330 0.098 

Body weight (kg) 
58.8 ± 7.3 

(57.8 to 59.8) 
59.4 ± 7.9 

(58.3 to 60.5) 
0.438 0.078 

BMI (kg/m2) 
24.3 ± 2.9 

(23.9 to 24.7) 
24.8 ± 3.1 

(24.3 to 25.2) 
0.150 0.147 

Body fat percentage (%) 
32.9 ± 5.9 

(32.1 to 33.7) 
33.0 ± 6.6 

(32.0 to 33.9) 
0.878 0.016 

ISI (score) 
10.9 ± 2.4 

(10.5 to 11.2) 
2.0 ± 2.5 

(1.6 to 2.3) 
<0.001 3.639 

MMSE (score) 
27.4 ± 2.6 

(27.0 to 27.8) 
27.9 ± 2.1 

(27.6 to 28.2) 
0.022 0.233 

SRI-MF (score) 
5.3 ± 6.3 

(4.4 to6.2) 
3.1 ± 4.9 

(2.4 to 3.8) 
<0.001 0.396 

Vigorous PAs (Mets/week) 
997.8 ± 1385.7 

(805.6 to 1190.1) 
1118.5 ± 1696.8 

(875.7 to 1361.3) 
0.440 0.078 

Moderate PAs (Mets/week) 
618.9 ± 743.1 

(515.8 to 722.0) 
817.7 ± 951.3 

(681.5 to 953.8) 
0.021 0.232 

Walking PAs (Mets/week) 
787.8 ± 927.5 

(659.1 to 916.5) 
997.7 ± 977.76 

(857.8 to 1137.7) 
0.030 0.220 

Total PAs (Mets/week) 
2404.5 ± 2304.1 

(2084.8 to 2724.2) 
2933.9 ± 2487.9 

(2577.9 to 3290.0) 
0.029 0.213 

Mean ± standard deviation; BMI: body mass index; ISI: insomnia severity index; MMSE: mini-mental 
state examination; SRI-MF: modified form of stress response inventory; PAs: physical activities; T-
test: independent T-test, p < 0.05. 

The severity of insomnia was evaluated using an insomnia severity index (ISI) questionnaire, 
which had seven questions assessing the severity of sleep onset, sleep maintenance difficulties, and 
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Table 1. Demographic characteristics of the study participants.

Variables

Insomnia
(n = 202)

(min to max,
95% CI)

Controls
(n = 190)

(min to max,
95% CI)

T-Test
p-Value Cohen’s d

Age (years) 71.3 ± 4.6
(70.7 to 72.0)

71.4 ± 4.9
(70.7 to 72.1) 0.876 0.016

Height (cm) 155.5 ± 5.3
(154.7 to 156.2)

154.9 ± 5.9
(154.1 to 155.8) 0.330 0.098

Body weight (kg) 58.8 ± 7.3
(57.8 to 59.8)

59.4 ± 7.9
(58.3 to 60.5) 0.438 0.078

BMI (kg/m2)
24.3 ± 2.9

(23.9 to 24.7)
24.8 ± 3.1

(24.3 to 25.2) 0.150 0.147

Body fat
percentage (%)

32.9 ± 5.9
(32.1 to 33.7)

33.0 ± 6.6
(32.0 to 33.9) 0.878 0.016

ISI (score) 10.9 ± 2.4
(10.5 to 11.2)

2.0 ± 2.5
(1.6 to 2.3) <0.001 3.639

MMSE (score) 27.4 ± 2.6
(27.0 to 27.8)

27.9 ± 2.1
(27.6 to 28.2) 0.022 0.233

SRI-MF (score) 5.3 ± 6.3
(4.4 to6.2)

3.1 ± 4.9
(2.4 to 3.8) <0.001 0.396

Vigorous PAs
(Mets/week)

997.8 ± 1385.7
(805.6 to 1190.1)

1118.5 ± 1696.8
(875.7 to 1361.3) 0.440 0.078

Moderate PAs
(Mets/week)

618.9 ± 743.1
(515.8 to 722.0)

817.7 ± 951.3
(681.5 to 953.8) 0.021 0.232

Walking PAs
(Mets/week)

787.8 ± 927.5
(659.1 to 916.5)

997.7 ± 977.76
(857.8 to 1137.7) 0.030 0.220

Total PAs
(Mets/week)

2404.5 ± 2304.1
(2084.8 to 2724.2)

2933.9 ± 2487.9
(2577.9 to 3290.0) 0.029 0.213

Mean ± standard deviation; BMI: body mass index; ISI: insomnia severity index; MMSE: mini-mental state
examination; SRI-MF: modified form of stress response inventory; PAs: physical activities; T-test: independent
T-test, p < 0.05.

The severity of insomnia was evaluated using an insomnia severity index (ISI) questionnaire,
which had seven questions assessing the severity of sleep onset, sleep maintenance difficulties,



Int. J. Environ. Res. Public Health 2020, 17, 5181 4 of 15

and satisfaction with current sleep [29]. The ISI can be used as a screening measure in clinical
practice, which allows for the assessment of the change following treatment, and is also useful for
epidemiological research [29,30]. Each answer was scored on the Likert scale, and included none (score:
0), mild (score: 1), moderate (score: 2), severe (score: 3), and very severe (score: 4). The seven answers
were added to obtain the total score, which was used to determine the severity of insomnia: (1) 0–7:
no sustained insomnia; (2) 8–14: subthreshold insomnia; (3) 15–21: clinical insomnia at moderate
severity; and (4) 22–28: severe clinical insomnia [29,31]. Participants in the subthreshold insomnia
stage were classified as the insomnia group (ISI total score: below 14) in this study.

2.2. Instrumentation

Shoe-type inertial measurement unit (IMU) system (DynaStabTM, JEIOS, Busan, Korea) is a gait
analysis system comprising shoe-type data loggers (Smart Balance SB-1®, JEIOS, Busan, Korea), including
an IMU sensor (IMU-3000TM, InvenSense, San Jose, CA, USA) installed on the outsoles of both shoes
and data acquisition and analysis system (Smart Balance 1.5 version, JEIOS, Busan, Korea), were utilized
in this study [32,33]. The accelerations and angular velocities data were transmitted wirelessly to a
data acquisition system through Bluetooth® [32,33]. The shoe-type IMU system indicated an excellent
agreement between the recorded data from the healthy adults [32] and Parkinson’s patients [33] (intra-class
coefficient value: 0.97–0.99). The shoe sizes were adapted to fit the participants, and a range of shoe
sizes was available (225–280 mm). The speed of the belt on the treadmill (HK-365, Healthkeeper, Seoul,
Korea) can be controlled in the range of 0.5–16 km/h at increments of 0.1 km/h.

2.3. Test Procedure

All the test procedures, such as the measurement of the demographic characteristics, questionnaires,
and gait tasks, were completed in a single day. The biometric data of all the participants, such as body
height, weight, and body fat percentage, were recorded before the treadmill walking test. All the
participants completed questionnaires to assess their ISI response, global cognitive function, PA, and
stress response. The mini-mental state examination (MMSE) questionnaire was used to assess global
cognitive function [34], and PA was evaluated using the international PA questionnaire–short form
(IPAQ-SF). The IPAQ-SF was composed of seven items on the self-reported PAs of the participants,
which evaluate the level of PA by vigorous, moderate, lower, and walking PAs. We calculated the
metabolic equivalents (METs)/week for vigorous, moderate, walking, and total PAs based on the
IPAQ-SF [35]. The stress response was assessed using the modified stress response inventory (SRI-MF)
comprising 22 questions, each of which was scored on the Likert scale and included “not at all”,
“somewhat”, “moderately”, “very much”, and “absolutely” [36]. These 22 questions were categorized
into three simplified stress factors, namely somatization, depression, and anger; Cronbach’s alphas for
the SRI [37] were indicated by somatization (0.89), depression (0.88), and anger (0.87), respectively [36].
A higher SRI-MF total score indicated a severe stress level.

Before the treadmill test, all the participants completed overground walking tests in a straight
10-m walkway, to calculate their self-preferred walking speed (distance/walking duration) (Figure 2).
Slower (80% of preferred speed) and faster (120% of preferred speed) speeds were calculated relative
to the preferred speed [27,28]. For instance, if the measured preferred speed was 1.0 m/s, then slower
and faster speeds are 0.8 m/s and 1.2 m/s, respectively. Subsequently, the participants practiced the
treadmill walking exercises until they were comfortable with their self-preferred speed, as well as the
slower and faster speed conditions. After practicing for speed adaptation, the participants took a rest
of about 5 min. During the treadmill walking test, the participants were asked to walk to maintain a
stable walking pattern for each speed condition on the treadmill for about 30–60 s at the onset of the
treadmill walking. An operator collected the treadmill walking data at 100 Hz (1-min periods) when a
participant attained a stable walking pattern [38].
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Figure 2. Walking speed definitions: slower (20% less than the preferred) and faster (20% more than
the preferred) speeds, calculated based on the participant’s preferred speed.

2.4. Data Analyses

The treadmill walking data were filtered using a second-order Butterworth low pass filter, and
a cutoff frequency was set at 10 Hz [32,33]. The gait events were defined as follows: (a) heel strike
when the linear acceleration on the anteroposterior axis reached its maximum value, and (b) toe-off at
instances in which the linear acceleration on the vertical axis reached its maximum value during the
gait cycle [32,39].

The spatiotemporal parameters were calculated as follows: (1) pace: walking speed, stride length,
and step length; (2) rhythm: cadence, stride time, and step time; (3) phases: single support, double
support, and stance. As the GV case, the percentage coefficient of variance (CV) values were calculated
for all the spatiotemporal parameters ((standard deviation/mean) × 100) [40,41].

To evaluate bilateral coordination, we calculated GA and PCI based on a previous study [9]. GA is
an index for the temporal symmetry between the left and right foot during walking. The PCI value was
calculated based on a combination of the percentage_ABS_ϕ and CV of ϕ [9]. The increased GA and
PCI values indicate reduced bilateral coordination, which may suggest a worsened gait stability [9,42].
Essential definitions of the gait-related variables are shown in Table 2. The analyzed data are presented
in Table S1.

Table 2. Definitions of the gait-related variables.

Variables Definition

Pace parameters

Walking speed (m/s) Performed treadmill walking speed

Stride length (m) Distance between the first contact of one foot to the first contact of the
following ipsilateral foot, measured parallel to the direction of progression

Step length (m) Distance between the successive heel points of opposite feet, measured
parallel to the direction of progression

Rhythm parameters

Cadence (beats/min) Total number of steps during 1 min

Stride time (s) Time taken between the first contact of one foot to the first contact of the
following ipsilateral foot

Step time (s) Time taken between the first contact of one foot to the first contact of the
following contralateral foot
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Table 2. Cont.

Variables Definition

Phase parameters

Single support phase (%) Time when one foot is in contact with the ground during one stride cycle

Double support phase (%) Time when both feet is in contact with the ground during one stride cycle

Stance phase (%) Time when foot is in contact with the ground during one stride cycle

Gait variability

Parameters for pace, rhythm, and phase (%)
Coefficient of variance ((standard deviation/mean) × 100) for stride length,
step length, stride time, step time, single support phase, double support
phase, and stance phase

Bilateral coordination [9]

GA (%) Temporal symmetry between the left and right foot during walking

PCI (%) Coordination between the left and right foot during walking

GA: gait asymmetry; PCI: phase coordinate index.

2.5. Statistical Analyses

The Shapiro–Wilk test was used to determine whether the data were normally distributed.
An independent sample t-test was used to compare the differences between the insomnia group and
the controls (p < 0.05). A one-way repeated measures analysis of variance with Bonferroni correction
(p-value: 0.05/3, 0.0167) was used to compare the differences between the slower, preferred, and faster
speed conditions.

In addition, a binary logistic regression analysis using the forward and backward stepwise
method was performed to determine the classifiers between insomnia and control groups based,
on the gait-related variables. Prior to the logistic regression analysis, we conducted a univariable
logistic analysis, to minimize the multicollinearity problems. Then, a multivariable stepwise binary
logistic regression analysis was performed for each speed condition. The model was adjusted for age,
BMI, and body fat percentage. Furthermore, after determining the relationships between insomnia
and functional and gait characteristics, Pearson’s product-moment correlation analysis was used,
to compare between the total ISI score and functional characteristics, such as the global cognitive
function (MMSE), PA (IPAQ-SF), and stress response (SRI-MF), as well as the gait-related variables for
all the participants. All statistical analyses were performed using a statistics software program for
Windows (version 21.0, SPSS Inc., Chicago, IL, USA). The statistical significance was set to 0.05.

3. Results

3.1. Group Differences: Insomnia vs. Control Group

The insomnia group exhibited significantly lower pace parameters for walking speed (slower
speed, Cohen’s d = 0.499; preferred speed, Cohen’s d = 0.455; faster speed, Cohen’s d = 0.427),
stride length (slower speed, Cohen’s d = 0.283; preferred speed, Cohen’s d = 0.351; faster speed, Cohen’s
d = 0.351), and step length (slower speed, Cohen’s d = 0.283; preferred speed, Cohen’s d = 0.345;
faster speed, Cohen’s d = 0.358), and higher GV parameters for phases of single support (slower
speed, Cohen’s d = 0.229; preferred speed, Cohen’s d = 0.371; faster speed, Cohen’s d = 0.395), double
support (slower speed, Cohen’s d = 0.247; preferred speed, Cohen’s d = 0.459; faster speed, Cohen’s d
= 0.411), and stance (slower speed, Cohen’s d = 0.217; preferred speed, Cohen’s d = 0.427; faster speed,
Cohen’s d = 0.476), and bilateral coordination for GA (slower speed, Cohen’s d = 0.259; preferred
speed, Cohen’s d = 0.310; faster speed, Cohen’s d = 0.304) and PCI (slower speed, Cohen’s d = 0.254;
preferred speed, Cohen’s d = 0.319; faster speed, Cohen’s d = 0.304), compared with the controls at all
the speed conditions. In addition, the insomnia group exhibited significantly lower phase parameters,
including the double support phase (preferred speed, Cohen’s d = 0.239, p < 0.001; faster speed, Cohen’s
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d = 0.260, p = 0.009) and stance phase (preferred speed, Cohen’s d = 0.235, p < 0.001; faster speed,
Cohen’s d = 0.241, p = 0.017), compared with the controls. However, they exhibited higher GV for the
stride length (preferred speed, Cohen’s d = 0.376, p < 0.001; faster speed, Cohen’s d = 0.410, p < 0.001),
step length (preferred speed, Cohen’s d = 0.506, p < 0.001; faster speed, Cohen’s d = 0.441, p < 0.001),
stride time (preferred speed, Cohen’s d = 0.376, p < 0.001; faster speed, Cohen’s d = 0.410, p < 0.001),
and step time (preferred speed, Cohen’s d = 0.447, p < 0.001; faster speed, Cohen’s d = 0.416, p < 0.001).
The single support phase for the insomnia group was significantly different compared with that of the
control group, only at the faster speed condition (Cohen’s d = 0.237, p = 0.019) (Table 3).
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Table 3. Differences in gait variables in insomnia and control groups at different speeds.

Variables
Slower Speed Preferred Speed Faster Speed Group

Significance

Speed
Significance

Insomnia Controls Insomnia Controls Insomnia Controls Insomnia Controls

Pace parameters

Walking speed (m/s) 0.67 ± 0.15 0.74 ± 0.13 0.84 ± 0.19 0.92 ± 0.16 1.01 ± 0.23 1.10 ± 0.19 A, B, C d, e, f d, e, f
Stride length (m) 0.90 ± 0.24 0.96 ± 0.18 0.99 ± 0.26 1.07 ± 0.19 1.10 ± 0.26 1.18 ± 0.19 A, B, C d, e, f d, e, f
Step length (m) 0.45 ± 0.12 0.48 ± 0.09 0.49 ± 0.13 0.53 ± 0.10 0.55 ± 0.13 0.59 ± 0.09 A, B, C d, e, f d, e, f

Rhythm parameters

Cadence (beats/min) 92.50 ± 17.10 92.78 ± 14.72 103.49 ± 15.41 104.15 ± 14.62 110.66 ± 14.20 111.79 ± 12.97 N/S d, e, f d, e, f
Stride time (s) 1.33 ± 0.24 1.32 ± 0.21 1.18 ± 0.18 1.17 ± 0.17 1.10 ± 0.14 1.08 ± 0.13 N/S d, e, f d, e, f
Step time (s) 0.67 ± 0.12 0.66 ± 0.10 0.59 ± 0.09 0.58 ± 0.08 0.55 ± 0.07 0.54 ± 0.06 N/S d, e, f d, e, f

Phase parameters

Single support phase (%) 35.17 ± 2.61 35.51 ± 2.12 36.48 ± 2.20 36.85 ± 1.64 37.43 ± 2.03 37.86 ± 1.57 C d, e, f d, e, f
Double support phase (%) 29.46 ± 4.79 29.05 ± 4.16 27.09 ± 3.57 26.29 ± 3.10 25.14 ± 3.32 24.32 ± 2.90 B, C d, e, f d, e, f

Stance phase (%) 64.63 ± 2.61 64.56 ± 2.37 63.57 ± 1.86 63.14 ± 1.80 62.57 ± 1.65 62.18 ± 1.58 B, C d, e, f d, e, f

Gait variability

CV of stride length (%) 3.45 ± 2.12 3.20 ± 1.74 3.24 ± 2.24 2.53 ± 1.45 2.39 ± 1.79 1.79 ± 1.04 B, C e, f d, e, f
CV of step length (%) 2.19 ± 1.54 2.06 ± 1.09 1.94 ± 1.47 1.42 ± 0.76 1.30 ± 1.02 0.95 ± 0.47 B, C d, e, f d, e, f
CV of stride time (%) 3.45 ± 2.12 3.20 ± 1.74 3.24 ± 2.24 2.53 ± 1.45 2.39 ± 1.79 1.79 ± 1.04 B, C e, f d, e, f
CV of step time (%) 3.31 ± 2.07 3.17 ± 1.72 3.28 ± 2.27 2.45 ± 1.32 2.38 ± 1.90 1.77 ± 0.83 B, C e, f d, e, f

CV of single support phase (%) 7.32 ± 3.92 6.55 ± 2.70 5.38 ± 3.22 4.42 ± 1.73 4.06 ± 3.41 3.05 ± 1.19 A, B, C d, e, f d, e, f
CV of double support phase (%) 12.35 ± 8.02 10.71 ± 4.85 10.59 ± 7.76 7.80 ± 3.69 8.20 ± 8.06 5.71 ± 2.90 A, B, C d, e, f d, e, f

CV of stance phase (%) 5.69 ± 3.67 5.01 ± 2.47 4.63 ± 3.39 3.46 ± 1.87 3.16 ± 2.31 2.28 ± 1.22 A, B, C d, e, f d, e, f

Bilateral coordination

GA (%) 4.57 ± 3.76 3.67 ± 3.15 3.88 ± 3.65 2.87 ± 2.82 3.19 ± 2.92 2.41 ± 2.16 A, B, C d, e, f d, e, f
PCI (%) 5.92 ± 4.32 5.05 ± 2.21 5.35 ± 4.75 4.14 ± 2.50 4.72 ± 5.26 3.26 ± 1.85 A, B, C d, e, f d, e, f

GA: gait asymmetry; PCI: phase coordinate index. Group differences between insomnia and controls for slower (A), preferred (B), and faster (C) speeds, p < 0.05; speed differences within
slower vs. preferred (d), slower vs. faster (e), preferred vs. faster (f), p < 0.0167 (0.05/3), N/S indicates no significance.
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3.2. Speed Differences: Slower, Preferred, and Faster Speed Condition Gait-Related Variables for All the
Participants

In the insomnia group, the pace, rhythm, phase GV (step length, phases for the single support,
double support, and stance), and bilateral coordination parameters were significantly different at the
slower, preferred, and faster speed conditions. In addition, the GVs for the stride length, stride time,
and step time were significantly different between the slower and faster, and the preferred and faster
speed conditions. In the control group, all the gait-related variables were significantly different at the
slower, preferred, and faster speed conditions (Table 3).

3.3. Classifier Variables for the Insomnia and Control Groups

Stepwise binary logistic regression analysis for the insomnia and control groups revealed that
the walking speed was significantly different at the slower speed condition (odds ratio [OR]: 0.024,
95% confidence interval [CI]: 0.005–0.119, p < 0.001). At the preferred speed condition, the walking
speed (odds ratio [OR]: 0.124, 95% confidence interval [CI]: 0.030–0.505, p = 0.004) and CV of the
double support phase (odds ratio [OR]: 1.070, 95% confidence interval [CI]: 1.019–1.123, p = 0.006)
were significantly different between the two groups. At the faster speed condition, the walking speed
(odds ratio [OR]: 0.209, 95% confidence interval [CI]: 0.060–0.729, p = 0.014) and CV of the stance phase
(odds ratio [OR]: 1.229, 95% confidence interval [CI]: 1.042–1.451, p = 0.014) were significantly different
between the two groups (Table 4).

Table 4. Binary logistic regression results for insomnia and control groups.

Variables Estimate SE OR 95% CI for the OR p-Value

Slower speed

Walking speed −3.740 0.824 0.024 0.005–0.119 <0.001

Preferred speed

Walking speed −2.086 0.716 0.124 0.030–0.505 0.004
CV of double
support phase 0.068 0.025 1.070 1.019–1.123 0.006

Faster speed

Walking speed −1.567 0.638 0.209 0.060–0.729 0.014
CV of stance phase 0.207 0.084 1.229 1.042–1.451 0.014

Model adjusted for age, BMI, and % body fat. CI: confidence interval; OR: odds ratio; SE: standard error.

3.4. Relationship between the Total ISI Score and Functional Characteristics for the Global Cognitive Function,
PA, and Stress Responses of All the Participants

The total ISI score was negatively correlated with the MMSE score (r = −0.196, p < 0.05) and
the total PA (r = −0.108, p < 0.05), whereas it was positively correlated with the total SRI-MF score
(r = 0.224, p < 0.05).

3.5. Relationship Between the Total ISI Score and Gait-Related Variables of all the Participants

The total ISI score was negatively correlated with pace parameters, such as the walking speed,
stride length, and step length, whereas it was positively correlated with GA at all the speed conditions.
The phase parameters, including the double support phase and stance phase, were significantly
correlated with the total ISI score at a faster speed. The GV of the pace, phase, and rhythm, bilateral
coordination of PCI, and CVs of the stride length, step length, single support phase, double support
phase, stance phase, stride time, and step time were positively correlated with the total ISI score at the
preferred and faster speed conditions (Table 5).
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Table 5. Pearson’s product-moment correlation analysis between the total insomnia severity index (ISI)
score and gait-related variables of all the participants at slower, preferred, and faster speeds.

Gait Parameters Variables
ISI Score

Slower Preferred Faster

Pace
Walking speed −0.184 * −0.186 * −0.185 *
Stride length −0.114 * −0.163 * −0.165 *
Step length −0.116 * −0.162 * −0.164 *

Phases
Double support phase - - 0.110 *

Stance phase - - 0.105 *

GV: Pace
CV of stride length - 0.190 * 0.156 *
CV of step length - 0.192 * 0.140 *

GV: Phases
CV of single support phase - 0.116 * 0.112 *
CV of double support phase - 0.206 * 0.153 *

CV of stance phase - 0.197 * 0.185 *

GV: Rhythms CV of stride time - 0.190 * 0.156 *
CV of step time - 0.201 * 0.138 *

Bilateral coordination
GA 0.157 * 0.191 * 0.138 *
PCI - 0.146 * 0.164 *

CV: coefficient of variance; GA: gait asymmetry; GV: gait variability; ISI: insomnia severity index, PCI: phase
coordinate index. * p < 0.05.

4. Discussion

The main findings of this study are as follows: (1) the insomnia group exhibited lower pace
parameters and the single support phase, and greater GV and bilateral coordination than the
age-matched controls; (2) the CV of the stance phase at the faster speed condition was a crucial
variable for distinguishing the insomnia group from the controls; (3) the insomnia group demonstrated
insufficient gait adaptations within slower and preferred speeds, as indicated by the CVs of the stride
length, stride time, and step time; (4) a higher total ISI score was associated with declined gait ability,
as indicated by the increased GV parameters and bilateral coordination. These findings are discussed
in detail below.

Elderly menopausal women are deficient in sex hormones, such as estrogen, which may cause
muscle weakness [19,20]. This factor may contribute to a decline in their physical performances,
walking speed, and PA [23]. Moreover, a lower PA level may affect the gait ability of the insomnia
group, because PA can improve gait stability [43–45]. Our insomnia group indicated relatively worse
PA and stress levels compared to their age-matched controls, and the total ISI score was negatively
correlated with the total PA (r = −0.103), whereas it was positively correlated with the SRI-MF
(r = 0.224). These results may indicate that elderly women with a subthreshold insomnia stage may
suffer from higher stress levels and gait ability deterioration compared to their age-matched controls.
Furthermore, our insomnia group demonstrated reduced gait stability, indicated by the decrease in the
pace domain and single support phase (phase domain); the GV parameters and bilateral coordination
were more than those of the controls at most speed conditions. Slower walking speed can contribute
to longer double support and stance phases, and a shorter single support phase [1]. Similar gait
patterns are commonly observed in elderly adults. Previous studies reported increased step widths and
double support phases, to enhance the dynamic stability of elderly adults during walking. However,
these changes evoked longer stance phases in response to the reduced lower-limb strength [4–6,27].
These gait patterns also contributed to an increase in the GV parameters and coordination of the
left-right leg movement during walking [9,10,42], including GA and PCI values, indicating a decline in
gait stability [7]. Consequently, our insomnia group exhibited reduced gait ability, compared with the
controls at all the speed conditions.
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Interestingly, the result of a logistic analysis indicated that the CV of the stance phase at a faster
speed was approximately 22.9% greater in the insomnia group, compared with the controls, which is
possible because the faster walking speed condition was a more challenging task for participants
with subthreshold insomnia stage. Slower or faster speed conditions when an individual performs
gait tasks may reduce gait automaticity with higher attention-demanding motor cortex controls than
the preferred speed condition [7]. Reduced-automaticity gait patterns rely on executive functions
requiring more cognitive load, leading to slower processing and alteration in the gait pattern [24,46–48].
Although healthy elderly participants performed the gait tasks successfully, they indicated greater
GV than young adults, owing to physiological changes caused by increased neuromotor noise [5].
A similar study reported that Parkinson’s patients exhibited 2.1 times (110%) greater CV for the double
support phase, compared with their age-matched elderly controls at a faster speed; it was suggested
that this result might be related to the control of automatized behavior [28].

In addition, the symptoms of insomnia may deteriorate cognition impairments [11,12,16,49],
because poor sleep quality may be related to cortical atrophy in elderly adults [11,50]. Our insomnia
group indicated relatively greater ISI and lower MMSE scores (significant but small difference) compared
to their age-matched controls, and the results of the correlation analysis indicated that the total ISI score
was negatively correlated with the MMSE score in this study. These results may indicate that the elderly
adults with subthreshold insomnia stage may be exposed to the possibility of a deteriorated cognitive
function. In addition, Agmon et al. [24] reported that lower sleep quality was associated with increased
GV in elderly adults during dual tasks, owing to neuro-connections between the sleep-regulation
nuclei and the regions controlling gait, including the pontine tegmentum, pedunculopontine nucleus,
and medial medulla [24,51]. Hence, gait tasks at the faster speed condition may require more cognitive
load, as well as control of motor function in the insomnia group. Therefore, although participants in
our insomnia group were not clinical patients, but only had insomnia symptoms in the subthreshold
stage, they exhibited reduced gait stability at the faster speed condition, and the GV for the stance
phase at the faster speed condition may be a classifier between the insomnia group and controls.

Our insomnia group exhibited a decreasing trend at the slower and preferred speed conditions;
however, there were no significant differences in the CVs of the stride length, stride time, and step time,
whereas the controls exhibited significant differences at these two-speed conditions. These patterns may
be one of the symptoms of declining gait stability in the insomnia group; walking with a self-preferred
speed minimizes individual energy cost, which may contribute to maintaining the minimum GV
during gait [7,52]. It has been previously reported that control of the walking-related rhythmic stepping
mechanism is reflected by the stride time and stride length variability [53], and is mainly dependent on
the basal ganglia and spinal central pattern generator [54]. Thus, low stride-to-stride variability reflects
automatic processes that require minimal attention, and is associated with efficient gait control and
gait safety [55–57]. However, poor sleep quality led to an increase in GV values [24], and insomnia and
sleep problems are attributed to the potential falling risks in elderly adults [21,22]. Thus, our insomnia
group may exhibit reduced gait adaptation ability under the conditions of slower and preferred speeds,
which increased the risk of falling.

We observed that the total ISI score was negatively correlated with pace parameters, such as the
walking speed, stride length, and step length at all the speed conditions; however, it was positively
correlated with the phase parameter for the double support and stance phases at the faster speed
condition. In addition, the total ISI score was positively correlated with GV parameters such as the pace
(CVs of the stride length and step length), phase (CVs of the single support, double support, and stance
phases), and rhythm (CVs of the stride time and step time), as well as bilateral coordination for PCI at
the preferred and faster speed conditions. GA was positively correlated with the total ISI score at all the
speed conditions. These results indicate that participants with insomnia symptoms may be associated
with reduced gait ability because of the increase in GV and bilateral coordination; Agmon et al. [24] also
reported that lower sleep quality decreases the motor-cognitive function, increasing GV. In addition,
significant trends for GV parameters and bilateral coordination were observed at the preferred (r-value



Int. J. Environ. Res. Public Health 2020, 17, 5181 12 of 15

range: 0.116–0.206) and faster (r-value range: 0.105–0.185) speed conditions, and the MMSE score
indicated negative correlation with the total ISI score. It may be possible that the walking task at the
preferred and faster speed may be related to the characteristics of gait patterns or relatively difficult tasks
owing to reduced gait automaticity [7,24,46,47] in participants with insomnia symptoms. Consequently,
these gait patterns may increase the risk of falling in elderly adults [24]. Therefore, we suggest that
even the elderly women in the subthreshold insomnia stage may contribute to the decline in their gait
ability; in particular, participants with worsened insomnia symptoms or sleep problems showed that
these worse gait patterns may increase the potential risk of falling in elderly women.

Our study determined that insomnia symptoms were related to the decline in the gait stability
of elderly women, even though they were not clinical patients. However, this study has several
limitations. Our study used questionnaires to evaluate the severity of insomnia and PA. However,
this method is a subjective measurement method, and may provide inaccurate information, even after
valid assessment [13]. The objective measurement techniques using an accelerator can evaluate the PA
more accurately, and, using polysomnography (PSG), can provide reliable data, which may be useful
in understanding the characteristics of elderly women with insomnia symptoms in detail. In addition,
although our study was cross-sectional, long-term studies are needed (e.g., a cohort study) to establish
the trend of the relationship between sleep quality and gait ability in elderly women. Furthermore,
our study did not consider the effects of the essential characteristics of elderly adults like frailty status,
drug dosage and fear of falling using specific questionnaires. Thus, future studies need to consider the
relationships between these factors and the gait ability in elderly women with insomnia symptoms.
Finally, our walking tasks at the slower, preferred, and faster speed conditions were conducted on
a treadmill for a duration of 1 min, which is useful for collecting numerous continuous walking
steps [58]. However, treadmill walking tasks may indicate relatively less GV values compared with
overground walking, according to the task characteristics, because the walking speed on the treadmill
imposes a steady speed condition, which minimizes the variance of the step compared with overground
walking [38]. In addition, the treadmill walking speed acts as an external cue for the participants [7].
Nevertheless, all the participants successfully completed the treadmill walking tasks at all the speed
conditions (except 13 people), and this may be utilized as a reference in gait training programs.

5. Conclusions

This study investigated the gait characteristics at various conditions such as slower, preferred, and
faster speeds in elderly women aged more than 65 years with subthreshold insomnia stage. We found
that individuals with subthreshold insomnia stage exhibited lower gait ability compared with their
age-matched controls, as indicated by the pace, single support phase, GV parameters, and bilateral
coordination; the CV of the stance phase at the faster speed condition was a classifier to distinguish
between the insomnia and control groups. In addition, the insomnia group demonstrated insufficient
gait adaptations at the slower and preferred speeds, compared with the controls, as indicated by
the CVs of the stride length, stride time, and step time. Finally, increased insomnia severity was
associated with the decline in gait ability, as indicated by the increase in GV parameters and bilateral
coordination. Therefore, we suggest that insomnia symptoms may cause a decline in gait ability;
in particular, participants with worsened insomnia symptoms or sleep problems may increase the
potential risk of falling in elderly women. Thus, elderly women with subthreshold insomnia stage
need to improve their sleep quality to enhance their physical functions.
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