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Long-Term Homeostatic Properties 
Complementary to Hebbian Rules 
in CuPc-Based Multifunctional 
Memristor
Laiyuan Wang1, Zhiyong Wang1, Jinyi Lin1,2, Jie Yang1, Linghai Xie1, Mingdong Yi1, Wen Li1, 
Haifeng Ling1, Changjin Ou2 & Wei Huang1,2

Most simulations of neuroplasticity in memristors, which are potentially used to develop artificial 
synapses, are confined to the basic biological Hebbian rules. However, the simplex rules potentially 
can induce excessive excitation/inhibition, even collapse of neural activities, because they neglect the 
properties of long-term homeostasis involved in the frameworks of realistic neural networks. Here, 
we develop organic CuPc-based memristors of which excitatory and inhibitory conductivities can 
implement both Hebbian rules and homeostatic plasticity, complementary to Hebbian patterns and 
conductive to the long-term homeostasis. In another adaptive situation for homeostasis, in thicker 
samples, the overall excitement under periodic moderate stimuli tends to decrease and be recovered 
under intense inputs. Interestingly, the prototypes can be equipped with bio-inspired habituation and 
sensitization functions outperforming the conventional simplified algorithms. They mutually regulate 
each other to obtain the homeostasis. Therefore, we develop a novel versatile memristor with advanced 
synaptic homeostasis for comprehensive neural functions.

The development of electronics enlightens us that, for a fundamental element, the extension of each additional 
function may have considerable advance for the integrated electronic chip, whereas the neglect of a certain prop-
erty may induce the ineffectiveness of upper-level chip functions. With simple structure which enable functional 
scaling well beyond CMOS-based circuits and inherent parallel information processing and storage, the memris-
tor is becoming an excellent choice to design the specific artificial synapse for developing neuromorphic chips1–7. 
Based on the memristive characteristics, namely, operation history-dependent tunable and storable conductance, 
the novel interdisciplinary ideas are proposed whereby electrical stimuli represent neural spikes and resultant 
current corresponds to the synaptic weight1,2. And then, indeed, significant learning and memory processes 
based on the adjustable neuroplasticity in frameworks of the fundamental Hebbian rules and the revised version 
spike-timing-dependent plasticity (STDP) rules have been implemented phenomenologically through the simple  
devices1,3,5,6,8–14. However, the prevalently simulated rules developed for artificial neural networks (ANNs) are 
simplified rules that miss out the homeostatic property of neural activities presented in the realistic neural  
networks15–20, outperforming ANNs. It is desirable to endow the homeostatic property with the emulated neural 
activities in memristors to enhance the ability of self-stabilizing.

Biologically, excitatory and inhibitory activities are fundamental processes of synaptic activities. They mutu-
ally restrict and coordinate each other to form diverse complex activities under alternant stimuli. The Hebbian 
rules, which can be summarized as “neurons that fire together, wire together”, focus on simplex synaptic activities 
and can hardly ensure the long-term activities immune to be excessively excitatory or inhibitory15,18,19,21, which 
potentially may lead to the collapse of neural networks. The homeostatic mechanisms are necessary to balance 
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neural activities and ensure stability over long time both in the realistic neural networks and ANNs, and they 
are attracted considerable attentions in the fields of biological realistic neural networks and electronic ANNs. 
However, in the artificial synapses, few results investigate the property of long-term reciprocal regulation of two 
elementary activities for specific homeostatic states to date. As reported in prevalent devices, a balance of the 
conductive states under coordinated excitatory and inhibitory stimuli can be maintained1,12,22. However, the equi-
librium can be broken under unbalanced signals, and a new balance cannot be established23,24, thereby violating 
the key biological principle—homeostatic plasticity17,18,25,26, aiming at ensuring the synaptic dynamic balance 
complementary to Hebbian rules. As one advanced adaptive mechanism, it has been applied to design versatile 
materials effectively27. Therefore, in the electronics, it is necessary to create an memristive element with home-
ostatic plasticity to enhance the long-term stability of the overall conductivity under excessive stimuli through 
self-adjustment28,29. In another situation for the long-term homeostasis of neural activities, during learning pro-
cesses the overall response in our brain is gradually weakened under repeated moderate signals and recovered 
by intense signals, termed as habituation and dishabituation (sensitization) which are also neglected by Hebbian 
rules30. They regulate each other to contribute to achieving the neural homeostasis. Otherwise, failed habitu-
ation/sensitization may lead to the exorbitantly high/low level of neural activities. Considered as two efficient 
non-associative learning modes commonly addressed by biologists31–33, they can help us selectively respond to 
external signals, namely, by paying less attention to unimportant stimuli and more attention to novel stimuli34.  
And habituation has been emulated through software35,36. It is a pity, however, that their systematically 
inter-regulatory properties have not been detailedly implemented in a single memristive platform. In addition, 
from the perspective of device design and construction, the prevalent physical microprocesses for developing 
memristors are mainly based on shaping of the ion-type conductive filament under electric field3,9,12,22,24,37–39, of 
which the smoothness and gradient of conductive state are highly sensitive to the layer composition and the bulk 
and interface components. Thus, it may be awkward to precisely control the growth location, orientation and rate 
of ionic filaments for inner imperfect structures in these devices39,40.

In this paper, we construct the memristor using the organic semiconductor copper phthalocyanine (CuPc) 
based on the space-charge-limited conduction (SCLC) transition influenced by different degrees of trapping 
charges as a function of the operation history. This non-filamentary memristive transition is induced by the 
reversible charge trapping and detrapping processes. Consequently, impressive memristive characteristics, 
including distinguishable smooth ascending/degressive I–V hysteresis and gradually changing intermediate 
states, are demonstrated under sequent scans. Besides the emulations in accordance with the Hebbian rules, the 
CuPc prototype can emulate the homeostatic plasticity. Not only is the balance maintained under coordinated 
stimuli but also can the initial imbalance under uncoordinated stimuli be repaired, and a new balance is estab-
lished after self-adjustment. In addition, different from this homeostasis pattern, in thicker samples, the changing 
tendency of the overall excitatory conductivity is strongly dependent on the stimulus amplitude, which tends to 
decrease under modest stimuli, resembling neural habituation, but can be recovered under stronger spikes, as 
dishabituation implies41. These inter-regulatory mechanisms are also emulated for the long-term homeostasis of 
neural activities.

Results
Memristive behaviours in CuPc-based samples.  The crossbar structure for neuromorphic computing 
are prepared by evaporating the CuPc layer and top Al electrodes successively in a vacuum onto a glass substrate 
with bottom ITO electrodes. There is no need to precisely control the stoichiometric ratio of the active layer 
compound. It thus appears that the processing is relatively simple and inexpensive42. Fig. 1a shows the schematic 
image of ITO/CuPc/Al memristor. The memristive behaviours of enhancing and suppressing hysteresis loops 
energized by 10 cyclic positive and negative voltage sweeps are presented in Fig. 1b. The electrical signals are 
applied to ITO electrode and Al electrode is grounded. Ten clearly distinguishable positive intermediate states 
are obtained corresponding to our short-term-memory capacity (5~9) in terms of the Miller’s Law43. Notably, 
the CuPc-based memristor shows smooth adjacent I-V characteristics without saltation or fluctuation during 
the transitions of conductive states, implying the quasi-continuous distribution of conductivity in the organic 
artificial synapse. Corresponding to the sweeping memristive behaviour, the pulse polarity-dependent elec-
tric-pulse-induced resistance (EPIR) effect has attracted extensive interest as an effective mechanism for memory 
devices. The EPIR effect is primarily investigated in the inorganic ReAMO systems (Re, rare-earth ions; A, alka-
line ions; M, transition-metal ions; O, oxide)44,45, and it is also experimentally demonstrated in CuPc memristors 
as shown in Fig. 1c. The EPIR responses are considered as the basic excitatory and inhibitory activities to investi-
gate the complex stimulus-response rules for synaptic imitations.

The physical mechanisms for memristive behaviours can be mainly attributed to the charge trapping/
detrapping processes with different filling ratios and energy levels within CuPc micro-domains46,47. In the CuPc 
sandwich structure, we consider a case of hole injection, transport and trapping. In the organic semiconductor 
polycrystalline samples as indicated in Fig. S1, the CuPc domains serve as charge reservoirs and their interfacial 
regions containing a large number of traps to impede current serve as barriers46,47. The current is given by the 
carrier hopping processes travelling from one domain to another, and the resistance arises from intergranular 
and interfacial impedances. The increasing concentration of carriers captured at the trapping sites causes their 
stronger correlation46, namely, the occurrence of more overlaps of carrier wave functions and abduction of Mott 
transition47–50. Thus, higher conductive percolation channels in insulating regions between CuPc domains are 
formed as a function of the trapping carrier concentration46. As a result, the current continuously increases rely-
ing on the preceding accumulated operation, implying the typical memristive property.

To gain insight into the mechanisms, the transport pattern of the carriers is further investigated. As shown 
in Fig. 1f, the fitting results of the typical first cycle demonstrate that the current is trap-affected SCLC during 
the large sweeping ranges. And the same is true for the rest cycles. The SCLC can be subdivided into two types, 
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SCLC affected by discrete traps with shallow energy levels (given by J ∝​ θU2/d3) and SCLC affected by exponential 
distribution traps with deep energy levels (given by J ∝​ Ul+1/d2l+1, l >​ 1). Considered as a criterion to characterize 
the distribution width of trapping charges, l can be written as

=l E kT/ (1)t

Figure 1.  Tunable conductivity under cyclic sweeps in the ITO/CuPc/Al memristor. (a) Schematic 
diagram of the CuPc-based crossbar architecture and one typical CuPc element compared with a biological 
synapse on the right. The applied electrical inputs correspond to the synaptic action potentials. The thickness 
of the evaporated CuPc film is monitored by a quartz crystal cymometer Δ​f =​ 800 Hz (~50 nm). Device size: 
100 ×​ 100 μ​m2. (b) Memristive current under 10 cyclic voltage sweeps (0 →​ 11/−​11 V →​ 0). (c) Polarity-
dependent EPIR effect. The current progressively increases/decreases under a series of electrical pulses.  
(d) Tuning current curves with different sweeping amplitudes. The sweeping amplitude of the first two cycles 
is 10 V, and the third one is 11 V. (e) Current hysteresis curves at different scanning speeds, 0.2 V/s of the first 
10 cycles and 0.02 V/s of the last two cycles. Inset shows the current tendency versus the cycle number. The 
increasing stride at the maximum voltage increases by ~5 times as the scanning rate is reduced tenfold.  
(f) Log-log plots of the forward scanning current extracted from (b). Inset shows the fitting slope of the first 
cyclic current curve. Backward curves nearly coincide with the following forward curves. Fitting results 
demonstrate that the current is trap-affected SCLC, and there exists a dominant SCLC region in each sweep 
(undergoing the maximum range) marked by the short bars. (g) Schematic diagram of the correlation between 
decreasing slopes of dominant SCLC during 10 forward sweeps in (f) and the gradual variation of exponentially 
distributed state density. More and more traps are filled by retentive charges, causing gradually reducing trap 
sites which can be measured by the integral area under each exponential curve.
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where Et is the characteristic energy level of exponentially distributing trapping charges. And the state density 
H(E) as a function of the energy level E decreases as E increases, which can be expressed as

= − −H E N e( ) (2)vb
E E E( )/vb t

where Evb and Nvb are the valence bond energy level and state density at the valence bond edge, respectively47.
As shown in the inset of Fig. 1f, the current changes from the low-exponent SCLC affected by shallow traps 

(slope~2) to the high-exponent SCLC affected by deep traps (slope >​6) as the voltage increases. More injected 
carriers fulfill the trapping sites in order of deeper energy levels. Some of these carriers are released and oth-
ers can be stored into deep sites as the voltage decreases. It is harder for those in deep trapping sites to escape, 
thereby resulting in the presence of stable hysteresis after a cyclic scanning (Fig. 1b)46,47. As evidences of memo-
rized trapping charges, a large enough voltage is necessary for sufficient charges to occupy deep traps, while low 
voltage sweeps cannot result in the retentive trapping charges as demonstrate in Fig. 1d. Furthermore, both the 
lobe area and increasing current stride expand monotonically as the scanning pace decreases (Fig. 1e), as typical 
fingerprints of the memristor7,51, which can be attributed to the improvement of total flowing charges in one slow 
period. During following cycles in Fig. 1b, the forward increasing current closely clings to the previous curve and 
results in more retentive trapping charges. Thus new hysteresis loops appear consecutively. Meanwhile, the trap 
exponent l of the 10 cyclic main SCLC gradually decreases for decreasing trapping sites to affect SCLC. In con-
clusion, higher concentration of retentive trapping charges results in the stronger charge correlation and creates 
more highly conductive percolations. The conductance gradually approaches the saturation during the following 
scans, and the hysteresis area diminishes continuously because the number of trapping sites gradually reaches the 
saturation state. The distribution of trapping charges to affect SCLC is narrowed, as clearly demonstrated by the 
decreasing slope of the forward dominant SCLC illustrated in Fig. 1f,g. In the opposite case, the retentive trapping 
charges are progressively released (or neutralized by reverse charges from another angle) under the reverse volt-
age, which results in the decreasing conductive state. And at the initial stage, the deceasing rate is much higher 
for the rapid neutralization process of the relatively sufficient trapping holes. In the complex hopping systems, the 
relaxed current can be modelled by the stretched exponential equation

τ= − +β
∞I I t Iexp[ ( / ) ] (3)0

where τ is the time constant, I0 is the initial level of the decay current, I∞ is the final value and β is the stretch 
index ranging between 0 and 1, known as the Kohlrausch law14,21,52. Compared with the simplified exponential 
equation9,12, two parameters, τ and β, in the Kohlrausch curve can set up in-depth communication between the 
description of the mimetic memorization events and the internal microscopic physical adjustment52.

Simulations of Hebbian rules and homeostatic plasticity.  From the fundamental to the complex 
neural activities, the potential to imitate the neuroplasticity in a simple prototype compared with the complex 
CMOS-based neuromorphic chips, is the crucial reason why the memristor is regarded as a novel basic ele-
ment. The characteristics that distinguish the memristor from general electronic devices (resistors, capacitors and 
inductors) are their input-dependent device states and variations, as defined in the frameworks of

=i G w v v( , ) (4)

=
dw
dt

f w v( , ) (5)

where w is the state variable of the device. Resembling the synaptic weight of a synapse, the conductive state in a 
memristor reflects the efficiency for signal transmission, which can be shaped according to external accumula-
tive activations for specific neural computing2. Actually, the input amplitude, duration and frequency-dependent 
variations related to the essential learning/memory laws are widely emulated for synaptic computation1,3,5,6,8–13,53.

In the CuPc-based memristor, after preparing a buffer layer MoO3 (several nanometers) between ITO and 
CuPc layer, the operation voltage for memristive behaviours can be reduced because the MoO3 layer can reduce 
the energy barrier for hole injection effectively as demonstrated in Fig. 2a. The conductive behaviours of carri-
ers are also trap-affected SCLC during the most sweeping ranges and Fig. 2c shows the decreasing slope of the 
dominant SCLC versus cycle number. Moreover, as shown in Fig. S2 the current levels of the samples linearly 
scale with the device area, and the changing percentage of the current states is independent on the area, which 
indicate the homogeneous memristive mechanism. And the current density in this organic sample is lower than 
other samples3,8,12,13. Both of them are conductive to reduce the energy consumption. The impressive memris-
tive behaviours in ITO/MoO3/CuPc/Al, with reliably smooth characteristics and multiple intermediate states for 
improving the modulatory space, provide us a fine prototype to simulate the neural functions. Positive stimuli 
that lead to increasing conductance represent excitatory actions, and the following negative stimuli represent 
inhibitions. Achievement of the input-dependent enhancement of synaptic weight is of popular interest, such as 
post-tetanic-potentiation (PTP), short-term memory (STM) and long-term- memory (LTM) which are also effec-
tively implemented in CuPc-based artificial synapse as shown in Figs S3 and 4. These bio-inspired functions are 
based on the fundamental Hebbian rules, which imply that stronger accumulative activations result in stronger 
responses.

In neural system the long-term inter-regulation of the elementary excitation and inhibition under the condi-
tion of ensuring the homeostatic state is the essential behaviour, and it is likewise significant for a neuromorphic 
device. Here, the self-adjustment for dynamic balance is investigated in detail, which depends on not only the 
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programming protocol but also the device configuration. The corresponding results in different modulatory pat-
terns are shown in Figs 3, 4, 5, 6. Figure 3 shows the balanced responses under coordinate stimuli. The periodic 
positive and negative stimuli are applied to represent the alternant excitatory and inhibitory stimuli as illustrated 
in Fig. 3a, which are the familiar stimulating events in our neural activities. The current exponentially increases/
decreases under consecutive positive/negative actions as a function of the pulse number, and the total increment/
decrement increases in magnitude as Ve/Vi/increases (Fig. 3b). Here we set 10 V and −​10 V as the excitatory and 
inhibitory amplitudes. As shown in Fig. 3c, the device conductive state can be reproduced under the coordi-
nated pulse sequences. The dynamic balance of the overall conductive state can be maintained over a long period 
regardless of the pulse number in each period. Moreover, through an analysis of these different responsive modes, 
it can be concluded that the responsive curves under more activations are not purely-prolonged tendencies fol-
lowing the less-activated responses. In the modes with larger Ne/Ni, the conductive variations and corresponding 
synaptic weight under the same stimuli number are enhanced as demonstrated in Fig. 3d,e. The results indi-
cate that different responsive modes are developed for improving the response efficiency in larger Ne/Ni modes, 
thereby embodying the self-adaptive characteristics of CuPc-based artificial synapse. And the activity-dependent 
multi-mode features are typical properties of neural networks54,55. The adjustable processes can be observed in 
detail from the beginning periods in larger Ne/Ni modes in Fig. 3c. Importantly, the exponentially changing cur-
rent in each stage implies the tendency that the responsive efficiencies (the average variations of conductive states 
under the same activations) are asymptotically suppressed and reach saturations for gradually saturated trapping 
charges. This bio-mimetic property in CuPc memristor is in favour of avoiding excessive excitation or inhibi-
tion for regulating the long-term homeostasis of neural activities17, going beyond the simplex Hebbian rules. In 
addition, the time constants underneath these increasing and decreasing currents are also tuned with the same 
trends in accordance with Ne/Ni as summarized in Fig. 3f. It implies that the regulation of excitatory response rate 
is accompanied by similar regulation of inhibitory activities under the coordinated stimuli. These synchronous 
regulatory mechanisms are also conducive to the synaptic stability for adapting to changing conditions12,56.

In addition to performing the fine dynamic stability under balanced inputs, more importantly, the CuPc-based 
memristor can exhibit homeostatic plasticity under uncoordinated stimuli after a period of self-adjustment. 
Indeed, in realistic neural networks and ANNs there exist more unbalanced signals. And thus it is necessary 
for synapses to reasonably regulate the neural activities and maintain their stability. During the initial period in 
Fig. 4a, the memristor behaves unsteadily as soon as unbalanced pulses are applied, exceeding the overall excit-
atory conductivity in Fig. 3c. When more unbalanced periods are applied the overall excitatory and inhibitory 
conductivity is progressively enhanced for stronger excitatory inputs. However, instead of increasing all the time, 
the overall conductive levels gradually reach a unified steady state after several periods of their inter-coupling 
processes. Subsequently, the stronger positive pulses do not result in excessive excitation after self-adjusting in 
the CuPc-based artificial synapse. Notably, when great non-equilibrium pulses are applied as shown in Fig. 4b, the 
overall states exhibit more unstable behaviours initially than before. The inhibitory affect is gradually enhanced 
relative to the suppression of excitatory activity for intenser inhibitory inputs. In this case, the overall activities 
persistently adjust themselves to reach a steady state. The characteristics indicate that CuPc samples can perform 
homeostatic plasticity effectively under unbalanced stimuli for inner asymptotically saturated trapping sites as 
discussed above, which are beyond recent results of the filamentary synapse and meet the neural and model 
requirements of long-term homeostasis24,57.

Through comparisons of the conductive variations in different modes as analyzed in Fig. 4c, it can be demon-
strated that the overall steady conductive states after self-adjusting, as well as the states under coordinate pulses, 
differ from each other, which embodies the synaptic activity-dependent multiple-mode characteristics in CuPc 
samples. That is to say, the different adaptive modes and steady states of network activity can be obtained accord-
ing to the different stimulus situations.

Furthermore, under the testing conditions of the same excitatory/inhibitory bias (Ve/Vi), much more pulses 
in each excitation/inhibition stage (Ne/Ni =​ 40, 80) are also investigated as shown in Figs S5 and S6. The results 

Figure 2.  Tunable conductive states of the ITO/MoO3/CuPc/Al memristor. (a) 20 cyclic I-V characteristics 
under consecutive positive/negative voltage sweeps (0 →​ 6/−​6 V →​ 0). (b) The trend in the current versus pulse 
number for the data shown in (a). (c) The decreasing slopes of the dominant SCLC during 20 positive forward 
sweeps in ITO/MoO3/CuPc/Al memristor.
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Figure 3.  Balanced memristive responses under coordinate stimuli. (a) Schematic diagram of alternant 
excitatory and inhibitory inputting pulses applied to the ITO/MoO3/CuPc/Al device consisting of different 
number of positive/negative pulses Ne/Ni in each period. N is the number of applied periods. (b) The increasing/
decreasing current under positive/negative pulses (Ve/Vi =​ 8/−​8 V, 9/−​9 V, 10/−​10 V and Ne/Ni =​ 5). The right 
diagram shows the ultimate increment/decrement in different amplitude modes. The variations in low-voltage 
modes are unobvious. (c) The periodic increasing/decreasing current under the same periods of positive/
negative pulses in three modes with different Ne/Ni (VeVi =​ 10/−​10 V, N =​ 10). (d) The variations of the 
conductance (Δ​G) (defined as Δ​I/V) versus Ne/Ni in the typical periods of Fig. (c). (e) The corresponding 
synaptic weight (Δ​w) (defined as Δ​G/G). (f ) Histogram of the time constants τ​ (calculated from the stretched 
exponential equation) of excitatory and inhibitory currents extracted from (e), and increasing τ means that 
more time is required to reach the respective saturated values in different modes.
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reveal that the overall current can still be balanced under the coordinated signals (Ve/Vi =​ 10/−​10 V) as shown 
in Fig. S5a,b. And under uncoordinated stimuli (Ve/Vi =​ 12/−​10 V in Fig. S6a,b, Ve/Vi =​ 9/−​14 V in Fig. S6c,d), 
the overall conductive state can perform asymptotic stability after a period of self-adjustment. Although the 
pulse number is greatly enlarged, the overall current levels do not keep increasing/decreasing in the modes with 
stronger excitatory/inhibitory inputs. In addition, the enlarged pulse number in each period implies that the dif-
ferences between the excitatory and inhibitory stimulations are enhanced, which result in the expanded ranges of 
the dynamically changing neuroplasticity and the amplified variations of the overall activities relative to the initial 
states of CuPc memristors as indicated in Fig. S7a,b.

Simulations of habituation and sensitization for homeostasis in thicker samples.  In additon 
to focusing on implementing specific programming parameters for fresh learning rules, the internal structural 
cause is also carefully modified. Recent studies have demonstrated that the synaptic weight and time constant of 
signal transmission are configuration-dependent22. Herein, considering the crucial role of the CuPc layer in car-
rier transporting and trapping, the memristive characteristics for specific synaptic emulations in thicker samples 
are explored. Except for the analogous sweeping memristive behaviours in the thin sample, the thick memristors 
show lower conductive states and enhanced rectifying properties (Fig. S8a–d). As expected, the synaptic weight 
can be enhanced/suppressed as soon as serial excitatory/inhibitory spikes are applied in each period as demon-
strated in Fig. 5a,b. Unlike the foregoing thin sample, the overall excitatory conductance under periodic coordi-
nated stimuli tends to be weakened progressively. From the perspective of bio-inspired computing, it enlightens 
us that the gradual suppression of the overall excitation is analogous to the biological habituation. From the elec-
tronic version, biological habituation and sensitization are unfamiliar simulations, which are ubiquitous events 
of our neural activities. In the nervous system, habituation tends to suppress our overall responses under mod-
est signals, contrary to the sensitive performance tending to re-enhance the responses through intense stimuli. 
During our long-term neural activities, they regulate each other to achieve the homeostatic state. Otherwise, 
failed habituation/sensitization may lead to the exorbitantly high/low level neural activities. These mechanisms 
are also missing in Hebbian rules in addition to the homeostatic plasticity19,30,34. Although the relevant accurate 

Figure 4.  Homeostatic memristive responses under non-coordinated pulses. (a,b) The current gradually 
increases/decreases under pulses of Ve/Vi =​ 12/−​10 V a and 9/−​14 V b. (a) Compared with the mode of  
Ve/Vi =​ 10/−​10 V, the positive current grows stronger, while the overall negative level is gradually enhanced 
till they reach a homeostatic state as more periods are applied. (b) Greater non-equilibrium inputs enlarge the 
initial unbalanced states. The greater negative overall current gradually relaxes, while the overall positive level 
is gradually depressed till they reach a new stable balanced state. (c) The comprehensive comparisons of the 
overall positive and negative conductance and long-term regulatory changes in different Ve/Vi and Ne/Ni modes 
extracted from Figs 3b,c and 4a,b, respectively.
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algorithms of the inter-regulatory mechanisms have not been developed, the plasticity can be implemented in 
thicker CuPc memristors. For a synapse, the ability to dynamically remodel its response mode in accordance with 
external variable stimuli for appropriately self-adjusting its weight and memory is the key capacity, termed as the 
activity-dependent property. And it is likewise for the neuromorphic device. The activity-dependent performance 
(habituation and sensitization) is different from the general endurance issue in a memristor. It is noteworthy 
that the gradual relaxation of habituation refers to long-term adjustable behaviours under periods of modest 
irritations, which is not in conflict with the excitatory enhancement under transient high-frequency stimuli. The 
initial temporary excitation is necessary for neural activation under habitual stimuli, however there is no obvious 
excitation in thin samples under modest voltage as shown in Fig. 3b.

Biologically, Kandel et al.31 performed systematic studies on exploring biological habituation and sensitiza-
tion. In their experiments, a neuron can be excited under transient electrical impulses, and the overall excited 
amplitudes of the EPSPs gradually decrease under 15 input stages with moderate intensity and long intervals of 
10–60 s, where the resting time is much longer than the activating time, which is necessary to silence the excit-
ing synapse for avoiding the interferences of PTP performance under frequent inputs6,9,14. In the CuPc artificial 
synapse, considering an effective method for imitations based on relevant biological operation, the insertion of a 
serials of negative pulses to promote conductive recovery is devised following excitation, which is a substitutive 
operation for the long-term relaxation period (Fig. S9a).

As shown in Fig. 6a, the overall excitatory trends under alternate modest stimuli gradually decrease, implying 
that it is increasingly difficult to activate the artificial synapse as more periods are applied, resembling the neu-
ral habituation. The habituation of current levels can be removed after placement for several hours as shown in  
Fig. S10, resembling the dishabituation as time goes on. Importantly, they exhibit different responsive patterns 
according to the signal intensity. As stronger stimuli are applied, the suppressed excitatory levels gradually 
increase as shown in Fig. 6b. Furthermore, the suppressed conductive states under moderate pulses are also 
enhanced by the sensitive activations as demonstrated in Fig. 6c, in analogy with the synaptic behaviour of sensiti-
zation for intense stimuli. In fact, sensitization is often characterized through a universal responsive enhancement 
under the whole range of stimuli, including strong and modest ones. After removing sensitive stimuli, habituation 
still occurs under habitual inputs as expressed in Fig. 6c. From the perspective of long-term homeostatic state, the 
habituation and sensitization mechanisms tending to suppress and enhance the synaptic responses, respectively, 
regulate each other to achieve the dynamic balance state in case of exorbitantly high/low-level neural activities. 
Moreover, the stronger sensitive inputs are (Fig. 6d,f), the higher excitatory levels can be reached under sensitive 
pulses, and likewise for the following habitual pulses (Fig. 6c,e,g). As the sensitization implies, stronger stimuli 
result in the progressive amplification of our comprehensive response. Notably, for the sensitized high conductive 
state, there is subsequent habituation, although sluggishly (Fig. 6h), which conforms to the universal property of 
biological habituation and demonstrates the inherent property of suppression in thicker samples58. Therefore, we 
can conclude that the self-adaption for dynamic balance observed in neurons can be emulated effectively by the 
thicker CuPc memristors. The coupled performances can help us selectively pay less attention to weak signals and 
more attention to intense signals as mentioned above. As an intuitive expression in our sensory neural system, 
we can utilize the advanced electrical performances in a single thicker sample to implement the habituation and 
sensitization in the auditory system, as detailedly illustrated in Fig. 6i. This demonstrates that the single element 
can effectively function as a hardware sensory system to generate the brain-like pattern of habituation and sensi-
tization. In the thicker samples, it is more difficult to inject carriers, especially electrons, as indicated by the lower 
conductive state and the enhanced rectification, and thus there would exist abundant space charges accumulating 
at the electrode interfaces to fill interfacial traps with different energy levels. The current characteristics includ-
ing saturated processes (transition from trap-filled SCLC slope 2 to trap-saturated SCLC slope =​ 2 in Fig. S8e,f) 
implies the sufficient space charge accumulations47. Meanwhile, the large amount of electrons accumulated at the 
interfaces would enhance the hole neutralizing processes. As a result, when negative pulses are applied followed 

Figure 5.  Tunable conductive states in thicker CuPc-based memristors. (a,b) Gradually relaxing overall 
current in thicker memristors (Δ​f =​ 1600 Hz ~70 nm of (a) and 3200 Hz ~90 nm of (b), (Ne/Ni =​ 5, Ve/Vi =​  
10/−​10 V, and N =​ 10). The current progressively increases/decreases under positive/negative pulses in each 
period, whereas the overall current gradually decreases as more periods are applied, and the relaxation trend is 
more obvious in (b) than in (a). Insets display schematic diagrams of thicker memristors (1600 Hz (a) 3200 Hz (b).
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by positive pulses, except for a portion to neutralize trapping holes, there are additional negative charges accumu-
lating at the interfaces. Therefore, when the next periodic positive pulses are applied, the existing reverse charges 

Figure 6.  Habituation and sensitization behaviours. (a–f) As periodically alternant stimuli are applied, the 
current gradually increases/decreases under 5 pulses of 6/−​6 V (a,c,e,g), 8/−​8 V (b), 10/−​10 V (d) 12/−​12 V 
(f ) in an ITO/MoO3/CuPc (3200Hz)/Al memristor. The applied stimuli are further illustrated in Fig. S9b. (a) 
The overall average current gradually decreases under modest inputs. However, the excitatory level is gradually 
enhanced under strong stimuli (b) and the current after being motivated by sensitive pulses is higher than 
before (c). The stronger sensitive pulses are (b,d,f ) the higher excitatory levels are reached under both sensitive 
and following habitual actions (a,c,e,g). The sequential habituation and sensitization in (a–f ) are labelled as 
H1, S1, H2, S2, H3 and S3 stages, respectively. (g) Refractory period. After applying intense pulses (f ) the current 
cannot be immediately excited by the first 5 modest pulses (red region). (h) The average excitatory current 
under intense pulses slowly relaxes as more periods are applied (Ve/Vi =​ 10/−​10 V). (i) Graphical auditory 
responses of habituation and sensitization in H1, S1, H2, S2, H3, and S3 stages extracted from (a–f ). Assuming 
that the periodic habitual and sensitive inputs in different stages with different amplitudes correspond to a series 
of voices with different intensities entering the auditory system marked by the character “i” with different colour 
depths, and the overall conductance corresponds to the auditory response marked by the red bars with different 
intensities and depths.
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weaken the overall conductivity compared with the former period, and similar patterns likewise occur as subse-
quent periodic negative pulses are applied. Consequently, the overall excitatory level progressively decreases. And 
the injecting capacity of carriers can be enhanced under high voltage. However, the abundant interfacial charges 
accumulated in the thicker samples still cause sluggish habituation.

In addition to the long-term self-adaptive performance, the simplified Hebbian algorithms are also inadequate 
for describing the temporary sophisticated phenomena compared with realistic neural networks; one typical 
example is the refractory period. Biologically, there exists an interval (several ms) during which a neuron excit-
edly triggered by preceding spikes is incapable of being excited again by weak actions58,59. The existence of a 
refractory period is an essential biological property for self-preservation. Interestingly, there is electronic refrac-
tory period in the CuPc-based artificial synapse where the electrical performance is superior to that of Hebbian 
rules. The current progressively increases under strong excitatory pulses and then rapidly decays once the acti-
vations are removed, and the decreasing trend cannot be reversed by closely following weaker pulses (Fig. 6g)59. 
From another perspective, the incapability under weaker actions can be ascribed to the increasing threshold 
voltage for motivating the exciting neurons60. Furthermore, as we demonstrated, the effectiveness of excitatory 
plasticity can be recovered after periods of adjustment, thus verifying the robustness of the artificial synapse.

In summary, the enhancing and suppressing tendencies are obtained based on the reversible charge trap-
ping and detrapping processes in the organic semiconductor polycrystalline samples with abundant traps. The 
smooth carrier process can avoid the formation of conductive filament to achieve the gradually changing and 
quasi-continuous characteristics of conductive states for effective neural regulations. Based on this, the typical 
synaptic excitation, inhibition, memory formation and regression in the framework of Hebbian rules are imple-
mented in the CuPc-based artificial synapse. Notably, the long-term homeostasis of synaptic activities can be 
obtained under coordinative inputs and uncoordinated inputs after self-regulation corresponding to the neu-
ral homeostatic plasticity. In another scenario of the homeostasis performance neglected by the Hebbian rules, 
the coupled habituation and sensitization are emulated by the activity-dependent relaxing and restoring current 
trends in thicker samples. These long-term memristive behaviours encourage us to exploit their connotations of 
dynamic balance in realistic neural networks beyond Hebbian rules. We are provided with versatile prototypes to 
advance simulating neuroplasticity comprehensively and further narrow the gap between biological and digital 
computation without intentional hard-wired connections. The CuPc samples further enlightens us to detailedly 
investigate the similar adaptive performances underlie the other reported architectures.

Methods
Samples.  The sandwich device ITO/CuPc/Al is fabricated in a high vacuum chamber. After successively 
cleaning by acetone, ethanol, and deionized water, the glass substrate with ITO strip electrodes is treated in an 
ultraviolet (UV)-ozone environment for ~10 min before baking at 120 °C for ~1 h. Then the CuPc layer is gradu-
ally evaporated onto the ITO substrate in a vacuum (vacuum degree: ~5 ×​ 10−4 Pa). At last, the crossed Al strip 
electrodes are thermally evaporated onto the CuPc layer through a shadow mask as the top electrodes (thickness: 
~100 nm). For the devices with MoO3 buffer layer, the MoO3 layer is evaporated onto the ITO substrate before 
the CuPc layer (the thickness of the MoO3 is ~10 nm). The thickness of each evaporated layer is monitored by a 
quartz crystal cymometer in real time inside the vacuum chamber, and the changing frequency Δ​f corresponds 
to the thickness. In consideration of the CuPc layer with polydomain structure and fluctuant profile, the changing 
precise frequency Δ​f is utilized to mark the evaporated film with different thickness. And there exist different 
conversion relationships for different materials. The thickness of prepared layers mentioned above is also meas-
ured by the step profiler.

Measurements.  The I–V characteristics of the two-terminal devices are measured by an Agilent B1500A 
semiconductor parameter analyzer equipped with our programming testing software in ambient condition. The 
devised voltage signals for specific learning rules are applied to ITO electrode and Al electrode is grounded.
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