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a b s t r a c t

Cognitive and behavioural outcomes in stroke reflect the interaction between two complex

anatomically-distributed patterns: the functional organization of the brain and the struc-

tural distribution of ischaemic injury. Conventional outcome modelsdfor individual pre-

diction or population-level inferencedcommonly ignore this complexity, discarding

anatomical variation beyond simple characteristics such as lesion volume. This sets a hard

limit on the maximum fidelity such models can achieve. High-dimensional methods can

overcome this problem, but only at prohibitively large data scales. Drawing on one of the

largest published collections of anatomically-registered imaging of acute

strokedN ¼ 1333dhere we use non-linear dimensionality reduction to derive a succinct

latent representation of the anatomical patterns of ischaemic injury, agglomerated into 21

distinct intuitive categories. We compare the maximal predictive performance it enables

against both simpler low-dimensional and more complex high-dimensional representa-

tions, employing multiple empirically-informed ground truth models of distributed

structureeoutcome relationships. We show our representation sets a substantially higher

ceiling on predictive fidelity than conventional low-dimensional approaches, but lower

than that achievable within a high-dimensional framework. Where descriptive simplicity

is a necessity, such as within clinical care or research trials of modest size, the represen-

tation we propose arguably offers a favourable compromise of compactness and fidelity.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1 e The causal triad of stroke lesion anatomy. The

spatial features of acutely presenting stroke lesions are

generally determined by the interaction of three factors:

the vascular topology (blue), the occlusive mechanism

(green), and the symptomatic eloquence of the damaged

brain (red). Incidental lesions (cyan) are free of the last

constraint. Niche cases are global hypoperfusion (magenta)

that need not involve focal occlusion or stenosis but will be

shaped by vascular topology, and cardiogenic embolic

“showers” (yellow) too small to be materially influenced by

the structure of the vascular tree.

c o r t e x 1 4 5 ( 2 0 2 1 ) 1e1 22
1. Introduction

Stroke is remarkable in the wide diversity of its cognitive and

behavioural manifestations and the difficulty of predicting

them from the contemporaneous clinical picture alone (Boyd

et al., 2017; Stinear, 2017; Ward, 2017). This cardinal aspect

impedes the management of individual patients, the identi-

fication of protective or exacerbating factors in the population,

and the quantification of treatment doses and effects. Were

this heterogeneity biologically impossible to capture, we could

do nomore than to accept it as an unalterable fact of life. But it

arises from the interaction of two biological characteristics

that are, at least in theory, accessible even if complex enough

to appear suffused with randomness. The first is the functional

anatomy of the brain focal ischaemic injury definitionally dis-

rupts, now comprehensively established to be not only highly

complex but also remarkably consistent across individuals:

meta-analytic imaging databases would otherwise be filled

with noise, not generalisable clusters of coherent activation

(Biswal et al., 2010; Eickhoff, Constable, & Yeo, 2018; Glasser

et al., 2016). The second is the structural anatomy of stroke: the

product of pathological and anatomical factors that are

plausibly both highly complex and non-random (Adams Jr

et al., 1993; Amarenco, Bogousslavsky, Caplan, Donnan, &

Hennerici, 2009; Mah, Husain, Rees, & Nachev, 2014). The to-

pology of the vascular tree, the mechanisms of occlusion or

rupture, and the symptomatic eloquence2 of damaged brain

will all combine to generate elaborate patterns of focal injury

that will nonetheless conform to a potentially knowable

spatial distribution (Fig. 1). Since our knowledge of the func-

tional anatomy of the brain depends to a great extent on the

study of the functional consequences of stroke (Adolphs, 2016;

Damasio & Damasio, 1989; Rorden & Karnath, 2004), the sec-

ond of these characteristics is arguably of prior importance,

and is our specific concern here.

Now the first question when confronted with any complex

biological pattern is this: how do we identify a succinct rep-

resentation that simplifies the pattern while preserving detail

critical to modelling the biological system in which it occurs?

Simplicity is desirable for two inter-related reasons: first, to

render the characterisation of each instance perspi-

cuousdeasily apprehensibledso that its application may be

readily intelligible (intuitively understood), practicable (easily

implemented), and reproducible (replicable across time and

context). Second, to enable robust, objective comparisons

between related instancesdespecially in observational and

interventional studiesdwhere a paucity of variables improves

statistical power and generalisability by reducing the risk of

overfitting (James, Witten, Hastie, & Tibshirani, 2013). Preser-

vation of detail is desirable for two roughly corresponding

reasons: first, to maximise predictive and inferential accuracy

in individualsdof value in tailoring clinical practice to a pa-

tient's specific needsdand second, to permit a closer model fit

to the populationdof value in research studies by explaining

more of the observed variability (Shmueli, 2010).
2 The propensity for dysfunction of a neural substrate to
manifest symptomatically.
Since simplicity and detail inevitably stand in opposition,

our task is to identify a compromise between the two. How

should such compromise be weighted? From a clinical

perspective, individual-level accuracy should be more

important than perspicuity: clinical outcomes matter more

than our intellectual satisfaction with the means of achieving

them (Holm, 2019; Rajkomar, Dean, & Kohane, 2019). From a

research perspective, achieving a closer model fitdprovided it

generalises to unseen datadshould be more important than

maximizing statistical power to estimate model parameters,

for our confidence that the model we are testing is closer to

the generative process is thereby enhanced. Though we

should seek to optimise both, predictive fidelity ought to take

precedence over simplicity in selecting candidate succinct

representations (Yarkoni & Westfall, 2017).

Such an optimum is best derived directly from large-scale

lesion data, without strong prior beliefs about its constitu-

tion, to reduce bias and to bring non-intuitive solutions into

play. It is also best derived from lesion data alone in the first

instance, even if its utility is to be ultimately established by its

power to predict outcomes in downstream discriminative

models (Corbetta et al., 2015; Ramsey et al., 2017). This is

because a representation explicitly steered by a specific

discriminative objectivedpredicting motor disability, for

exampledmay be distorted by it, impairing generalisability

when deployed in the context of other predictive tasks.

Equally, the first test of the potential clinical utility of a rep-

resentation is not its performance on real patient outcomes

but its performance on the combination of real lesion data

with synthetic lesion-deficit models. This is because the fi-

delity of any prediction can only be objectively quantified

against a hard functionaleanatomical ground truth where the

relation between focal damage and outcome is definitively

https://doi.org/10.1016/j.cortex.2021.09.007
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known by being explicitly prescribed. With actual patient

outcomes, since the true lesion-deficit relation is unknown,

any general comparison between representations will be

obscured both by non-anatomical factors such as the global

state of the brain and anatomical factors peculiar to the spe-

cific outcome at hand.

A cardinal characteristic of any representation is its

dimensionality: the number of variables used to describe each

instance. The source dimensionality of stroke lesions is equal

to the number of independently sampled locations within the

brain: typically many thousands with modern imaging. Since

it is difficult to grasp a representation of higher dimension-

ality than two, to satisfy the requirement of perspicuity we

must attempt to derive one- and two-dimensional represen-

tations as our primary focus, evaluating moderately higher

dimensionality for comparison.

Our study therefore adopts the following approach. We

apply unsupervised learning to one of the largest published

collections of registered lesionmaps of acute ischaemic stroke

imaged with diffusion weighted magnetic resonance imaging

(Xu, Rolf J€ager, Husain, Rees, & Nachev, 2017), yielding cate-

gorial, 2-dimensional, and 50-dimensional representations

that optimize the preservation of high-dimensional similar-

ities and differences in the patterns of injury. Defining a

comprehensive set of hypothetical lesion-deficit relations

based on functionally-informed structural parcellations of the

whole brain, we then explicitly compare the predictive fidelity

of these representations against a simple volume-based

parameterisation of each lesion. Two sets of optimized low-

dimensional representationsdcategorial and 2-

dimensionaldare thus compared against two baselines: a

conventional, simple low-dimensional, and an illustrative

high-dimensional representation. The potential benefit of

seeking jointly optimised representations of stroke patterns is

thereby quantified.
2. Materials & methods

2.1. Patients

We identified a set of 1333 patients admitted between 2001

and 2014 to University College LondonHospitals (UCLH) with a

clinical diagnosis of acute ischaemic stroke confirmed by

diffusion weighted imaging (DWI). Since DWI was routinely

performed on the majority of attending patients, the sample

was representative of the population, constrained mostly by

contraindications to and tolerability of MRI. Age ranged from

18 to 97 years, mean 63.89, standard deviation 15.91; the pro-

portion of males was .561; ethnicity was representative of

London (Supplementary Figures 1 and 2). The inclusion

criteria were age 18 and above, a clinical diagnosis of acute

ischaemic stroke, and the presence of a segmentable acute

ischaemic lesion on diffusion weighted imaging conducted

within 10 days of clinical presentation. The exclusion criteria

were the presence of additional non-ischaemic pathology that

substantively distorted the anatomy of the ischaemic lesion

and/or rendered its anatomical registration inaccurate on

neuroradiological inspection. Both inclusion and exclusion

criteria were set prior to analysis. All manipulations, and all
measures in the study, are stated below. The study was per-

formed under ethical approval by the local research ethics

committee for consentless use of fully-anonymized data. The

majority of the data has been previously published in another

study (Xu et al., 2017). No part of the study procedures was

pre-registered prior to the research being conducted.

2.2. Imaging

2.2.1. Data acquisition
All acquisitions were performed on scanners manufactured

by General Electric (Genesis Signa), Philips (Achieva and

Ingenia), or Siemens (Avanto, Skyra and Verio) with field

strength of either 1.5 or 3 T. This diversity reflects changes in

routine clinical practice over the period of data collection

rather than differences in individual indications. All scans

were obtained as part of the clinical routine, employing clin-

ical protocols. We extracted from each imaging study the

echoplanar DWI for lesion segmentation and inter-subject

registration. DWI is widely used to detect and locate acute

ischemic lesions (Fiebach et al., 2002). In its clinical applica-

tion, it consists of an image with a b value of 0 sec/mm2 that is

relatively insensitive to acute ischaemia but shows reasonable

tissue contrast, and an image with a b value of 1000 sec/mm2

that is sharply sensitive to ischaemia but has poor normal

tissue contrast. This complementarity can be exploited to

achieve both good lesion segmentationdwhich depends on

the contrast between lesioned and normal tissuedand good

brain registrationdwhich depends on the contrast between

normal tissue types. Note that the spatial scale and contrast-

to-noise ratio of diffusion weighted imaging in the context of

lesion modelling is such that instrument variability has plau-

sibly little impact on the analysis. This is reflected in the

widespread use of instrumentally heterogeneous imaging in

lesion studies.

2.2.2. Image processing
A fully-automated algorithm, described in detail in (Xu et al.,

2017) and reproduced in Supplementary Material, generated

a binary lesion mask in Montreal Neurological Institute (MNI)

stereotactic space, sampled at 2 mm isotropic resolution. In

brief, a custom set of MATLAB routines based on SPM12

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) were

used to co-register each b0 and b1000 pair, derive from the b0 a

non-linear deformation field to MNI space and apply it to the

b1000 (Ashburner & Friston, 2005), and segment the lesion

using the anomaly metric, zeta (Mah, Jager, Kennard, Husain,

& Nachev, 2014; Xu et al., 2017), yielding a whole-brain,

voxel-wise, binary map of ischaemic damage, resliced at

2 mm3 resolution. Supplementary Figure 3 shows the average

of all lesions.

2.3. Deriving a succinct lesion representation

To maximise coverage and account for natural spatial varia-

tion, the stack of registered binary lesion images was

collapsed onto one hemisphere and smoothed by a Gaussian

filter of 2 mm full width at half maximum. Though there are

isolated, idiosyncratic structural asymmetries, the macro-

scopic vascular organisation of the brain is symmetric, with

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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no empirical evidencedpublished or inherent in clinical

practicedfor any systematic lateralisation across the popula-

tion. Given our focus on the cardinal aspects of the lesion

distribution, plausibly driven by anatomical characteristics

that are evidently non-lateralised, it is reasonable to model

under the assumption of symmetry.

Non-negative matrix factorisation (Lee & Seung, 1999), was

then used to embed the 902 629 dimensions of the images into

a 50 dimensional space, yielding our 50-dimensional repre-

sentation. This approach is preferable to principal component

analysis here for two reasons: first, because the input ele-

ments are exclusively positive, and second, because a parts-

based decomposition is more likely to achieve good separa-

tion between lesion patterns. The value of 50was chosen as an

intuitively non-apprehensible dimensionality substantially

higher than the two-dimensional and lower representations

for which we need a high dimensional contrast.

To derive a two-dimensional representation we applied t-

distributed stochastic neighbour embedding to the 50-

dimensional representation (as commonly practised to

ensure stability) rather than the raw data, with a perplexity

setting of 30 (Maaten & Hinton, 2008)). The rationale for using

t-SNEda non-linear dimensionality reduction method with

established state-of-the-art performance on many biological

datasets (Abdelmoula et al., 2016; Amir et al., 2013; Shekhar,

Brodin, Davis, & Chakraborty, 2014)dis that conventional

linear methods cannot capture the hierarchical patterns of

dependence the fundamental nature of the brain's blood

supply imposes on the data. T-SNE has the further advantage

of preserving similarities and differences at multiple spatial

scales, another inevitable feature of patterns predominantly

shaped by the vasculature. The resultant two-dimensional

representation was further refined by structure-aware

filtering ((Wu et al., 2018), regularization power mu ¼ .2, and

neighbourhood size r ¼ .1).

Finally, the resultant two-dimensional representation was

discretized byWard hierarchical agglomerative clustering into

a categorial representation. The choice of clustering algorithm

was motivated by the natural hierarchical structure of the

vascular tree, and by the absence of any requirement to

specify the desired number of clusters (J. Friedman, Hastie, &

Tibshirani, 2001; Ward, 1963). We chose a threshold of 30

clusters as a reasonable compromise between compactness

and spatial granularity. Each cluster was subsequently eval-

uated for redundancy by an experienced neuroradiologist

(HRJ) and a neurologist (PN), pruning the final clustering to 21

distinct clusters by amalgamation. Voxel-wise averages

across the members of each cluster yields a set of “centroid”

archetypal images that capture the distinctive characteristics

of the category in anatomical space.

2.3.1. Alternative succinct lesion representations
To investigate the potential capability of other techniques for

reducing dimensionality to the initial, two-dimensional

succinct representation, we replicated the preceding pro-

cessing pipeline with the substitution of Principal Compo-

nent Analysis (PCA) alone, PCA followed by t-SNE, Uniform

Manifold Approximation and Projection (UMAP) (McInnes

et al., 2018) alone, PCA followed by UMAP, and NMF fol-

lowed by UMAP. We focused on UMAP as a new general non-
linear dimension reduction technique, closely related to t-

SNE, that has the advantage of being deterministic, but has

yet to see widespread use. The alternative representations

were qualitatively compared with the categorial labels from

our one-dimensional representation.

2.3.2. Ground truth lesionedeficit maps
Our objective is to quantify the potential utility of our lesion

representation in predicting patient functional outcomes. Pre-

dictive performance here depends on two interacting factors:

the underlying lesionedeficit relation, and the capacity of the

lesion representation to make use of it within discriminative

models used to forecast future outcomes. Since our interest

here is in the second of these two factors,wemust fix the first by

positing a hypothetical lesionedeficit map. Otherwise performance

estimates will be unquantifiably and unpredictably distorted

by error and uncertainty in the underlying real-world relation

between lesions and their associated deficits.

The posited hypothetical lesionedeficit mapping must

nonetheless be biologically plausible. It must also afford

coverage of the entire brain, for generalisation from one

anatomical region to another cannot be assumed. Finally,

more than onemap is desirable to reassure us the result is not

an accidental artefact of the specific choice of ground truth.

We therefore created two sets of ground truth

lesionedeficit maps. The first set was defined by damage to at

least 15% of a sub-network of functionally related Brodmann

areas (BA) and their underlying white matter as specified in

Chris Rorden's widely-used template distributed with MRIcro

(http://www.mccauslandcenter.sc.edu/mricro/index.html).

These maps included Brodmann areas implicated in visuo-

spatial neglect (BA 39/44), picture naming (BA 37/38), senso-

rimotor areas (BA 6, 4a/b, 3 a/b, 1,2; adopted by (Rehme et al.,

2015)), visual (BA 17, 18, 19), and speech areas (BA 22, 39, 40, 44,

45). These functional systems were chosen as amongst the

most frequently affected following stroke (Kelly-Hayes et al.,

2003) (Gall et al., 2010), and as modelled in previous lesion-

deficit simulation studies (visuospatial neglect, picture

naming (Mah et al., 2014) (Sperber, 2020)), facilitating com-

parison. Furthermore, the underlying patterns of neural

dependence span multiple vascular territories, enabling more

comprehensive testing of the predictive capacities of our

lesion embeddings and strengthening generalisation across

diverse predictive tasks and contexts. A subcortical compo-

nent was additionally introduced with Archer's sensorimotor

tract template (Archer, Vaillancourt, & Coombes, 2018), anal-

ogously defining a deficit where the lesion includes at least

15% of a given tract. A sub-networkwas treated as “affected” if

at least one of its constituent areas was lesioned above the

critical threshold (Supplementary Figure 5).

The second set of maps exploited Schaefer's recent whole

brain parcellation based on resting state functional MRI data

(Schaefer et al., 2017), combined with Yeo's 17-network par-

cellation (Buckner, Krienen, Castellanos, Diaz, & Yeo, 2011).

Here each of Schaefer's 100 regions was assigned to its cor-

responding Yeo functional sub-network. As before, we

defined a sub-network as “affected” if at least 15% of the

voxels of at least one region within it were lesioned

(Supplementary Figure 6). An exhaustive list is given in

Supplementary Table 1.

http://www.mccauslandcenter.sc.edu/mricro/index.html
https://doi.org/10.1016/j.cortex.2021.09.007
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2.3.3. Predicting deficits
The foregoing lesionedeficit maps enabled us to define a

lesion as being associated with a deficit or not, for each of the

given functionally informed anatomical networks, yielding a

ground truth against which predictions with models

employing different lesion representations could then be

tested. Four different representations were evaluated. The

simplest, “Baseline” representation was constituted of the age

of the patient and the volume of the lesion. The next two

representations were based on age and lesion volume as well

as our low dimensional embeddings: the Ward cluster mem-

bership of the lesion (“Categorial”), and the two-dimensional

t-SNE coordinates (”2D”). The final representation was the

50-dimensional NMF decomposition (”50D”). Note the purpose

of the 50-dimensional representation is to provide a high-

dimensional contrast far removed from plausible intelligi-

bility rather than to establish themaximumachievablewithin

a model unconstrained in its input dimensionality. Such a

maximum would depend not only on the representation but

also on the optimality of the predictivemodelling architecture

and its tuning, and its supportability by the available lesion

data, making it hard to draw any conclusions about the mar-

ginal contribution of the representation itself: the focus of our

study. We therefore did not explore higher-dimensional

models, including those operating at voxel level.

Though low-dimensional, these representations do not lin-

earise the relation to hypothetical deficits.We therefore chose a

flexible, non-linear architecture for predictive modelling:

gradient boosting machines (GBM) (J. H. Friedman, 2001). For

each set of network ground truths and lesion representations,

randomly resampling the dataset with equally balanced draws

from the “affected” and “unaffected” contingents,we iteratively

trained and tested on separate subsets ten-fold, yielding esti-

mates of the mean performance and its variability. The hyper-

parameters of the trained modelsdloss (“deviance” vs “expo-

nential”), number of estimators (100, 300, or 500), and maximal

tree depth (1, 2 or 3)dwere optimised through five-fold nested

cross-validation. The primary measure of performance was

accuracy. Note the balanced sampling means this is also the

balancedaccuracy: chanceissetat50%.Ancillaryanalysesusing

instead thearea under the receiver operating curve (AUROC) are

given in Supplementary Material, as is an outline of the entire

workflow (Supplementary Figure 4).

2.4. Statistical analysis

The recommended approach to quantifying the robustness of

differences in predictive performance achievable with the

four different representations is by cross-validation 95%

confidence intervals on the balanced accuracy and AUROC

measures: this is standard in the evaluation of complex

multivariate models (Varoquaux et al., 2017). For those

nonetheless accustomed to more conventional tests, we

added two-way ANOVAs, separately for each of the two sets of

lesion-deficit maps. We examined the main effects of the

lesion representation type (“Baseline”, “Categorial”, “2D” or

“50D”) and the sub-network (different for each of the two sets

of lesionedeficit maps), as well as their interaction. The F-

statistic was quoted and the level of significancewas set at .05.
No part of the study analysis was pre-registered prior to the

research being conducted.

2.5. Data and code availability

The lesionmaps employed in this study are available from the

corresponding authors on request by email. Analyses (NMF

(Lee & Seung, 1999) (Cichocki & Phan, 2009) (F�evotte & Idier,

2011), t-SNE (Maaten & Hinton, 2008), GBM (J. H. Friedman,

2001)) were primarily performed in a Python 3.7 Jupyter

Notebook framework (relying on SciKit-learn .19 (Pedregosa

et al., 2011)). Example code for the automated derivation of a

low-dimensional stroke lesionrepresentationcanbefoundhere:

https://github.com/AnnaBonkhoff/Reclassifying_stroke_lesion_

anatomy. Lesionmaps of the final 21 archetypal clusters in MNI-

space can be downloaded here: https://github.com/

AnnaBonkhoff/Reclassifying_stroke_lesion_anatomy. Any new,

test lesion can be assigned to its closest archetype by quantifying

its comparative similarity on a suitable binary distance metric.

The code for structure-aware filtering is openly available here:

https://codeocean.com/capsule/1845868/tree/v1.
3. Results

3.1. A succinct representation of ischaemic stroke

The succinct lesion representation shows a clear subdivision

into 21 stereotyped clusters (Fig. 2, centre). The archetypal

centroids of these clusters, projected into anatomical space,

conform to patterns that are plausibly the joint outcome of

vascular topology, occlusive mechanisms, and symptomatic

eloquence (Fig. 2, periphery). Detailed maps of the centroids

are displayed in Fig. 3.

3.2. Predictive performance

Compared with the baseline, the succinct representation

achieved substantially greater than baseline cross-validated

predictive accuracy across both sets of lesion-deficit maps

and all sub-networks (Fig. 4, Supplementary Tables 1 and 2).

The Rorden-Archer models relying only on patient age and

lesion size (“Baseline”) achieved a mean cross-validated pre-

diction accuracy of .83(±.01 95%CI), whereas models addi-

tionally based on cluster membership (“Categorial”) or two-

dimensional embedded coordinates (”2D”) achieved accu-

racies of .88(±.01 95%CI) and .90(±.01 95%CI), respectively. The

corresponding numbers for Yeo-Schaefer models were accu-

racy of .79(±.01 95%CI) for “Baseline”, .85(±.01 95%CI) for

“Categorial”, and .86(±.01 95%CI) for “2D”.

The observed performance also varied with the target

functional anatomy. Across the Rorden-Archer models, vision

and picture naming yielded larger benefits (10.8e10.9%) than

the rest (4.0e7.4%). The highest scores were generally ob-

tained for speech deficits and neglect with an accuracy of

.92(±.01 95%CI) and .91(±.02 95%CI), respectively, for themodel

incorporating information from t-SNE coordinates (”2D”).

Across the Yeo-Schaefer models, motor A, peripheral & cen-

tral vision, and Control C network were most rewarding

https://github.com/AnnaBonkhoff/Reclassifying_stroke_lesion_anatomy
https://github.com/AnnaBonkhoff/Reclassifying_stroke_lesion_anatomy
https://github.com/AnnaBonkhoff/Reclassifying_stroke_lesion_anatomy
https://github.com/AnnaBonkhoff/Reclassifying_stroke_lesion_anatomy
https://codeocean.com/capsule/1845868/tree/v1
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Fig. 2 e Two-dimensional representation and clustering of focal ischaemic lesions. Displayed as a scatter-plot in Cartesian

latent dimensions (axes not shown) are the two-dimensional representations of each of the 1333 lesions, with point size

proportional to lesion volume. Lesions with similar anatomical features are rendered proximal in this latent space in

proportion to their similarity, yielding a set of natural clusters formalised with Ward hierarchical clustering into 21 distinct

categories (coloured the same) plausibly related to the underlying vascular tree (coloured rings). Volumetric representations

of the average lesion of each clusterdeffectively the centroiddare shown in the periphery, centred on the most informative

slice. Each category of cluster is given an identifying name for classification purposes. Note all data is collapsed onto one

hemisphere for simplicity.
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(10.1e18.9%), with a maximal improvement in case of pe-

ripheral vision. The best accuracies were found for the Default

mode B network with .92(±.02 95%CI) and Control A network

.90(±.02 95%CI) for “2D” model.

Neither succinct representation, however, matched the 50-

dimensional representation's test accuracy of .95(±.01 95%CI)

for Rorden-Archer and .98(±.002 95%CI) for the Yeo-Schaefer

models. This also showed less predictive variability across

models and parcellations.
Analysis of AUROC measures yielded an essentially iden-

tical picture (Supplementary Figure 7; Supplementary Tables 1

and 2).

ANOVAs performed separately for the Rorden-Archer

and Yeo Schaefer parcellations revealed significant main

effects of “Representation” (Two-way ANOVA: F-

Statistic ¼ 352.2, p << .001, Rorden-Archer; F-

Statistic ¼ 558.0, p << .001, Yeo-Schaefer) and “Deficit” (F-

Statistic ¼ 17.0, p << .001, Rorden-Archer; F-Statistic ¼ 46.5,

https://doi.org/10.1016/j.cortex.2021.09.007
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Fig. 3 e Detailed anatomy of the categorial lesion representation. The archetypal centroid of each cluster from the two-

dimensional embedding (displayed on the left of each column row) is displayed overlaid on an illustrative normal brain

image in Montreal Neurological Institute stereotactic space at the z axis locations given in the first row.
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p << .001, Yeo-Schaefer). There was an interaction between

the two factors: F-Statistic ¼ 6.5, p << .001, Rorden-Archer;

F-Statistic ¼ 8.1, p << .001, Yeo-Schaefer, c.f.

Supplementary Tables 3 and 4).
3.3. Alternative representations

Though our objective is not to compare different possible

succinct representations but to quantify the potential

https://doi.org/10.1016/j.cortex.2021.09.007
https://doi.org/10.1016/j.cortex.2021.09.007


Fig. 4 e Quantification of simulated behavioural outcome predictive performance. For each of four incrementally enriched

representationsdbaseline age and lesion volume (blue), cluster membership (orange), two-dimensional representation

coordinates (red), and 50-dimensional NMF representations coordinates (claret)dachieved balanced accuracy is depicted as

a spider-plot across individual areas within the Rorden-Archer parcellation (top), and the Yeo-Schaefer parcellation

(bottom). Dotted lines identify 95% confidence intervals from the cross-validation procedure. The origin of the spider

indicates prediction at chance level (50%); outer circles indicate 70%, 80% and 90% accuracy. Note that predictive accuracy

generally increases with dimensionality but that the categorial representation performs substantially better than age and

lesion volume alone.

c o r t e x 1 4 5 ( 2 0 2 1 ) 1e1 28
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predictive superiority of a well-crafted succinct representa-

tion against the simple baseline models in current use, we

provide a qualitative illustration of the separation between

clusters achievable with other techniques, with our categorial

labels provided as a reference (Supplementary Figure 8).
4. Discussion

We have derived a representation of ischaemic lesionsd-

drawn from one of the largest published collection of regis-

tered stroke imagesdthat is almost as succinct as

conventional lesion metrics while enabling substantively

greater predictive power. Our purely data-driven approach

integrates the influence of topological, mechanistic, and

symptomatic drivers of the stereotypy of acutely presenting

lesions, yielding a comprehensive, generalisable reclassifi-

cation of the anatomy of ischaemic stroke. Membership of 21

archetypal clusters, and the coordinates within a two-

dimensional embedded latent space, distil anatomical in-

formation in readily interpretable form. Each cluster is

readily explicable within the causal triad of stroke lesion

patternsdvascular topology, occlusive mechanism, and

symptomatic eloquencedfacilitating the intuitive assign-

ment of a lesion to its category. Both the two-dimensional

and categorial representations are succinct enough to be

handled by relatively simple predictive models powered by

modest quantities of data, for any predictive task, making

their use in downstream modelling readily practicable. The

clear disentanglement of spatially distinct categories assures

reproducibility, for membership is determined by strongly

differentiated anatomical characteristics plausibly stable

across instrumental and wider brain structural variations.

The principal value of this representation is as a simple

“drop-in” replacement for the anatomical classifications of

stroke in current use, across both observational and inter-

ventional studies. Since it is derived independently of any pre-

dictive task, it is not biased in favour or against any specific

clinical context, assuring strong generalisability. An anatom-

ical classification derived from a predictive modeldlong-term

motor recovery, for exampledwould be inevitably biased by

the critical anatomical decision boundary in the brain,

limiting its wider utility. Indeed, explicit guidance by an

outcome decision boundary always magnifies the risk of

overfitting, a problem the field of representation learning

(Bengio, Courville, & Vincent, 2013) has in part emerged to

solve. The use of lesion properties alone to derive the repre-

sentation, without any supervision, from a large, essentially

unselected dataset, ensures equal applicability to any pre-

dictive task. We make the 21 archetypal lesion categories

available to facilitate use in downstream research and clinical

settings.

Equally, the ground truth models quantifying the relative

predictive power must be synthetic here, even if guided by

empirically-derived parcellations of the brain. Real patient

outcomes for a dataset of this size would either be too coar-

sedsuch as mRSdor limited to a narrow range of functional

domains, limiting generalisability. Moreover, no objective

quantification of the relative fidelity of different representa-

tions can be made without a hard functionaleanatomical
ground truth that real patient outcome data could never pro-

vide: this is because noise in the underlying dependence

would unquantifiably modulate any observed effect. The

magnitude of the predictive improvement is bound to vary

outside idealised conditions, but key here is consistency

across a wide array of plausible ground truth models encom-

passing the entirety of the brain. Real-world prediction needs

to be quantified subsequently, only after the limits under ideal

condition are established first.

Our approach employs t-SNE, a well-established non-

linear dimensionality technique widely regarded as being

capable of achievingmaximal separation between the clusters

of complex distributions (Abdelmoula et al., 2016; Amir et al.,

2013; Arazi et al., 2019; Shekhar et al., 2014). But our key

conclusion is that non-linear representation learning in gen-

eral is capable of achieving far better predictive power than

simple metrics such as lesion volume allow, without intro-

ducing complexity in the predictive model itself. The rapidly

evolving field of representation learning will bring new

methods, and with larger collections of data, established

methods such as deep generative models will become trac-

table. Methods with comparable expressive power but less

stochasticity than t-SNE would be desirable, combined with

predictive systems downstream within a semi-supervised

framework. It is clear that simple, linear methods such as

PCA are incapable of accessing the complex structure of le-

sions (Supplementary Figure 8).

Though a lesion may be assigned to a cluster visually or

automatically via distancemetrics, by reference to the native-

space anatomical appearances of the archetypal centroids,

the most natural implementation of our new classification is

by automated processing the image, now feasible even with

clinical data of variable quality. The fundamental structure of

the representation having been established, automated

assignment would be performed by a discriminative algo-

rithm, bypassing t-SNE whose stochastic nature suits it to the

general identification of high-dimensional patterns rather

than the categorisation of individual unseen cases (Van Der

Maaten, 2009). Comparable disentanglement is in any event

achievable with invertible algorithms such as UMAP

(Supplementary Figure 8). Rendering the structure intuitively

intelligible potentially strengthens clinical trust in algorithms

whose operation otherwise appears opaque, even if it may not

be in reality.

Though clearly superior to a basic description a lesion, the

succinct representation cannot match the predictive perfor-

mance achievable with a 50-dimensional embedding. Where

the available data scale permits it without overfitting, high-

dimensional modelling, at maximum relying on voxel-wise

information, places a higher ceiling on maximal achievable

performance, and remains preferable (Karnath, Sperber, &

Rorden, 2018; Mah et al., 2014; Pustina, Avants, Faseyitan,

Medaglia, & Coslett, 2018; Toba et al., 2017; Xu et al., 2017).

Equally, where the constraint on compactnessmay be relaxed

beyond the naturally intuitive, representations of intermedi-

ate dimensionality can be used. This is especially true of

lesion-deficit models intended for functional anatomical

inference, whose aim is to render the underlying functional

anatomy perspicuous rather than to identify conjunctions of

lesion and functional anatomical patterns that best predict

https://doi.org/10.1016/j.cortex.2021.09.007
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individual outcomes (Bonkhoff, Lim, et al., 2021; Bonkhoff,

Schirmer, et al., 2021; Zhao, Halai, & Lambon Ralph, 2020).

Indeed, employing higher dimensionalities is essential if the

underlying functional architecture is to be explicitly disen-

tangled from the lesion patterns used to reveal it (Xu, Jha, &

Nachev, 2018). Rather, our aim here is to facilitatedthrough

the use of intuitively intelligible representationsethe transi-

tion to more complex outcome modelling in stroke, where

established practice remains aggressively reductive.

Our representation is limited to acute ischaemic stroke:

given sufficient data, analogous representations may be

derived for chronic lesions, of vascular and other aetiologies

whose manifestations are spatially structured. Though here

confined to anatomical features, multimodal information can

be brought into play if interaction with the anatomy falls

within the realm of possibility. Indeed, the integration of other

anatomical factorsdsuch as white matter connectivity

(Foulon et al., 2018)dand functional indicesdsuch as net-

works of task-related co-activation (Eickhoff et al., 2018)das

well as their interaction (Thiebaut de Schotten, Foulon, &

Nachev, 2020), may well enable succinct representations

with higher individually predictive power.
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