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Abstract

MicroRNAs are small non-coding RNAs that influence gene expression by binding to the 3’

UTR of target mRNAs in order to repress protein synthesis. Soon after discovery, microRNA

dysregulation has been associated to several pathologies. In particular, they have often

been reported as differentially expressed in healthy and tumor samples. This fact suggested

that microRNAs are likely to be good candidate biomarkers for cancer diagnosis and per-

sonalized medicine. With the advent of Next-Generation Sequencing (NGS), measuring the

expression level of the whole miRNAome at once is now routine. Yet, the collaborative effort

of sharing data opens to the possibility of population analyses. This context motivated us to

perform an in-silico study to distill cancer-specific panels of microRNAs that can serve as

biomarkers. We observed that the problem of finding biomarkers can be modeled as a two-

class classification task where, given the miRNAomes of a population of healthy and cancer-

ous samples, we want to find the subset of microRNAs that leads to the highest classifica-

tion accuracy. We fulfill this task leveraging on a sensible combination of data mining tools.

In particular, we used: differential evolution for candidate selection, component analysis to

preserve the relationships among miRNAs, and SVM for sample classification. We identified

10 cancer-specific panels whose classification accuracy is always higher than 92%. These

panels have a very little overlap suggesting that miRNAs are not only predictive of the onset

of cancer, but can be used for classification purposes as well. We experimentally validated

the contribution of each of the employed tools to the selection of discriminating miRNAs.

Moreover, we tested the significance of each panel for the corresponding cancer type. In

particular, enrichment analysis showed that the selected miRNAs are involved in oncogene-

sis pathways, while survival analysis proved that miRNAs can be used to evaluate cancer

severity. Summarizing: results demonstrated that our method is able to produce cancer-

specific panels that are promising candidates for a subsequent in vitro validation.
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Introduction

Timing and accuracy in cancer diagnosis are among the most critical factors that influence the

clinical history of a patient. Until recently, the histological analysis of a small sample of tumor

cells has been the only tool for cancer classification. The complexity of this pathology and the

histological similarity of certain sub-classes, however, have motivated researchers to find easier

diagnosis techniques that can also be used on a large scale [1].

MicroRNAs (miRNAs) are short non-coding RNAs, whose size is approximately ranged

between 22 and 25bp, that influence the regulation of target genes by imperfect binding to

complementary regions of messenger transcripts [2]. Being involved in several biological pro-

cesses [3–5], modifications of the expression profile of this class of RNAs have been investi-

gated in conjunction with cancer [5]. A further property that makes miRNAs an attractive

target for research of non-invasive biomarkers is that they are released outside the cell and can

be easily quantified in the serum [6] using RT-qPCR [7]. Moreover, the relationship between

cellular and circulating miRNAs has already been elucidated [8]. These facts open to a new

generation of miRNA-based non-invasive biomarkers [9].

Over the last decade, several studies on cancer have pointed out specific miRNAs as puta-

tive biomarkers for a variety of purposes (see reference [10] for a survey). Applications range

from the classification of the tissue of origin [11] or the cancer type [12–14] to the personalized

therapy [15, 16]. However, the discovery process has been complicated from the limited

amount of data and from the fact that differential expression has been the only discriminating

feature to drive researchers.

The drop of the cost of NGS technologies for whole miRNAome analysis and the availability

of public repositories of miRNA profiles of cancerous samples (i.e. The Cancer Genome Atlas

[17]), have raised the question whether the traditional pipeline in which the in-vitro explor-

atory activity is performed upstream the statistical analysis can be turned, making machine

learning approaches to drive subsequent in-vitro experiments. Although few preliminary pub-

lications [18] foster a positive answer to this question, an agreed compendium of the miRNA

profiles associated with all the cancer types is still far away.

In this work, we argue that panels based only on miRNAs differentially expressed between

tumor and control samples might lack possible complex relationships among patterns of

expression levels. Consequently, we propose to map the task of discovering putative miRNA

biomarkers into the machine learning problem of selecting a restricted set of features that lead

to the highest classification accuracy of a two-class classification task.

This problem formulation, however, raises the issue of building a pipeline that provides the

highest classification accuracy. Since feature selection and classification are probably the two

most studied problems in machine learning [19] [20] and in bioinformatics [21], [22] [23],

exploring all the possible alternatives is impossible. We thus fixed some choices according

to the general agreement in the literature and followed an explorative approach for other

components.

Experiments on the 10 common cancer types from [24] showed that our proposed approach

improves upon differential expression-based state-of-the-art methods not only in terms of accu-

racy, but also in terms of other relevant performance measures (i.e. FDR, sensitivity, specificity,

etc.). The value of this result is twofold: firstly, it opens to a new methodological approach to

differential expression analysis; moreover, it can be considered as a preliminary piece of evi-

dence that relationships among the expression values of miRNAs might not be linear.

To conclude this work, we investigated the biological role of miRNAs in our panels. We

found that most of them interact with the morphogenesis process and are involved in pathways

which regulate cellular proliferation, growth, and survival.
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Materials and methods

The key idea behind our approach is that of mapping the problem of finding putative miRNA

biomarkers into a two-class classification task. However, important differences between the

two problems exist. In fact, increasing the accuracy of the canonical classification task can be

achieved by providing new training examples; while in our setting the number of involved ele-

ments is bounded by the limited availability of samples. Another important difference is that,

in our case, a high accuracy is not enough. In fact, we are interested in finding a restricted

panel of miRNAs responsible for the correct classification. This last fact suggests that we can

leverage on feature selection so as to maximize classification accuracy.

In this paper, we used an evolutionary optimization method called Differential Evolution
(DE) [25–27] to explore the space of the subsets of miRNAs. The outcome of the classification

performed via a Support Vector Machine (SVM) [28] is used to assess the quality of the selec-

tion while Kernel Principal Component Analysis (KPCA) [29] and Principal Component Analy-
sis (PCA) [30] are used to keep unaltered the structural characteristics of the whole dataset

during the selection process. In order to prevent the intrinsic randomness of DE causes the

inclusion of irrelevant results in the returned panel, we have run the optimization algorithm

50 times and selected the final set of miRNAs by means of a finishing algorithm based on a

majority voting scheme.

Component analysis

Feature selection is a common tool to scale down a high-dimensional space. According with

the purpose of the application, two main strategies can be chosen: dimensionality reduction

and variable elimination (see [31] for an in-depth examination). Component analysis, as all

the orthogonal transformations, belongs to the first category. The main advantage of this

strategy is that the reduced space still maintains the structural properties of the original

space. However, once a correlation in the reduced space is found, reverting to the original

correlated dimensions is not possible. The Differential Evolution algorithm, instead, is a

wrapper-based approach belonging to the class of variable elimination. Methods of this

category iteratively select a subset of dimensions of the original space attempting to maxi-

mize a certain objective function (usually classification accuracy). Working with dimen-

sions in the original space, the advantage of this approach is that of exactly knowing the

variables under consideration. On the other hand, complex relationships among the features

are not taken into account causing the removal of a dimension to brake possible unknown

relationships.

In our framework, the need to identify the subset of miRNAs that maximize classification

would force us to use variable elimination. However, this would mean giving up with the possi-

bility of involving complex expression patterns in the process of selection of a panel and, in

turn, reducing to a standard differential analysis. Combining the strengths of dimensionality

reduction and variable elimination is hence needed. We achieved this goal by leveraging on

the following two results. In [32] the authors proposed a dimensionality reduction scheme in

which the dataset is randomly partitioned into K homogeneous groups and PCA is applied to

each of them. The final dataset consists in a matrix in which the i-th column is the principal

component of the corresponding partition. Experiments in [32] showed that this reduction

strategy still preserves the structural characteristics of the original dataset, suggesting that for

large-enough partitions, PCA obeys a sort of distributive law. In [33] the authors showed that a

wrapper-based dimensionality reduction approach (i.e. a method that exploits the outcome of

classification to select features) can be improved applying in cascade a filter-based method (i.e.

an algorithm independent of the classification algorithm).

Genome-wide analysis of NGS data to compile cancer-specific panels of miRNA biomarkers

PLOS ONE | https://doi.org/10.1371/journal.pone.0200353 July 26, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0200353


Let E be a s × d matrix with the expression levels of d miRNAs on s samples and let E(v) be a

subset of n< d columns of E as specified by a n-dimensional vector v.

Building upon [32], we pre-processed E by applying component analysis and extracting the

first n components (for a fixed value of n). The resulting matrix Ê represents the projection of

E into a new smaller space with s rows and n columns. We observed that, when Ê maintains

the same structural characteristics of the original expression matrix (i.e. saving most of its vari-

ance), it can be used as an encoder to compress a miRNA vector of E into a smaller one with a

marginal loss of information. Consequently, multiplying each vector of E(v) (thus selecting n
miRNAs) with the matrix Ê we obtain a new matrix ÊðvÞ that: keeps unaltered most of the

structural characteristics of the original expression matrix, and highlights the contribution of

the selected miRNAs.

Choosing a convenient component analysis algorithm able to preserve variance is compli-

cated by the fact that different datasets can have profound differences that reflect on the

outcome of the methods. PCA is fast and appropriate when data do not exhibit non-linear rela-

tionships, while KPCA is more able to preserve complex relationships. We empirically chose

per dataset component analysis by testing the accuracy of classification either after PCA or

KPCA and deciding for the most promising.

Following a philosophy similar to that of [33], we used the DE algorithm to select the miR-

NAs specified in the vector v and the matrix ÊðvÞ (in place of E(v)) as input for the classifier

that computes the fitness function. As a consequence, the fitness value does no longer reflect

the classification accuracy of a panel based on E(v). Nevertheless, ÊðvÞ is likely to be more

effective than E(v) to quickly lead DE to an optimal solution.

Differential evolution

Differential Evolution (DE) [25–27] is an evolutionary optimization tool aimed at finding a

global optimum solution in a n-dimensional real parameter space Rn.

Like any other evolutionary algorithm, DE maintains a set V = {v[1], . . ., v[I]} of I candidate

solutions (I = 50 in our experiments) and applies a series of operators to evolve to the next gen-

eration. Each solution, in turn, is a vector v storing n features (miRNAs in our case). For clar-

ity, we often add a subscript in the notation to denote the generation.

Let M be the sorted static list of miRNAs involved in a given cancer dataset. Say |M| = d. A

vector v 2 V consists of n disjoint references (as index) to elements of the table M.

Since the choice of the length n of v is arbitrary, in our experiments we tested several possi-

ble assignments of it. We found that consistently the lower n, the better our method works. In

particular, n = 10 has shown to be an optimal value for our purposes (see section “Parameter

setting”).

In order to initialize the first generation of candidate solutions, for each v 2 V, DE

selects n random elements from the list M of miRNAs. Subsequently, at the i-th generation

(i 2 [1, . . ., φ]), the mutation and scaling operators are used to evolve every individual vector

vi[j], j 2 [1, I] (called target) into a new vector vi+1[j] (called trail) and the operator of crossover

is applied to hybridize a fraction Cr of the new population. We set Cr = 0.8 in our experiments.

Finally, a fitness function is computed to compare each trail vector with its corresponding tar-

get. The vector with highest fitness is selected and promoted to the next generation, while the

other is discarded. As a result, the population never deteriorates, giving either the same or a

better fitness status. Elitism operator is used to prevent the DE algorithm to fall into a local

maximum. To do this, the operator selects the solution with highest fitness value in the current

population and promotes it to the next generation. The evolution process is repeated until a
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predefined stopping criterion is met (50 iterations in our experiments). A flow chart of DE

based feature selection is shown in Fig 1.

Population initialization. The first generation of the population consists of a randomly

initialized set of vectors V0 = {v0[1], . . ., v0[I]}. For each vector v we used a uniform random

number generator to select n disjoint items from the table M of miRNAs.

Fitness computation. Designing the fitness function to evolve Vi into Vi+1 is the key

choice for evolutionary algorithm developers. In fact, the selection of the candidate solutions

at each generation strictly depends on it. In our case, we were interested in a function that pro-

motes a vector v if the corresponding miRNAs are responsible of the discrimination between

control and tumor samples. As many wrapper-based approaches, we used the outcome of clas-

sification to compute fitness.

Following the intuition in [33], we combined the classification-based fitness evaluation

with a method independent from classification. In particular, by multiplying the matrix E(v)

times the matrix Ê derived from the component analysis, we obtained a new matrix ÊðvÞ that

preserves the variability of the original dataset E, but enhances the contribution of the miRNAs

in v. The matrix ÊðvÞ is subsequently used as input for a SVM endowed with RBF kernel and

the average accuracy is returned as a value of fitness. Aimed at enforcing stability, we applied

10-fold cross-validation to classification.

Notice that, as a consequence of the use of ÊðvÞ, the fitness value does no longer reflect the

real classification accuracy of a panel based on E(v). Nevertheless, ÊðvÞ is more effective than

E(v) to quickly lead DE to discover an optimal solution.

Mutation and scaling. After fitness computation the mutation operator is applied so as to

evolve Vi to the next generation. Each vector v is hybridized with two other random vectors by

means of a linear combination of a subset of features. In particular, for each j 2 [1, I] let a, b, c
be three random values in the same range so that j 6¼ a 6¼ b 6¼ c:

viþ1½j�½k� ¼ vi½c�½k� þ bFðvi½a�½k� � vi½b�½k�Þc 8k 2 ½1; n�

where the mutation factor F is a constant value in the range [0, 2]. As an effect of mutation, it

may happen that the value of some elements in vi+1 fall outside the range [1, d]. Hence, scaling

was applied as follows:

viþ1½j�½k� ¼

viþ1½j�½k� þ d if viþ1½j�½k� < 1

viþ1½j�½k� � d if viþ1½j�½k� > d

viþ1½j�½k� otherwise:

8
>>><

>>>:

Crossover. Along the execution DE could enter in a loop that converges very slowly to the

optimal fitness value causing the algorithm to waste a considerable amount of time performing

iterations that little add to the final solution. Crossover is an operator introduced to break

these loops switching a fraction of the elements of a vector v[i] with the corresponding ele-

ments of another vector v[j]. In our case, crossover was applied to restore a fraction of the ele-

ments from the target vector vi.
Let Cr 2 [0, 1] be an user defined real constant, and randk() be the k-th evaluation of a func-

tion that returns a random value within the same range; given j 2 [1, I], the elements of the
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Fig 1. Graphical representation of the differential evolution based feature selection.

https://doi.org/10.1371/journal.pone.0200353.g001
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vector vi+1[j] are modified according to the following equations:

viþ1½j�½k� ¼

( viþ1½j�½k� if randkðÞ � Cr

vi½j�½k� otherwise :

Selection. As a result of mutation and crossover, a new generation of candidate solutions

Vi+1 is computed. However, the random processes involved in the evolution do not guarantee

that all the elements of the next generation attain a fitness score higher than their targets.

Retaining solutions with lower fitness can misdirect DE searching by triggering a cascade of

evolutions in which the overall fitness reduces.

In order to avoid such a situation, the selection operator compares the fitness value of each

vi+1[j] with the corresponding target vi[j] and evolves to the next generation the vector with

higher fitness value. This ensures that the overall fitness of the population can never degenerate

but remains stable in the worst case.

More formally: for j 2 [1, I] the next generation is represented as follows:

viþ1½j� ¼

( viþ1½j� if fitnessðviþ1½j�Þ > fitnessðvi½j�Þ

vi½j� if fitnessðviþ1½j�Þ � fitnessðvi½j�Þ:

Elitism. Although the selection operator ensures that the overall fitness of the next genera-

tion can never be lower than that of the previous one, it does not prevent convergence to a

local maximum. In fact, it may happen that exist j, k 2 [1, I], j 6¼ k such that the highest fitness

value between vi[j] and vi+1[j] is lower than the minimum fitness over the pair vi[k] and vi+1[k].

In this case, it would happen that the maximum over j would be evolved to the next generation

even though it has fitness value lower than the minimum over k. The elitism operator is

applied in order to mitigate this phenomenon.

Given the vectors: vi[k] with the highest fitness in generation i and vi+1[j] with the lowest fit-

ness in generation i + 1, the elitism operator carries over the element that satisfies the following

equation:

argmaxðfitnessðvi½k�Þ; fitnessðviþ1½j�ÞÞ

Panel finishing

As all the evolutionary methods, DE needs to know in advance the number of elements n that

will constitute the final solution and heavily relies on randomization to dwindle the probability

of returning suboptimal solutions containing false positives and/or false negatives. The conse-

quence of these facts, however, is that different runs of DE are likely to lead to slightly different

panels each of which potentially containing a small fraction of uninteresting miRNAs.

Aimed at counteracting the effect of randomization so as to produce a stable and reliable

panel in which the probability of false positives or false negatives is minimized, we run DE θ =

50 times, then we used a majority voting schema to select (a variable number of) miRNAs.

Let R = {r1, . . ., rk} be the list of miRNAs reported by any of the runs of DE and let #(ri) be

the number of times it was reported. We maintained R sorted so that i< j) #(ri)� #(rj). For

increasing values of i 2 [1, k], we run the classification (endowed with 10-fold cross-validation)

using the subset of the first i elements of R and computed the accuracy (See S1 Table) As a

final panel, the subset of R maximizing accuracy was chosen.
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Although this procedure does not ensure the absence of false positives or false negatives,

some considerations can be done. The presence of false positives is made unlikely by the sort-

ing procedure and the adaptive computation of the number of elements in the panel. In fact,

since a given false positive is supposed to be reported less frequently than all the true positive

miRNAs, it would appear in the tail of R after sorting and would contribute to reduce the clas-

sification accuracy of a panel. Consequently, it is likely that it would be filtered out by the selec-

tion algorithm. The presence of false negatives, instead, is related to the choice of the number

of runs and the corresponding expected number k of miRNAs belonging to R. If the selection

of miRNAs were a random process, the expected value of k after 50 runs would be 399 with an

expected increase of 6 new miRNAs in the subsequent run (see next section for an in-depth

explanation of these estimations). S1 Table instead shows that k fell in a range between 11 and

17 in our experiments. This difference suggests that running DE 50 times is enough to argue

that all the true positives were included in R and thus false negatives are unlikely.

Expected number of miRNAs in a panel. We provide here a succinct mathematical justi-

fication of the chosen number of independent runs of DE as well as we show that the final

selection of miRNAs is not the result of a random process. Let us suppose that the set of n miR-

NAs that DE selects at each run is random. According to our experimental setting we have the

following parameters: n = 10 is the number of selected elements in an independent run of DE,

d = 1046 is the number of miRNAs measured in a sample in TGCA, θ = 50 is the number of

runs.

For i = 1, . . ., d, let Xi be a Bernouilli distributed indicator variable where Xi = 1 if the

miRNA mi never shows up. The probability that mi is selected in one run is n/d, thus the prob-

ability that it is never selected is 1 − n/d. Since each of the θ runs is independent, we have that

E½Xi� ¼ PrðXi ¼ 1Þ ¼ 1 �
n
d

� �y

Let X ¼
Pd

i¼1
Xi be the random variable that counts the number of miRNAs that does not

belong to the final set R of the miRNAs reported at least once. By linearity of the expectation

we have:

E½X� ¼
Xd

i¼1

E½Xi� ¼ d � 1 �
n
d

� �y

In turn, the number k of expected miRNAs reported at least once is:

E½ðd � XÞ� ¼ d � E½X�

Substituting the parameters with our values we obtain that:

1. the expected number of miRNAs reported at least once after θ = 50 independent executions

of the random algorithm is 398.96 and,

2. the number of new miRNAs added in a further run would be 6.18.

As shown in S1 Table, after 50 independent runs the expected number of miRNAs selected

using a random algorithm is already at least one order of magnitude larger than that reported

by our method. This result proves that the panel selection procedure is not affected by the ran-

domization in DE.
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Results and discussion

Dataset

For our experiments we collected the NGS-based miRNA expression data from The Cancer

Genome Atlas. Our desire of producing a specific panel for the most comprehensive possible

list of cancer types would have motivated us to run our method on all the available datasets.

However, as all the machine learning approaches, our method is avid of examples to ensure

a highly accurate result. Thus, we focused only on the subset of the 10 well-represented and

common cancer types suggested in [24].

For each considered type, The Cancer Genome Atlas provides the expression levels (after

removal of batch effects) of 1046 miRNAs belonging to a variable number of samples unevenly

partitioned between patients (see Table 1 for details) and controls. For our convenience, we

further normalized the expression values converting the reads per million count into a log2

scale. In order to eliminate possible overfitting effects due to the unbalanced distribution

between the two classes we had to group together controls regardless the tissue type obtaining

a total of 412 samples. This could potentially cause inconsistencies when the controls of the tis-

sue under consideration have an expression profile consistently different from the rest of the

controls. In particular, it may happen that the differential expression between the tumor sam-

ples and the control samples depends on the expression level of samples of other tissue types.

This could potentially cause the introduction in the panel of spurious miRNAs (false positives)

not really predictive of the cancer on the tissue under consideration. Aimed at quantifying

the extent of this phenomenon, we run NOISeqBIO [34] in order to perform the differential

analysis of miRNAs between samples of a specific tissue and samples of all the other tissues.

Experiments setting p-value < 0.01, fold change> 2 and average RPM > 100 as thresholds,

showed that on average only the 7.26% of miRNAs can be considered significantly differen-

tially expressed.

Evaluation

The main achievement of our work is that of distilling, for each investigated cancer type, the

specialized panel of miRNAs shown in Table 2. Performing diagnoses, these panels can be

used in conjunction with the corresponding trained SVM classifier to enforce the evidence of

the presence/absence of cancer. However, as for all the machine learning-based techniques,

our results depend on a series of individual choices whose impact needs to be elucidated. Since

Table 1. Type and number of tumor samples for the cancer types involved in our study. Each cancer type is coupled

with 412 control samples to form a two-class dataset.

Cancer Description Tumor Samples

BRCA Breast invasive carcinoma 762

KIRC Kidney renal clear cell carcinoma 255

LGG Brain lower grade Glioma 526

LIHC Liver hepatocellular carcinoma 374

LUAD Lung adenocarcinoma 452

PAAD Pancreatic adenocarcinoma 179

PRAD Prostate adenocarcinoma 495

SKCM Skin cutaneous melanoma 450

STAD Stomach adenocarcinoma 395

THCA Thyroid carcinoma 510

Total 4398

https://doi.org/10.1371/journal.pone.0200353.t001
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Table 2. miRNA panels for the investigated cancer types and their FDR corrected p-values.

Cancer Rank miRNA FDR Cancer Rank miRNA FDR

BRCA 1 hsa-mir-140 3.83e-15 KIRC 1 hsa-mir-542 5.17e-15

2 hsa-mir-100 4.35e-05 2 hsa-mir-3065 1.64e-14

3 hsa-mir-375 1.19e-09 3 hsa-mir-361 4.63e-16

4 hsa-mir-328 1.37e-14 4 hsa-mir-374a 1.58e-09

5 hsa-mir-744 1.24e-15 5 hsa-mir-500a 1.52e-08

6 hsa-mir-324 1.19e-09 6 hsa-mir-103-2 1.49e-02

7 hsa-mir-30e 3.32e-11 7 hsa-mir-18a 9.45e-14

8 hsa-mir-1307 3.17e-12 8 hsa-mir-203 1.49e-02

9 hsa-mir-26a-2 1.48e-10 9 hsa-mir-576 1.09e-12

10 hsa-mir-29c 9.45e-14

LGG 1 hsa-mir-335 9.99e-01 LIHC 1 hsa-mir-10b 1.17e-15

2 hsa-mir-148b 2.52e-15 2 hsa-mir-92a-2 1.26e-08

3 hsa-mir-21 9.01e-16 3 hsa-mir-20a 6.58e-11

4 hsa-mir-155 1.19e-11 4 hsa-mir-181a-1 5.09e-14

5 hsa-mir-574 5.89e-13 5 hsa-mir-17 1.08e-10

6 hsa-let-7e 1.44e-13 6 hsa-mir-92a-1 5.29e-16

7 hsa-mir-455 1.82e-16 7 hsa-mir-455 3.03e-14

8 hsa-mir-128-1 1.09e-12 8 hsa-mir-34a 7.51e-10

9 hsa-mir-424 2.24e-14

LUAD 1 hsa-mir-140 6.47e-11 PAAD 1 hsa-mir-582 1.91e-14

2 hsa-mir-103-1 2.76e-09 2 hsa-mir-151 1.09e-14

3 hsa-mir-195 8.12e-12 3 hsa-mir-130b 1.33e-15

4 hsa-mir-874 2.82e-15 4 hsa-mir-194-2 4.01e-12

5 hsa-mir-149 3.00e-13 5 hsa-mir-409 1.09e-14

6 hsa-mir-629 4.79e-16 6 hsa-mir-181a-1 3.67e-14

7 hsa-mir-141 2.51e-12 7 hsa-mir-598 2.08e-12

8 hsa-mir-574 1.19e-09 8 hsa-mir-424 1.20e-13

9 hsa-let-7i 2.86e-08 9 hsa-mir-574 4.63e-16

10 hsa-mir-625 1.24e-15

PRAD 1 hsa-mir-27b 6.47e-11 SKCM 1 hsa-mir-27b 4.66e-12

2 hsa-mir-1287 9.49e-10 2 hsa-mir-30b 5.47e-14

3 hsa-mir-27a 4.67e-10 3 hsa-mir-425 3.49e-08

4 hsa-mir-342 3.93e-14 4 hsa-mir-30a 2.85e-10

5 hsa-mir-146b 1.01e-13 5 hsa-mir-155 7.02e-16

6 hsa-mir-3065 2.34e-10 6 hsa-let-7g 5.75e-11

7 hsa-mir-128-2 7.55e-12 7 hsa-mir-576 2.14e-11

8 hsa-mir-625 9.45e-14 8 hsa-mir-99b 5.75e-11

STAD 1 hsa-mir-134 1.95e-14 THCA 1 hsa-mir-660 3.92e-11

2 hsa-mir-381 3.52e-14 2 hsa-mir-20a 7.16e-11

3 hsa-mir-142 1.29e-12 3 hsa-mir-15a 2.90e-09

4 hsa-mir-337 1.82e-13 4 hsa-mir-93 1.70e-09

5 hsa-mir-127 1.20e-07 5 hsa-mir-576 6.48e-09

6 hsa-mir-409 5.64e-08 6 hsa-let-7a-2 1.86e-13

7 hsa-mir-542 9.79e-10 7 hsa-let-7a-1 1.45e-11

8 hsa-mir-744 5.34e-10 8 hsa-mir-24-2 2.36e-15

9 hsa-mir-128-1 2.28e-11 9 hsa-mir-33a 9.99e-13

10 hsa-mir-199b 3.20e-06

11 hsa-mir-379 2.14e-07

https://doi.org/10.1371/journal.pone.0200353.t002
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exploring even a small portion of the universe of alternatives is impractical, in the following

sections we provide for each choice an experimental evaluation of its contribution. In particu-

lar we are going to discuss the parameter setting of the machine learning algorithms, compare

several feature selection methods, contrast clustering with classification and compare our solu-

tion with standard differential expression analysis.

Parameter setting. Parameter setting is a thorny but unavoidable task for all machine

learning tools. Some parameters can be chosen following best practices from the literature,

others require a problem specific experimental evaluation. We could set the parameters of DE

and SVM in accordance with [27] while we experimentally investigated the parameter n that

controls the number of components in the feature selection. This is because n is a problem

specific parameter that should be of the same order of magnitude of the expected number of

miRNAs in a panel. In particular, for DE we set: the initial population I = 50, the number of

generations φ = 50, the mutation factor F = 1, and the crossover probability Cr = 0.8. The RBF

(Radial Basis Function) kernel used by SVM is controlled by means of two parameters: γ, and

the trade-off between training error and margin C. We set γ = 0.5 and C = 2.0.

In absence of a hint about a sensible expected number of miRNAs in a panel, we investi-

gated several assignments of n for each of which we run 50 instances of KPCA+SVM and

PCA+SVM, then we evaluated the corresponding average classification accuracy. As Table 3

shows, underestimating n (see column n = 5) could cause a relevant miRNA not to appear in a

panel reducing accuracy. For higher values, instead, we observed that increasing the number

of features the noise overwhelms the signal and thus the accuracy drops. As a result we set

n = 10. Interestingly, although we could not find a biological justification, this value is consis-

tent with other independent results where miRNA-based panels contain from 7 up to 10 ele-

ments (see: [35], [36], [37]).

Evaluation of feature selection. Assessing the miRNA selection process, we compared

the classification accuracy of a SVM pipelined either with the panels obtained using our

approach or with other feature selection methods. We used four basic classification measures

(namely: Accuracy, F-measure, Matthews correlation coefficient (MCC) and Area under the

curve (AUC)). For ease of comparison these quality measures have been consolidated sum-

ming them to form a single scalar Aggregated Score (AS). A similar combination of indices

has previously been used in [38], even though we used a different pool of measures. The Aggre-

gated Score is bounded in the range [0, 4] and a higher value corresponds to a more accurate

result.

Table 3. Average SVM classification accuracy of kernel and non-kernel based methods varying the number of selected miRNAs in the feature selection step.

Cancer KPCA PCA

n = 5 n = 10 n = 20 n = 30 n = 5 n = 10 n = 20 n = 30

BRCA 90.87 91.74 89.16 56.07 91.18 92.05 89.53 60.42

KIRC 91.63 92.81 90.87 88.37 91.21 92.26 91.33 69.39

LGG 90.87 92.93 91.00 89.89 90.75 92.63 91.15 90.19

LIHC 91.30 92.83 91.75 88.58 91.35 92.92 90.16 89.75

LUAD 90.33 92.92 92.14 90.34 89.63 92.76 90.73 88.30

PAAD 91.77 93.00 91.21 75.17 90.34 92.60 75.37 75.17

PRAD 90.60 92.85 90.58 89.06 90.05 92.55 90.05 67.39

SKCM 92.28 93.00 91.75 90.33 91.21 92.92 91.90 89.63

STAD 90.63 92.67 91.11 91.11 91.56 92.84 90.29 80.44

THCA 90.67 92.78 91.95 87.76 89.94 92.70 90.90 78.62

Average 91.10 92.75 91.15 84.67 90.72 92.62 89.14 78.93

https://doi.org/10.1371/journal.pone.0200353.t003
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As for the other methods, the vastity of the literature on feature selection makes a compre-

hensive comparison impractical. Thus, we narrowed to the most popular algorithms covering

the two main feature selection approaches: component analysis and statistical methods. In

addition, we included Random Forests (RFFS) as a representative of feature selection algo-

rithms based on machine learning [39].

We included in the group of component analysis methods PCA and KPCA, either with

or without the DE algorithm, so as to enable the evaluation of the individual contribution of

each of our choices. Of the same category we included: Kernel Entropy Component Analysis

(KECA) [40], and Independent Component Analysis (ICA) [41].

As for statistical approaches we included: Signal-to-Noise Ratio (SNR) [42], Welch’s t-test

[43], Wilcoxon ranksum test [44], Joint Mutual Information (JMI) [45], minimum Redun-

dancy Maximum Relevance (mRMR) [46], Mutual Information Feature Selection (MIFS) [47].

In order to ensure homogeneous experimental conditions, we fixed the number n of

returned features to 10 for all the compared feature selection methods. In addition, we used

10-fold cross-validation so as to prevent biases due to the classification process.

Table 4 reports for each pair cancer type/method the aggregated score, Fig 2 summarizes

the same data averaging them by method, while details are left to S1 Appendix).

Tests showed that all the seven component-analysis-based methods consistently achieve

better results than statistical methods. In particular, according to Fig 2, the increment in terms

of Average Aggregated Score of these methods is never lower than 0.11 (delta between ICA

and MIFS). Narrowing to the 5 methods that use the principal component as a feature selec-

tion mechanism, the gap with the statistical methods further increases (+0.31 in the worst

case). According to the detailed results reported in Table 4, we observed that this gap is inde-

pendent from the cancer type. Moreover PCA-based methods tend to provide a more stable

classification performance. This is particularly evident in the case of the BRCA, where statisti-

cal methods show a consistent drop of performance.

Random Forests induce a more stable and accurate classification than statistical methods

achieving the same average evaluation of KECA, while they perform worse than the five PCA-

based methods with a gap of at least 0.12 in terms of aggregated score.

Table 4. Aggregated score derived from: Accuracy, F-measure, Matthews correlation coefficient (MCC) and Area under the curve (AUC) for SVM classification

after different feature selection methods. AS is bounded in the range of [0, 4].

Algorithm BRCA KIRC LGG LIHC LUAD PAAD PRAD SKCM STAD THCA

Our method 3.75 3.80 3.85 3.69 3.75 3.74 3.69 3.80 3.61 3.66

DE+KPCA 3.69 3.72 3.77 3.68 3.76 3.76 3.75 3.78 3.71 3.73

DE+PCA 3.70 3.67 3.68 3.74 3.69 3.67 3.69 3.71 3.73 3.69

KPCA 3.67 3.67 3.69 3.67 3.68 3.71 3.68 3.71 3.67 3.68

PCA 3.67 3.66 3.68 3.69 3.68 3.68 3.68 3.68 3.68 3.68

KECA 2.57 3.59 3.65 3.68 3.69 3.65 3.68 3.69 3.68 3.65

ICA 2.79 3.66 3.50 3.53 3.52 3.65 3.53 3.54 3.52 3.47

RFFS 3,58 3,57 3,65 3,54 3,59 3,45 3,49 3,61 3,49 3,58

MIFS 3.10 3.69 3.40 3.35 3.43 3.17 3.29 3.53 3.33 3.38

t-test 3.11 3.35 3.37 3.39 3.39 3.35 3.40 3.49 3.32 3.38

mRMR 3.02 3.69 3.39 3.32 3.37 3.29 3.37 3.50 3.28 3.33

RankSum 3.07 3.27 3.33 3.34 3.35 3.31 3.40 3.53 3.33 3.32

JMI 3.02 3.42 3.39 3.34 3.37 3.27 3.31 3.47 3.32 3.33

SNR 3.07 3.27 3.33 3.34 3.35 3.31 3.31 3.49 3.32 3.32

https://doi.org/10.1371/journal.pone.0200353.t004
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Although, as shown in Table 4, PCA-based methods have an average performance better

than all the other methods, the intrinsic randomness of the component analysis makes them

to select substantially different sets of miRNAs at each run. Repeating the training and testing

procedure until reaching a maximum (namely finding the set of components leading to the

highest possible accuracy) is unfeasible because this would require testing all the possible com-

binations of miRNAs. The differential evolution overcomes this problem by guaranteeing to

select a set of miRNAs that induce the classification accuracy to reach a maximum. This, in

turn, limits the randomness of the component analysis. In fact, separate executions of the

PCA-based methods in conjunction with the DE algorithm tend to return heavily overlapping

sets of miRNAs. In particular, our experiments show that running DE 50 times, the set of

miRNAs returned at least once contains only 17 elements in the worst case (see S1 Table for

details). Moreover, as Fig 2 shows, DE caused also a generalized further increase of perfor-

mance (even if with some exceptions).

Comparing our approach with other DE-based algorithms (without the finishing phase),

we still observe a modest generalized performance increase over DE+PCA and a substantial

equivalence with DE+KPCA. In this case, however, the advantage of our method is that of

being deterministic and thus performance does no longer depend on the particular run.

Running time. Although the computational cost of compiling panels of biomarkers is not

a crucial feature, it is nevertheless important to evaluate whether the underlying algorithms

can be applied to large datasets or not using a standard workstation. While a single run of fea-

ture selection and classification is very fast, DE-based algorithms, which can involve several

thousand invocations of the SVM, can be quite slow. In fact, according to our experimental

parameters, each run of DE evolves 50 individuals for 50 generations. Every time the fitness

function, and thus a run of SVM, needs to be computed. Moreover, our finishing procedure

requires 50 independent runs of DE for a total of 125 thousand invocations of the SVM.

Fig 2. Average aggregated score of the compared algorithms. This score is the mean of all the per cancer type ASs

and it is bounded in the range [0, 4]. We narrowed the x-axis in a shorter range so as to highlight the differences

among the methods.

https://doi.org/10.1371/journal.pone.0200353.g002
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Notwithstanding, both: the independence among candidate solutions within the same genera-

tion and the independence of different instances of DE, open to the possibility of attaining a

consistent performance speedup by parallelizing the computation of the fitness functions.

We measured the running time of all the tested methods on a Intel™ Core-I7 workstation

endowed with 6Gb of RAM, Microsoft Windows™ 64bit and Matlab™ R2014a. According to

our experiments (see Table 5 and S1 Appendix), all the statistical methods (except t-test) took

less than one second to finish, random forests required 8 seconds, component analysis-based

methods completed in less than 10 seconds and the t-test needed about one minute. On the

basis of the estimated number of calls to the SVM, one would expect that DE-based methods

would spend several orders of magnitude more time than the other methods. Table 5, instead,

shows that DE+PCA and DE+KPCA accomplish their task in the affordable time of respec-

tively 12 and 14 minutes. This lower time not only depends on parallelism, but also on the fact

that SVM is much faster than component analysis (see running time of KPCA and PCA in

Table 5 for an estimation) and takes on average only 0.497 seconds. As a result, our choice of

using the component matrix derived from the entire dataset instead of computing a new one

at every invocation of the fitness function has the effect of mitigating the overall cost of DE-

based methods, and, thus, keeping the computation running in an affordable time.

Requiring θ = 50 independent executions of a DE-based algorithm as well as the finishing

phase, our method would be expected to require a long time to complete (as long as more than

12 hours). Instead, the independence of the instances of DE, as opposed to a certain degree of

dependence within an instance of DE, ensures a full exploitation of the intrinsic parallelism of

modern CPUs. Leveraging on this independence, a parallel implementation our method took

on average only three hours to complete. This running time proves that our method can run

on a standard architecture without the need to tradeoff the desired overall running time, and

the value of θ (and the consequent probability of introducing false negatives).

Evaluation of classification vs clustering. We further investigated the relationships

among the expression level of the miRNAs belonging to our panels. According to the general

experience with biomarkers, one would expect that all the profiles belonging to a given cate-

gory would be similar to each other, while profiles of different classes would be different.

Under this hypothesis, distinguishing between tumor and control samples would reduce to a

two-partitions clustering. On the other hand, miRNA profiles are known to be highly variable

Table 5. Running time of the compared methods (Format: hh:mm:ss.cents).

Algorithm Average time

Our method 03:02:43.64

DE+KPCA 14:48.51

DE+PCA 11:57.29

KPCA 7.71

PCA 5.38

KECA 9.01

ICA 8.14

RFFS 7.86

MIFS 0.94

t-test 1:04.26

mRMR 0.52

RankSum 0.97

JMI 0.56

SNR 0.57

https://doi.org/10.1371/journal.pone.0200353.t005
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even among cells of the same type (see [48] for a recent survey), thus non-linear correlation

among the expression level of the miRNAs is expected.

For each investigated cancer, we tested these hypotheses by bi-partitioning the samples

according to their type, then measuring the homogeneity and separation of the profiles

induced by the corresponding panel. As a definition for homogeneity and separation we

used that of [49] endowed with the cosine similarity. According to this definition, a high

homogeneity and low separation (note we use similarity and not distance) correspond to a

good clustering.

Results reported in Table 6 confirmed the hypothesis that the relationship among the

expression level of the miRNAs within a class is in general non-linear. In fact, with the only

exception of SKCM, the homogeneity is always slightly higher than the separation indicating

that the average intra-cluster distance is comparable with the extra-cluster distance. Conse-

quently, these results can be interpreted as an empirical justification of our choice of using a

feature selection method able to identify non-linear correlations as well as that of addressing

the identification of putative miRNA biomarkers as a classification problem instead of a clus-

tering one.

Comparison with differential expression analysis. Differential expression is the most

commonly employed feature to discriminate two populations of samples. The assumption at

the basis of this tool is that differences of the phenotype depend on the inversion of the expres-

sion level of each of the tested set of miRNAs. Although a certain degree of interdependence

among expression levels has already been proved, until now it limits to direct or inverse pair-

wise proportionality. In this section, we report on a comparison of our method with a panel

selection strategy based only on differentially expressed miRNAs. Experiments showed that

narrowing only on this strategy can be limiting. In fact, in order to recover a classification

quality of the same order of magnitude of our method, it might be necessary to involve tens of

miRNAs in the evaluation of differential expression.

Fig 3 shows the aggregated score achieved with our method and with NOISeqBIO [34]

either using all the available samples or the tissue specific ones as controls. We set p-value

< 0.01, fold change > 2 and average RPM> 100 as conservative thresholds to consider a

miRNA as differentially expressed. The table in Fig 3 reports the number of differentially

expressed miRNAs (for the reader convenience the size of our panels is reported as well).

According to the results shown in Fig 3, panels derived with our method are always more

accurate than those obtained using NOISeqBIO to discriminate between tumor and control

Table 6. Homogeneity and separation of the tumor and control samples.

Cell type Homogeneity Separation

Tumor Control

BRCA 0.461 0.476 0.361

KIRC 0.597 0.548 0.449

LGG 0.777 0.928 0.801

LIHC 0.522 0.579 0.397

LUAD 0.899 0.886 0.869

PAAD 0.581 0.428 0.343

PRAD 0.814 0.545 0.623

SKCM 0.680 0.747 0.288

STAD 0.551 0.506 0.467

THCA 0.863 0.889 0.872

Average 0.674 0.6532 0,547

https://doi.org/10.1371/journal.pone.0200353.t006
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samples even using a small fraction of miRNAs. This confirms the limits of differential expres-

sion as the only criterion to compile a panel.

Narrowing only to the results obtained with NOISeqBIO, we observed that the larger vari-

ability due to the mix of control samples caused an increment of about two times of the num-

ber of miRNAs. Although a similar phenomenon could have happened also running our DE

algorithm, we expect the final miRNA selection procedure to mitigate it. Focusing on the qual-

ity assessment, instead, the direct comparison of NOISeqBIO using all the samples or only the

tissue specific ones revealed that the blowup of aggregated score due to the mix is as negligible

as 0.14 on average (measured only on the 8 cancer types for which both methods provided a

non-empty list of differentially expressed miRNAs).

Biological significance

Gene set enrichment analysis (GSEA) [50] is a common tool to investigate a particular set of

genes with the purpose of elucidating whether they can potentially have a role in a biological

process. According to this idea, in this section we briefly report the outcome of our investiga-

tion about the biological functions associated with our panels. In particular, we used KEGG

pathway enrichment analysis to uncover which pathways the selected miRNAs interact with,

and Gene Ontology (GO) analysis in order to uncover the biological processes and molecular

functions associated with our panels. In addition, we used the Kaplan-Meier (KM) survival

analysis to test whether some of the miRNAs in our panels are suitable to predict the survival

probability of the patient.

Both KEGG pathway enrichment analysis and Gene Ontology analysis rely on lists of genes

and cannot be directly applied to miRNAs. In order to overcome this limitation, several studies

have suggested that miRNA functions can be inferred from their corresponding mRNA targets

[51]. Identifying miRNA-target interactions is a thorny task [52], thus several tools for target

prediction have been proposed. In our case, we used miRSystem ver. 20160502 [53] that,

among the others, has the advantage of integrating 7 established prediction tools.

Fig 3. Comparison with panels derived from differential analysis.

https://doi.org/10.1371/journal.pone.0200353.g003
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Pathway analysis. In order to perform the KEGG pathway analysis we used Enrichr [54].

This tool computes the overlap between known KEGG pathways and Protein-Protein-Interac-

tion (PPI) networks for the input set of genes. Subsequently each pathway is scored with a p-

value so that the lower p-values the higher the probability of the pathway to be enriched with

the set of genes. We report in Table 7 the most significant pathways for each investigated can-

cer type (See S2 Table for further details).

According to Table 7 we found that for all the investigated cancer types, miRNAs belonging

to our panels enrich the pathway hsa05200 Pathways in cancer, while the pathway hsa05205:
Proteoglycans in cancer is connected to 8 out of 10 cancer types. Other commonly appearing

pathways are: hsa04151: PI3K-Akt signaling pathway and hsa04010:MAPK signaling pathway
which regulate cellular proliferation, growth, and survival. In particular, hsa04151: PI3K-Akt
signaling pathway is activated in response to many types of stimuli or toxic insults.

Gene Ontology analysis. Following a protocol similar to that we used for pathway analy-

sis, we queried Enrichr [54] to derive the GO terms associated with our miRNA panels. Results

reported in Table 8 show an intense activity in the nucleus where GO:0005654nucleoplasm
and GO:0000785 chromatin are the most stressed cellular components (see S3 Table for further

details). This activity is more likely due to the DNA damage response [55]. Another highly rep-

resented category is GO:0005911 cell-cell junction which is involved in the connection between

two or more cells.

Morphogenesis, either at cellular level (GO:0032989 cellular component morphogenesis) or

organ/tissue level (GO:0009887 organ morphogenesis, GO:0048729 tissue morphogenesis) is the

most activated biological process (see Table 9 and S4 Table) and all the investigated cancer

types cope with it. This is not surprising since morphogenesis is the process in which cells or

anatomical structures are generated and organized. Notably in the case of Lung adenocarci-

noma the morphogenesis process is more focused on the epithelium (GO:0002009morphogen-
esis of an epithelium).

Table 7. Most common KEGG pathways associated with target genes of our cancer panels.

KEGG Pathway BRCA KIRC LGG LIHC LUAD PAAD PRAD SKCM STAD THCA

hsa04144: Endocytosis ✓ ✓ ✓

hsa04360: Axon guidance ✓ ✓ ✓ ✓

hsa05200: Pathways in cancer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

hsa05205: Proteoglycans in cancer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

hsa04151: PI3K-Akt signaling pathway ✓ ✓ ✓ ✓

hsa04010: MAPK signaling pathway ✓ ✓ ✓ ✓ ✓

hsa04550: Signaling pathways regulating pluripotency of stem cells ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0200353.t007

Table 8. Most significant Gene Ontology terms associated with the miRNA targeted genes for Cellular Component obtained through enrichment analysis via

Enrichr [54].

GO Cellular component BRCA KIRC LGG LIHC LUAD PAAD PRAD SKCM STAD THCA

GO:0005829 Cytosol ✓ ✓ ✓ ✓ ✓ ✓ ✓

GO:0044456 Synapse part ✓ ✓ ✓ ✓ ✓ ✓

GO:0005654 Nucleoplasm ✓ ✓ ✓ ✓ ✓ ✓

GO:0005911 Cell-cell junction ✓ ✓ ✓ ✓ ✓

GO:0045202 Synapse ✓ ✓ ✓

GO:0000785 Chromatin ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0200353.t008
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Kaplan-Meier survival analysis. Although it is a secondary feature, it is desirable for a

biomarker to be able to estimate disease severity. Narrowing only to survival analysis, to be

predictive the measure of the biomarker should be proportional (or inversely correlated) to

survival time. In our case, however, the non-linear relationship among the expression values

of the miRNAs, makes the use of a panel as a whole not feasible. Thus, we tested individually

every miRNA to check whether there exists in each panel at least one element whose expres-

sion value can directly be correlated with survival time.

We used the median value to divide the population of patients in two balanced groups

either with high or low expression level. Then we used the time to death from the TGCA clini-

cal data to derive the Kaplan-Meier (KM) survival curves. Finally, we performed the log-rank

test to check whether the two groups have different survival probability or not.

Fig 4 reports for each investigated cancer type the KM plot of the most promising miRNA

(namely the miRNA with lowest p-value) while the KM plots of the other miRNAs are reported

in S1 Appendix. Except in the case of Pancreatic adenocarcinoma (PAAD) where the trend of

the two populations is similar in the first 18 months, Fig 4 shows that the log-rank test always

returns a p-value lower than 0.05 supporting the hypothesis that the survival probability of the

two populations is statistically different (one with higher death risk and one with lower risk).

This fact suggests that the expression value is suitable to be used to predict disease severity.

Conclusion

In this paper, we presented a general-purpose pipeline to predict candidate biomarkers applied

to 10 datasets of miRNA profiles of common cancers. Our approach consists of a sensible mix

of existing tools for data mining based on the observation that the problem of finding bio-

markers can be mapped into a two-class classification task. In particular, given the profiles of a

cohort of control and tumor samples, find the subset of miRNAs that induces the highest clas-

sification accuracy. We solved this problem by means of: a differential evolution for the selec-

tion of candidates, component analysis to preserve the relationships among miRNAs, and

SVM for sample classification.

Using real miRNAomes from The Cancer Genome Atlas we produced for each investigated

cancer type a small list of putative biomarkers. Experiments highlighted that these panels have

a very little overlap, suggesting that they can be used for cancer type classification purposes as

well as they are predictive of the onset of the pathology. Comparisons proved that our method

is more accurate than any other tested feature selection method as well as it provides an advan-

tage over standard differential analysis done using NOISeqBIO. Yet, biological significance

tests showed that most of the putative biomarker miRNAs have been reported to play a role

in key oncogenesis pathways. Finally, using the Kaplan-Meier survival analysis we identified

miRNAs which expression value can be correlated with cancer severity.

Table 9. Most significant Gene Ontology terms associated with the miRNA targeted genes for Biological Process obtained through enrichment analysis via Enrichr

[54].

GO Biological process BRCA KIRC LGG LIHC LUAD PAAD PRAD SKCM STAD THCA

GO:0007411 Axon guidance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GO:0097485 Neuron projection guidance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GO:0045664 Regulation of neuron differentiation ✓ ✓ ✓ ✓ ✓ ✓

GO:0032989 Cellular component morphogenesis ✓ ✓ ✓ ✓

GO:0048598 Embryonic morphogenesis ✓ ✓ ✓ ✓

GO:0048729 Tissue morphogenesis ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0200353.t009
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Fig 4. Kaplan-Meier survival plots of 10 best miRNAs based on lowest log-rank p-values for the respectively

cancer types, (a) BRCA, (b) KIRC, (c) LGG, (d) LIHC, (e) LUAD, (f) PAAD, (g) PRAD, (h) SKCM, (i) STAD and

(j) THCA.

https://doi.org/10.1371/journal.pone.0200353.g004
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Summarizing: our pipeline has shown to have the potential to find sensible miRNA panels

for cancer diagnosis and classification. The possibility of future releases of new miRNAomes

could open to reuse our algorithm so as to further increase accuracy. Moreover, our pipeline

has a value per se. In fact, we think that it can successfully be applied to other prediction tasks

where the problem can be reformulated as a classification task.
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