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Expression quantitative trait loci (eQTL) mapping is a widely used tool to study the genetics of gene expression.
Confounding factors and the burden of multiple testing limit the ability to map distal trans eQTLs, which is
important to understand downstream genetic effects on genes and pathways. We propose a two-stage linear
mixed model that first learns local directed gene-regulatory networks to then condition on the expression levels of
selected genes. We show that this covariate selection approach controls for confounding factors and regulatory
context, thereby increasing eQTL detection power and improving the consistency between studies. GNet-LMM is
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Background

Expression quantitative trait loci (eQTL) mapping is an
approach to study the genetic component of transcrip-
tomic variation between individuals. By correlating genetic
variants with gene expression profiles of individual genes,
it has been possible to establish genome-wide maps of
genetic effects on gene expression, both in model systems
[1-3] and in human [4-9]. Several statistical methods
have been proposed to maximize the power to detect
cis-acting eQTLs, which are proximal to the regulated
genes and typically have large effects [10-12]. In con-
trast, the robust identification of distal trans genetic
effects (e.g. [13—16]) remains a major challenge. This is
because trans eQTLs tend to have smaller effect size,
are frequently tissue- and context-specific [17, 18], and
due to genome-wide tests impose a severe multiple-
testing burden. Despite these limitations to map trans
eQTLs, heritability estimates suggest that collectively
trans genetic effects explain a substantial proportion of
the overall gene expression variance [15, 19], which
cannot be explained by cis eQTLs. Moreover, if reliably
detected, trans eQTLs have the potential to deliver new
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insights into (downstream) genetic regulation, for
example by identifying genetic effects that are mediated
via cis-regulated genes [20, 21]. Finally, by overlaying
distal eQTLs with disease risk loci identified through
genome-wide association studies (GWAS), trans eQTL
maps will be an invaluable resource to identify thera-
peutic targets for human diseases [22, 23].

One principle to improve power to map eQTLs is to ac-
count for competing exposures, which are sources of vari-
ation other than the genetic variant being tested. In
particular non-genetic covariates, if not accounted for, can
mask genetic signals, which impacts eQTL discovery. Re-
cently, methods based on factors analysis and related latent
variables models [24] have been proposed to reconstruct a
typically small number of unobserved (confounding) factors
from the expression data itself. These inferred latent
variables can then be accounted for in genetic models,
either as fixed effect covariates [11, 25] or as random
effects within the linear mixed model (LMM) framework
[10, 12, 26]. These approaches have been successfully
applied to reduce the effect of unmeasured environmental
factors or batch, such that genuine genetic signal can
stand out to a greater extent. Importantly, however,
while these methods are widely used for cis eQTL map-
ping [7, 9-12], there are major pitfalls when modelling
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unobserved covariates in the analysis of trans effects. In
particular, there is a risk that models such as factor analysis
falsely capture genuine genetic signals from regulatory hot-
spots that affect larger sets of genes. In such instances, it
has been shown that the inferred latent variables are herit-
able themselves and can be mapped as quantitative traits
[27]. Because of this challenge, existing methods to correct
for confounding are difficult to apply to the analysis of trans
eQTLs [12, 28, 29].

Related concerns have also been reported in the context
of physiological phenotypes [30, 31]. There are fundamen-
tal challenges when conditioning on heritable covariates
as cofactors, as this can lead to reduced statistical power
or introduce spurious associations [32, 33]. This effect is
well documented in the context of binary [34] and quanti-
tative traits [33], and also in the genetic analysis of mo-
lecular phenotypes [28].

To address this, we here propose gene network LMM
(GNet-LMM), a network guided approach to account for
hidden variation in trans eQTL analyses. GNet-LMM
identifies directed relationships in local gene regulatory
networks to select covariates for eQTL association tests.
Importantly and unlike previous methods to explain hid-
den variation in eQTL studies, GNet-LMM does not suf-
fer from the risk of falsely explaining away genetic
signals. The gene selection in GNet-LMM borrows prin-
ciples from causal reasoning to identify a subset of genes
that tag confounding or regulatory context, which are se-
lected for every SNP—gene association test. The resulting
adjustment is distinct from feature selection methods that
have been proposed in GWAS [35], where the causal
structure is known a priori (phenotypes cannot directly
alter genotype) and hence correlation-based selection
criteria are sufficient. Our approach is also related to
methods that use causal tests, either to identify mediating
genes [20] or to infer molecular networks downstream of
eQTLs [36]. Whereas previous applications of network
reconstruction have mainly been focused on obtaining
mechanistic interpretations, here we show that local
causal network reconstruction can help to improve power
for detecting genetic associations.

We first validate the model on synthetic data before ap-
plying it to real data from mouse and human eQTL stud-
ies. Consistently across these applications, we find that
GNet-LMM provides increased statistical power, yields
associations that are enriched for known pathways and
enhances the replicability of trans eQTLs between studies.

Results and discussion

It is well established that accounting for covariates and
confounding factors can help to increase power in eQTL
analyses [11, 25]. The majority of such factors are not
directly observed, so one is limited to condition on prox-
ies, such as the expression levels of individual genes or
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latent variables estimated from expression data. Import-
antly, correlation-based criteria to select covariates to in-
clude in genetics models are not sufficient. For example,
Fig. 1b shows the power to detect true SNP A—gene C
trans associations when including genes with different
causal relationships to the focal gene C as covariates.
The association signal is increased when conditioning on
genes with incoming edges (gene B), but markedly de-
creased when accounting for genes with outgoing edges
(gene D), even though both genes were simulated to
have a similar correlation with gene C.

If the true regulatory dependencies were known a priori,
an optimal strategy to select covariates could be straight-
forwardly defined based on the directed edge information.
Our objective is to condition on all genes B that (i) have a
causal effect on the focal gene C and (ii) are independent
of the genetic variant SNP A (Fig. 1a). In the following we
term genes that satisfy these two conditions exogenous fac-
tors. These factors explain competing exposures, which
can either be confounding factors or gene regulatory ef-
fects. Importantly, the true gene—gene network is un-
known in practice. Consequently, we need to identify
exogenous genes from the observed data.

GNet-LMM enables selective conditioning on exogenous
genes

GNet-LMM first fits local directed gene regulatory net-
works to then identify exogenous genes. Briefly, for each
(SNP A, gene C) pair, the algorithm initially tests for quar-
tets (SNP A, gene A, gene C, gene B) whose regulatory de-
pendencies can be described by the directed acyclic graph
as shown in Fig. 1a. To do so, we test for gene triplets that
form a so-called V-structure (gene A - >gene C<- gene
B), which are defined by two directed regulatory edges to
the focal gene C, one from gene A and one from gene B
(Fig. 1a). A set of basic statistical dependence criteria can
be used to identify these structures, requiring dependence
between both A—C and B-C and independence between
genes A and B, which become dependent after condition-
ing on the gene C (“Materials and methods” and [37]).
The key outcome of the V-structure test is to define a set
of direct regulatory relationship from which exogenous
genes can be identified. For the sake of computational effi-
ciency and to increase robustness, GNet-LMM does not
consider all possible pairs of genes A and B (which would
scale quadratically in the number of genes for each eQTL
test). Instead, we restrict gene A to genes with a significant
cis or trans association to SNP A (see also [20], where a
similar approach has been used in a different context). In
the following, we denote these two search strategies
GNet-LMM[cis] and GNet-LMM][trans]. Subsequently, to
test for SNP A—gene C associations, the algorithm condi-
tions on the set of genes B that satisfy the V-structure
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Fig. 1 GNet-LMM model illustration and basic simulation experiment. a Graphical model representation of the GNet-LMM algorithm. For each
SNP A-gene C trans association test, GNet-LMM identifies and conditions on exogenous genes with incoming edges (green, Gene B) but not on
genes with outgoing edges (red, Gene D). Exogenous genes either tag confounding sources of variation (Conf) or regulatory effects between
genes. To define exogenous genes, GNet-LMM tests for V-structures gene A - > gene C < - gene B (blue box) that are linked to SNP A via gene A.
b True positive versus false positive rate when considering alternative methods applied to 1000 synthetic eQTL datasets that were simulated
assuming a regulatory structure as in (@). Shown are results obtained from standard LMM without conditioning (LMM), an LMM that exclusively
conditions on true exogenous genes (gene B, Ideal-LMM), an LMM that conditions on co-regulated genes (gene D, coreg-LMM) and the GNet-LMM
algorithm that uses the V-structure approach to determine the set of exogenous genes for conditioning
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criterion for the given (SNP A, gene C) pair (“Materials
and methods”).

To illustrate the benefits of selecting exogenous genes
using GNet-LMM, we initially considered a basic simu-
lation experiment to assess the power of alternative
methods to detect true associations between a distal
(trans acting) genetic variant (SNP A) and the expression
level of a focal gene (gene C). We simulated genetic ef-
fects that are mediated by a cis association (SNP A—gene
A), conferring the genetic effect via an indirect (trans)
effect to gene C. Additionally, we also simulated effects
due to unmeasured covariates, such as environmental
factors or batch effects. When testing for SNP A—gene C
trans associations, conditioning on true exogenous genes
(gene B) increased power (Fig. 1b; LMM versus ideal-
LMM), whereas conditioning on genes that are co-
regulated by the same genetic variant (gene D) markedly
decreased power (Fig. 1b; LMM versus coreg-LMM). En-
couragingly, when using exogenous genes identified
using local network inference based on V-structures
(GNet-LMM), the power to detect eQTLs was similar to
an ideal model that uses the simulated ground truth to
define exogenous genes (Fig. 1b; Figure S1 in Additional
file 1; GNet-LMM versus ideal-LMM).

If the association between SNP A and gene C is nei-
ther mediated by a cis- nor by a trans-gene, no V-
structure is identified and the method reverts to a

standard LMM (Figure S2 in Additional file 1). There is
a concern that conditioning on covariates (genes) that
are heritable themselves can lead to spurious associa-
tions, for example if gene B is itself regulated by SNP A
[33]. These instances can be ruled out by additional
independence tests, resulting in robust selection of
exogenous genes (“Materials and methods”; Additional
file 1: Figure S3). We also assessed the effect of spurious
correlations between groups of genes due to (unobserved)
confounders, again observing that the model remained
statistically calibrated (“Materials and methods”; Figure S3
in Additional file 1).

Simulation study

Next, we considered genotypes from the 1000 Genomes
project [38] and generated simulated expression profiles
that mimic regulatory dependencies from real eQTL
studies. Using genotype data from 379 individuals of
European ancestry (CEU, FIN, GBR, IBS, TSI), we gener-
ated gene expression levels assuming a combination of cis
and trans genetic effects as well as effects due to external
confounding factors (“Materials and methods”). We varied
the structure of the regulatory network, as well as the type
and the magnitude of the confounding effects. We
compared GNet-LMM to a standard LMM and estab-
lished latent variable models to account for confounding
in eQTL analyses, including two approaches based on
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principal component analysis (PC-LMM, PCselect-LMM
[13, 39]), and random effect models (ICE-LMM [10]). We
again considered an ideal model, where the simulated net-
work topology was used to condition on the true set of ex-
ogenous genes (ideal-LMM) and where all confounding
factors were included in the model. All methods were
assessed in terms of their power to detect trans eQTLs (at
false positive rate < 5 %).

Initially, we examined the sensitivity of the considered
methods with respect to the architectures of regulatory
networks without confounding, either simulating a
sparse, unstructured network between the genes (Fig. 2a)
or considering a star-shaped network with regulatory
hubs (Fig. 2b) (“Materials and methods”). In both set-
tings, GNet-LMM considerably improved power com-
pared with a standard LMM (GNet-LMM|cis/trans]
versus LMM) (Fig. 2a, b). In contrast, we observed that
methods based on principal component analysis (PCA)
had either no benefit compared with a standard LMM
(Fig. 2a) or even reduced power in star-shaped network
topologies (Fig. 2b). This reduction in power is because
covariates inferred using PCA tend in part to capture
genetic signals, thereby explaining away the effect of
genetic master regulators with widespread downstream
effects (see also discussion in [10, 12]). This deficiency
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of a vanilla PCA approach was reduced when selecting
principal components (PCs) that were not associated
with genetic variants (Fig. 2b; PCselect-LMM). However,
this approach was still inferior to a conventional LMM,
and considerably less powered than GNet-LMM. This
suggests that PC-based adjustment in general has little
benefit if no confounding factors are present. Finally,
ICE-LMM appeared to be the most conservative model,
explaining away large proportions of the actual genetic
signal. This behaviour has previously been noted, e.g.
[12] and addressed in recent extensions [29].

Next, we investigated the performance of these methods
when simulating increasingly strong confounding effects
independent of the network (“Materials and methods”;
Figure S4 in Additional file 1). While PCA-based methods
tended to increase power for sparse regulator networks
(Fig. 2c), both PC-LMM and PCselect-LMM were unable
to disentangle correlated genetic effects due to master regu-
lators and confounding in star-shaped network topologies
(Fig. 2d). In contrast, GNet-LMM consistently improved
power compared with the LMM baseline (Fig. 2c, d) and
performed markedly better than PCA adjustment in a wide
range of parameter regimes. We also observed that associa-
tions of PCs with genetic factors were frequently weak and
difficult to detect (Figure S5 in Additional file 1). This is a

[ ICE-LMM [ PC-LMM [ PCselect-LMM
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Fig. 2 Benchmark of alternative eQTL association methods on simulated datasets. a, b Receiver operating characteristic (ROC) for alternative
methods to detect eQTLs in sparse (a) and star-shaped simulated regulatory networks (b), assuming no confounding factors. ¢, d Power comparison
when increasing the relative effect of confounding, either assuming sparse (c) or star-shaped network topologies (d). Compared are a standard LMM
without conditioning (LMM), an LMM that exclusively conditions on true exogenous genes (ldeal-LMM), adjustment based on principal components
(PC-LMM), adjustment based on principal components with selection (PCselect-LMM) and GNet-LMM. Power is defined as the area under the ROC curve
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likely explanation of why methods that select PCs based on
association criteria are less reliable than V-structure selec-
tion in GNet-LMM.

We also considered additional experiments, altering
the proportion of gene expression variance due to trans
eQTLs, the overall variance explained by genetic and
confounding factors, the average number of confounders
that effect any one gene and the total number of simu-
lated confounding factors. Across these scenarios, GNet-
LMM consistently increased statistical power compared
with other methods (Figure S6 in Additional file 1). One
limitation of GNet-LMM is in the regime of tightly cor-
related gene expression levels, which can occur if one
dominant factor, such as a large hidden batch effect, ex-
plains most of the gene expression variance. This correl-
ation hampers the ability to identify V-structures and
hence GNet-LMM reverts to a standard LMM.
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Application to eQTL datasets from mouse and human

Next, we revisited an eQTL dataset of hippocampus gene
expression profiled in a panel of 467 heterogeneous stock
mice [40] (expression levels for 3740 genes/12,545 genetic
markers after quality control; “Materials and methods”). All
considered methods except for ICE-LMM were well cali-
brated (Figure S7 in Additional file 1), again attesting that
the ICE model is conservative. Because of the large haplo-
type blocks in this population, we classified associations as
trans eQTLs if the distance from the transcription start site
of the gene exceeded 20 Mb. In line with the results
obtained on simulated data, we observed that accounting
for PC-based covariates substantially reduced the power to
identify regulatory hotspots (Fig. 3¢, d), although the overall
number of trans eQTLs increased compared with a stand-
ard LMM (Fig. 3g). These results were consistent with our
simulation study, suggesting that, in general, PCs capture a
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combination of confounding factors and genetic signals
from trans hotspots. As a result, we observed that adjust-
ment using PCs led to a detection bias, where the power to
detect associations in trams-hubs decreased whereas the
power to identify non-structured (sparse) associations
increased.

The fact that PCs explain heritable genetic signal was
also apparent when considering PCs as quantitative
traits and mapping their genetic effects. QTL mapping
of the PCs themselves revealed suggestive associations
(p < 1le—4) that coincided with the locations of the trans
hotspots that were explained away by the PC-based adjust-
ment (Figure S8 in Additional file 1). In contrast, GNet-
LMM recovered all trans hotspots identified by a standard
LMM and revealed additional hotspots (Fig. 3e, f; Figure S8
in Additional file 1).

To objectively assess the associations retrieved by
GNet-LMM and alternative methods, we tested to what
extent the discovered trans eQTLs were consistent with
Reactome pathways [41]. Briefly, for each method we
gauged individual SNP—-gene associations by assessing
whether the gene tagged by the eQTL variant (i.e. its cis
gene) and the focus gene (regulated in trans) were anno-
tated in at least one common pathway. Although such
an approach may miss both true positive and false
positive associations, we reasoned that the average
consistency with known pathways is a suitable measure
to compare eQTL-mapping approaches (see also [42, 43]
where a similar strategy has previously been employed).
Reassuringly, the trans eQTLs detected by GNet-LMM
were substantially more enriched for known pathways
(Fig. 3h) than those identified by alternative methods.
Additionally, we repeated this enrichment test when
stratifying individual loci based on the presence or ab-
sence of a cis-acting anchor gene. While globally, the
enrichment of GNet-LMM|[trans] was similar to GNet-
LMM[cis], the method performed better in genomic re-
gions without cis-mediating anchor genes, confirming
that trans associations can be used as anchors to detect
V-structures (Figure S9 in Additional file 1). Finally, we
considered a permutation experiment to investigate the
statistical calibration using an empirical null distribution
for the final association test, but retaining the identical set
of exogenous genes as identified in the full model. This
analysis showed that the test statistics on data without
signal were well calibrated, both for variants with and
without exogenous genes (Figure S10 in Additional file 1),
thereby confirming the calibration results on simulated
data (Figure S3 in Additional file 1).

In summary, our results show that GNet-LMM is a
robust and powerful approach to detect trans eQTLs. It
is important to note that for the discovery of cis eQTLs,
PCA-based approaches increased power to detect asso-
ciations as previously reported, whereas GNet-LMM is
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by design identical to a standard LMM (Figure S11 in
Additional file 1).

Finally, we applied GNet-LMM to the QTL dataset of
the Cardiogenics Transcriptomic Study [44, 45]. We con-
sidered genotype markers from 376 healthy individuals
and tested for genome-wide trans eQTLs affecting gene
expression levels of 15,340 probes in monocytes. Again,
all methods except for ICE were well calibrated (Figure
S12 in Additional file 1). Overall, PC-based methods iden-
tified a larger number of cis associations than a standard
LMM (Figure S13 in Additional file 1), and both PC-based
methods and GNet-LMM increased power to detect trans
effects (Figure S14 in Additional file 1).

Consistent with previously results obtained using the
same dataset [45] and confirmed in an independent
study [18], we identified a master regulator LYZ at the
locus 12q15 (rs6581889). LYZ is known to be under
strong genetic control by a cis-eQTL in monocytes and
encodes the lysozyme enzyme. Lysozyme is important
for immune defence and catalyses the cutting of poly-
saccharide chains of bacteria cell walls [46]. Down-
stream of the marker rs6581889, the standard LMM
identified 127 trans-genes (p <0.01, Bonferroni ad-
justed, accounting for the total number of tests). In line
with the results obtained on the mouse dataset, substan-
tially fewer trans-genes were found when using ICE-
LMM (2), PC-LMM (117) or PCselect-LMM (116). In
contrast, GNet-LMM]|cis] and GNet-LMM|[trans] both
increased power to detect tranms genes, identifying 214
and 218 genes in association with the LYZ locus, respect-
ively (see Figure S15 in Additional file 1 for results using
other significance thresholds). GNet-LMM recovered all
eQTLs detected using a standard LMM and an analysis
using the STRING database [47] suggested that the add-
itional eQTL genes are embedded within functionally con-
sistent networks (Figure S16 in Additional file 1).

As a complementary approach to validate eQTLs iden-
tified by GNet-LMM, we considered a second eQTL
dataset of the same cell type [14] to replicate individual
associations out-of-sample. In contrast to within-sample
validations, external confirmation of eQTLs rules out
the possibility of biased results and technical artefacts.
To define a conservative set of likely true eQTL genes in
the validation study, we used a standard LMM to test
for associations between the locus 12q15 and 9106 genes
for which expression data were available in both studies
(p <0.01, Bonferroni adjusted). We then assessed the trans
eQTLs discovered on the Cardiogenics study by evaluat-
ing the proportion of eQTLs that could be replicated in
the validation set (Figure S17 in Additional file 1). Encour-
agingly, the validation rate of GNet-LMM was notably
higher than for any other method and in particular GNet-
LMM was the only approach with a better replication rate
than a standard LMM.
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Conclusion

We have here described GNet-LMM, an efficient statis-
tical approach to increase power in trans genetic
analyses of gene expression levels. The model recon-
structs local gene regulatory networks on a genome-
wide scale to identify and account for exogenous genes
that either tag confounding factors or explain biological
co-regulation. To do so, the model builds on well-
established principles from causal reasoning [37]. Our
approach is also related to Mendelian randomization
[48, 49] and methods to reconstruct (small) directed
acyclic graphs for multi-trait GWAS [50]. Importantly,
and unlike existing methods for eQTL discovery, GNet-
LMM is a local method that circumvents reconstruct-
ing whole-genome networks [36, 51], allowing applica-
tions to larger datasets. The approach is also distinct
from feature selection methods used to select genetic
covariates [35], as the networks reconstructed by
GNet-LMM are directed, which is central to define ex-
ogenous factors. Using the principles of V-structures
testing, our approach locally scans all gene triplets in
which at least one gene has a strong genetic anchor.
This approach identifies a typically small number of ex-
ogenous genes (Figure S22 in Additional file 1), which
can be efficiently accounted for within the LMM frame-
work by using low-rank updates of a random effect co-
variance (see “Materials and methods”). Other more
global discovery procedures, such as the PC algorithm
[52, 53], could be considered as an alternative. How-
ever, they come at the cost of an increased computa-
tional burden, in particular for dense networks.

Using simulations, we have shown that inference of
local directed networks can be used to increase power of
eQTL mapping in a wide range of settings, including dif-
ferent genetic architectures and types of confounding
(Fig. 2; Figure S6 in Additional file 1). Our results also
provide new insights into the limitations of existing
methods based on PCA or factor analysis. In particular
in the regime of pleiotropic genetic signals, e.g. due to
regulatory hotspots, such approaches can skew eQTL
detection power towards single-SNP—single-gene associ-
ations. Notably, GNet-LMM is neutral regarding the
presence of regulatory hotspots. The method neither as-
sumes that trans eQTLs form hotspots (e.g. [27]) nor
suffers from explaining away genetic signals that result
from such master regulators if they exist (Fig. 3). Al-
though we do not consider this here, GNet-LMM]|cis]
implicitly establishes a causal chain between the variant,
an intermediate cis anchor and the focal trans gene. The
analysis of mediating causal genes is of considerable
interest in itself and methods to identify mediating
genes, such as the Trigger algorithm [20] and related
methods [54, 55], have been described elsewhere. It is
also worth noting that accounting for exogenous factors
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can be beneficial even in the absence of confounding,
where exogenous genes capture regulatory dependencies
of gene networks (Fig. 3a).

Although we demonstrated that GNet-LMM is robust
in different analyses, the method is not free of limitations.
One key requirement for the model to work is the pres-
ence of mediating genes that can be leveraged as an
anchor to identify V-structures (Fig. 1a). While trans asso-
ciations with a cis anchor are arguably among the most
plausible and relevant mechanisms for trans effects [21],
there are other ways in which genetic variants can affect
expression levels of downstream genes, such as epigenetic
modifications or transcription initiation [56]. In principle,
any gene with an established genetic effect can be used to
test for V-structures, as illustrated by GNet-LMM][trans],
where strong trans associations are used as an anchor to
identify V-structures and exogenous genes (Figure S14 in
Additional file 1). However, the mechanisms of trans ef-
fects that are cis mediated are much better understood,
and the additional search for trams associations increases
the computational cost and entails additional V-structure
tests. Thus, GNet-LMM]cis] may be more relevant in
most practical settings. A second limitation is the need to
set additional model parameters and significance thresh-
olds. We have found that overall GNet-LMM is remark-
ably robust to these parameters (“Materials and
methods”; Figures S18, S19, and S20 in Additional file
1); however, data from new platforms and much larger
forthcoming eQTL studies may benefit from further
refinements.

Finally, it is important to note that GNet-LMM is
complementary to existing methods that have been de-
signed for the analysis of cis eQTLs. Because anchor
genes do not exist in this instance, GNet-LMM cannot
discover exogenous genes and hence existing methods
such as SVA [57], PEER [11], PANAMA [12] or ICE [10]
remain the method of choice for cis eQTL mapping.

In summary, we have proposed a simple covariate se-
lection approach for trans eQTL mapping that exploits
local directed gene regulatory networks to identify
exogenous genes. We provide new insights into limita-
tions of existing methods, in particular when including
covariates based on PCs in genetic models. GNet-LMM
increases power compared with previous methods. In
addition, we observe that even in the absence of
confounding factors, it is beneficial to account for ex-
ogenous genes that capture regulatory context. The
statistical building blocks we have used in this study
could be adapted to other more complex analyses, in-
cluding joint modelling of gene expression profiles from
multi-tissue eQTL studies [9, 15, 58]. In such cross-
tissue analyses GNet-LMM could help to improve our
understanding of the tissue specificity of trans genetic
effects.
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Materials and methods

GNet-LMM algorithm

Let N be the number of samples, F the number of
markers and 7 the number of genes with observed gene
expression levels. Let Y denote the gene expression
matrix and the genotype matrix is denoted by X. Fur-
thermore, the expression levels of the ¢-th gene across
individuals are denoted y, and the genotypes of the f-th
marker are indexed as x;.

GNet-LMM builds on the principal that conditioning
on exogenous factors (here genes) can increase power to
detect trans associations. To model the expression level
of a focal gene C, the method tests for associations with
genetic variant of interest (SNP A) while accounting for
exogenous factors (gene B), which are defined by (i) hav-
ing a causal effect on the focal gene C and (ii) being un-
related to the causal path that links the genetic effect of
the variant (SNP A) to the focal gene (Fig. 1a).

Specifically, for each SNP A—gene C pair to be tested,
we first search for triplets of genes that form a so-called
V-structure (gene A ->gene C<- gene B), where both
genes A and B have a causal effect on the focal gene C
(Fig. 1a). A set of basic statistical dependencies can be
used to identify these structures from the expression
data itself, where A—C and B-C are tested for depend-
ence and A and B are required to be independent, but
become dependent after conditioning on gene C (see e.g.
[37] for more details):

dep(ys,9c) (1)
dep (yB,, yc) (2)
ind(y,,yp) (3)
dep(y4:¥5 | %c) (4)
dep(%a; ¥a) (5)
ind(x4,yp) (6)

Here, dep denotes a statistical dependency criterion
and ind corresponds to statistical independence and the
symbol | denotes a conditional test. The vector y, de-
notes the expression level of gene A and similarly yz and
yc denote expression vectors for genes B and C, respect-
ively. x5 denotes the genotype vector of the variant to be
tested, for which we consider a conventional (0,1,2)
encoding.

The additional independence test between SNP A and
gene B (Eq. 6) is not required to identify gene A - > gene
C< - gene B V structures. This condition is included to
rule out the possibility that gene B is itself associated
with the variant of interest, which can cause synthetic
associations [33].
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To define a computationally efficient strategy and
to increase robustness, GNet-LMM restricts gene A
to anchor genes with either a cis or trans association
to the SNP (hence, the additional dependence
requirement; Eq. 5). This condition substantially
reduces the search space, thereby reducing the other-
wise quadratic effort to consider all pairs of genes A
and B that could form valid V-structures (see section
on runtime below). Similar search strategies have
previously been considered to identify mediating
genes; see for example [20]. We here denote these
models GNet-LMM][cis] and GNet-LMM][trans], re-
spectively, where GNet-LMM|cis] requires a cis regu-
latory link between SNP A and gene A and GNet-
LMM|trans] considers cis or trans associated genes
A as anchors to test for V-structures. The algorithm
proceeds by conditioning on all genes B that satisfy
the V-structure criterion for a given (SNP A, gene
C) pair.

Implementation details: The GNet-LMM algorithm
can be broken down into three steps.

1. Perform an initial genome-wide eQTL scan, testing
for associations between all variants and the
expression levels of all genes, resulting In a TxF-
dimensional matrix of p values.

Runtime: O(N° + FTN?).

2. For each gene C, search for gene pairs (ya, yp) that
form a V-structure with the focal gene yc (gene A - >
gene C < - gene B).

Runtime: O(T*N + k N), where computing the
marginal correlation takes O(T?N) time and k is the
number of partial correlation coefficients to be
computed. To reduce computations, we only
compute the partial correlation coefficient if the
marginal correlations satisfy the first three V-
structure criteria (Egs. 1, 2, and 3) and gene A

has a SNP anchor (Eq. 5).

3. Update the association p value for all (x5 yc)
marker-gene combinations by conditioning on the set
of genes yg that satisfy the V-structure criterion, where
Xa 15 a cis/trans-anchor to gene yu and (ya, yg) build a
V-structure with gene yc.

Runtime: O(sN?R + mNR?), where s is the number
of unique conditioning sets, m is the total
number of associations to be updated and R is
the number of genes in the conditioning set.
Although R varies from test to test, it is bounded
in practice (Figure S22 in Additional file 1) and
our software implementation allows specifying an
upper limit for the permitted rank R.

In the following, we give a more detailed description of
each step:



Rakitsch and Stegle Genome Biology (2016) 17:33

Step 1 (association scan): We employ a standard
LMM [59-61] to test for associations between variant
xa and gene yc:

Y~ N(xAﬁ, aﬁgl(bg + cﬁl) (7)

Here, K,, denotes the random effects covariance
matrix, O%g denotes the variance of the random effect
term, o denotes the magnitude of the noise and I is the
identity matrix, which corresponds to the assumption of
iid measurement noise. Additional fixed effect covariates
are omitted for brevity but can be included analogous to
the effect of the variant x4 The background covariance
matrix K, can be flexibly chosen, such as a global kin-
ship matrix to model relatedness [62] or a local kinship
matrix to model cis effects that act on the focal gene
[19]. In the experiments, we use the realized relationship
matrix [62] as background covariance, thereby adjusting
for population structure. As initially proposed in the
EMMA-X approximation [63], the ratio between the
noise and background covariance is fit once on the null
model using maximum likelihood, and kept fixed for
each test. We use the fastLMM algorithm [60] as imple-
mented in LIMIX [64] for all model fits and association
tests.

Step 2 (detecting V-structures): A V-structure can be
uniquely identified by the set of independence tests de-
scribed in Egs. 1, 2, 3, and 4. In addition, we require that
gene y, has a strong cis-association to x5 (Eq. 5),
whereas yg is tested for independence to the marker x5
(Eq. 6). The latter criterion ensures that the potential ex-
ogenous factor yg is not in association with the variant
of interest, which otherwise may lead to spurious associ-
ations (Figure S3a in Additional file 1).

Following the approach taken in [65], we employ a
standard correlation test to assess dependence between
genes and test if the p value is larger than a pre-defined
threshold to assess independence of gene y, and gene
ys. Although this independence criterion is not a well-
defined statistical test (the null-distribution is not de-
fined over the null but from the alternative distribution),
this approach has been shown to work well in practice,
e.g. [55]. When testing for dependence between a gene
and a SNP, we use the association test (Eq. 7) to test for
independence, again assuming that independence is
present if the p value is larger than a certain threshold.
Explicit independence tests such as the Hilbert-Schmidt
independence criterion [66] could also be considered, al-
though these are computationally more demanding and
hence were not used in this study.

Step 3 (update association scan): Following the ex-
haustive search of V-structures (gene A ->gene C<-
gene B), we use an extended LMM approach as in Eq. 7

Page 9 of 13

to condition on the expression of all exogenous genes yg
that satisfy the V-structure criterion for x, and gene yc:

Yo~ N(xA/)’, UZgKbg + nga ZB . Lmygyﬁ + Uil) :

The parameter additional parameter oZ,, determines
the variance explained by the set of exogenous genes
and L., denotes the set of identified exogenous genes.
Since conditioning sets typically contain only a small
number of genes (Figure S22 in Additional file 1), we
use a low-rank LMM implemented in the mtSet method
[67] to test for associations similar to the approach de-
scribed in Step 1. This approach allows fitting this model
efficiently to large datasets. The implementation of
GNet-LMM allows limiting the maximum number of
genes in the conditioning set. This is approximation to
the full model can be used to further reduce the overall
runtime, if desired (see “Implementation details”).

Parameters and (in)dependence thresholds: We
used the following strategy for setting the thresholds for
dependence and independence tests:

e Two genes are (conditionally) dependent if they
have an adjusted p < 0.01.

e Two genes are independent if they have a p > 0.1.

e A SNP is associated with its cis-gene if the adjusted
p<0.05.

e A SNP is independent of the exogenous gene if the
p=0.1.

We have used these settings in all experiments except
for the basic simulation (Figure S1, S2, and S3 in
Additional file 1), where due to the small number of genes
more stringent criteria were employed. In this setting, we
considered a threshold of p < 0.001 for calling genes corre-
lated, p > 0.1 for calling genes independent and p < 0.001
for calling cis associations. We also investigated the im-
pact of changing the specific parameter values, finding
that GNet-LMM is overall robust with respect to the spe-
cific threshold used (Figure S18, S19, and S20).

Statistical calibration: It is important to ensure that
the GNet-LMM vyields calibrated test statistics on the null
distribution, in particular for tests where V-structures have
been identified and hence additional genes for condition-
ing are used. We considered two experiments to verify
calibration empirically. First, we confirmed that p values
are calibrated if a V-structure is evoked by confounding ef-
fects, e.g. if a hidden common cause induces correlations
between gene A and gene C without the existence of a
causal relationship between SNP A and gene C (Figure
S3b in Additional file 1). Secondly, we verified that no V-
structure is detected if the gene to be conditioned on
(gene B) is also associated with the SNP of interest (Eq. 6),
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which avoids the possibility of synthetic associations
(Figure S3a in Additional file 1).

Runtime complexity: On the Cardiogenics dataset,
computing all gene—gene correlations required 370 s. Run-
ning the initial association scan with LMM took approxi-
mately 18 s per gene and updating the results took, on
average, 86 s when considering cis-anchors and 105 s when
using trans-anchors. Empirical runtimes were evaluated
using one single core of an Intel Xeon CPU E5-2670
2.60 GHz processor. The GNet-LMM software implemen-
tation allows parallelizing the core operations on a large
compute cluster.

Implementation of alternative methods

In the experiments, we compared GNet-LMM to rep-
resentatives of alternative methods, either based on
random effect models or approaches that use PCs to
account for confounding. As a baseline, we considered
a standard LMM with a realized relationship matrix
[10] as random effect covariance matrix (LMM). ICE-
LMM denotes a LMM where a second random-effect
covariance was estimated from the empirical gene ex-
pression covariance matrix [10, 26]. In PC-LMM, the
first n principal components were accounted for as a
random effect term. Similarly, in PCselect-LMM, the
same approach was used but excluding PCs in associ-
ation with at least one variant (qval <0.2). For both
PC-LMM and PCselect-LMM, the number of PCs was
determined in the range (10,20,30,40,50), maximizing
the total number of trams-associations, as previously
considered in [18, 22]. All methods were implemented
within the LIMIX framework [64].

Simulation study
Simulated datasets were generated by using synthetic
gene expression levels and genotypes from chromo-
some 20 of 1000 Genomes individuals of European
populations (379 individuals) [38]. To avoid possible
biases in the evaluation of methods on simulated data
when causal and non-causal variants are in strong link-
age disequilibrium, we reduced the variant set to limit
local linkage disequilibrium to a maximum of r*=0.9
(within windows of size 50, step length 5). As an add-
itional filter, we discarded rare variants with a minor
allele frequency of less than 5 %, resulting in 4030
quasi-independent common variants. All simulation
experiments were performed on the reduced dataset.
Basic simulation: We studied the following four small
gene—gene networks:

e Power (Figure S1 in Additional file 1):
SNP A — Gene A;
Gene A, Gene B — Gene C,
Gene C — Gene D
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In the default setting, the cis-anchor of gene A ex-
plains between 10 % and 20 % of the variance, and each
regulating gene explains between 10 % and 20 % of the
variance.

o Direct effect (Figure S2a in Additional file 1):
SNP A — gene A, gene C;
Gene A, Gene B — Gene C

We use the same default parameters as before, but
introduce an additional parameter o regulating how the
variance explained by SNP A is divided between gene A
and gene C.

o Trans-effects (Figure S2b in Additional file 1):
SNP A — Gene A, Gene D;
Gene A, Gene B, Gene D — Gene C

We use the same default parameters as before, but
introduce an additional parameter o regulating how the
variance explained by SNP A is divided between Gene A
and Gene D.

e Confounding (Additional file 1: Figure S3):
SNP A — Gene A, (Gene B);
Confounder A — Gene A, Gene C;
Confounder B — Gene B, Gene C

The cis-anchor of gene A explains between 10 % and
20 % of the variance, and the confounding effects ex-
plain together 50 % to 70 % of the gene’s variability.

The gene expression levels are simulated as a linear
function of incoming edges, the cis SNP and noise. In
each experiment, we assessed the statistical power of al-
ternative methods to detect simulated trans association
between SNP A and gene C. Each experiment was re-
peated 1000 times.

Power comparison: Next, we studied gene—gene net-
works consisting of 100 genes, considering alternative
network topologies, as well as different types and the
strengths of confounding. Gene expression levels were
simulated as a linear additive combination of effects due
to incoming edges, the cis-SNP, noise and confounding
factors. We considered two network architectures; first,
sparse and unstructured networks in which edges are
randomly drawn from a Bernoulli distribution and sec-
ond star-shaped and structured networks with nine ran-
domly selected hub genes that regulate between 20 %
and 50 % of all other genes. In addition, we simulated a
varying number of confounding factors, and randomly
assigned genes to be affected by confounding factors.
The regulatory weights were drawn from a mixture of
two normal distributions, with a mixture coefficient of
0.5. The mean of both components was set to +1 and
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the standard error for each component is 0.1. This prior
design helps to ensure that simulated edges have non-
zero weights, with equal proportions having positive and
negative effects.

To consider alternative genetic designs, we altered the
variance explained by the cis-SNP (0.0,0.05,0.10,0.15,0.20),
the variance explained by the networks (joint effect of
confounding and genetic network; 0.0,0.5,0.60,7,0.8,0.9),
the proportion of variance explained by confounding fac-
tors (0.0,0.2,0.4,0.6,0.8,1.0), the number of confounding
factors (0,1,2,3,4,5), and the expected number of con-
founders per gene (0,0.5,1,3,5). The default settings are
marked in bold. For further details on the simulation ap-
proach, see Supplementary methods in Additional file 1.

Evaluation: SNP—gene associations were ranked in as-
cending order by their p value. An association between
SNP A and gene C was considered a true positive if gene
A is a direct regulator of gene C and the associated variant
was close to the simulated cis anchor (SNP A, +2 kb). In
order not to confound the trans eQTL analysis, we
ignored putative cis associations within a window of
size 5 Mb. We defined power as the area under the
receiver operating characteristic (ROC) curve for a
false positive rate below 5 %.

Mouse dataset

We considered gene expression levels measured in
hippocampus tissue of 468 heterogeneous stock mice
[40]. The dataset contained 12,545 genetic markers and
expression levels for 19,892 genes. In order to facilitate
the evaluation of trans eQTLs, we considered the set of
3740 genes that could be linked to at least one Reactome
pathway. We considered associations as Reactome-
consistent if the associated variant and the focal gene
were linked by at least one pathway. For this mapping of
variants to genes, we considered all genes with a tran-
scription start site located within +2 Mb around the
variant. We excluded all associations that were likely
due to cis effects (+20 Mb) from the analysis. We se-
lected 20 factors for PC-LMM and PCselect-LMM maxi-
mizing the number of trans associations (see Figure S21
in Additional file 1 for alternatives).

Cardiogenics transcriptomic study

We analysed the data from the Cardiogenics Transcrip-
tomic Study [44, 45]. We restricted the analysis from the
758 individuals to the 395 samples from the Cambridge
cohort, to reduce batch effects and differences in disease
status (the Cambridge cohort was exclusively from
healthy individuals). Out of these, 376 individuals passed
quality control steps as in the primary analysis of the
data [44, 45]. Requiring a minor allele frequency of at
least 0.05, this resulted in 502,378 variants for analysis.
We considered matching expression levels for 15,340
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probes. Individual expression levels were quantile nor-
malized to unit variance normal distribution. Subse-
quently, we regressed out age and gender and again used
quantile normalized of the residuals to a standard nor-
mal distribution. We excluded associations that are likely
cis acting (+2 Mb) from the analysis. We selected ten
hidden factors for PC-LMM, and PCselect-LMM, again
maximizing the number of trans associations (Figure
S14 in Additional file 1).

Genetics of gene expression in primary human immune
cells study

We validated the results from the Cardiogenics Tran-
scriptomic Study [68] in 414 independent monocyte ex-
pression arrays in an independent monocyte eQTL
dataset [18]. eQTL replication was assessed on a set of
9106 overlapping probes, considering eQTLs down-
stream of the locus 12q15.

Software

A standalone python implementation of GNet-LMM, in-
cluding examples and use cases, is available under an Apa-
che licence at https://github.com/PMBio/GNetLMM. The
software builds on software components available in
mtSet [67] and LIMIX [64].

Data access

The mouse dataset is publicly available on Array Express
under the accession number E-MTAB-88. Published data
from the cardiogenics and the Genetics of gene expres-
sion in primary human immune cells study have been
deposited at the European Genome-phenome Archive
(EGAS00001000411 and EGAS00000000109).
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