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Challenging presumed 
technological superiority 
when working with (artificial) 
colleagues
Tobias Rieger1,2*, Eileen Roesler1,2* & Dietrich Manzey1

Technological advancements are ubiquitously supporting or even replacing humans in all areas of life, 
bringing the potential for human-technology symbiosis but also novel challenges. To address these 
challenges, we conducted three experiments in different task contexts ranging from loan assignment 
over X-Ray evaluation to process industry. Specifically, we investigated the impact of support agent 
(artificial intelligence, decision support system, or human) and failure experience (one vs. none) on 
trust-related aspects of human-agent interaction. This included not only the subjective evaluation of 
the respective agent in terms of trust, reliability, and responsibility, when working together, but also a 
change in perspective to the willingness to be assessed oneself by the agent. In contrast to a presumed 
technological superiority, we show a general advantage with regard to trust and responsibility of 
human support over both technical support systems (i.e., artificial intelligence and decision support 
system), regardless of task context from the collaborative perspective. This effect reversed to a 
preference for technical systems when switching the perspective to being assessed. These findings 
illustrate an imperfect automation schema from the perspective of the advice-taker and demonstrate 
the importance of perspective when working with or being assessed by machine intelligence.

Automated systems are rapidly making inroads into our working life and everyday world. From the assessments 
of private creditworthiness1,2 to the evaluation of medical cases3–5, automation continuously replaces or at least 
supports human professionals in their judgments. These automated systems replace stages (i.e., information 
acquisition and analysis, decision-making, and, in some cases, even action implementation) of human informa-
tion processing6, and, as a result, the role of the human changes from active and solely responsible operator to 
being less involved in the complete process7.

One of the major determinants of successful interaction for both human and technological support is adequate 
trust towards the respective agent8,9. Most crucially, humans have higher performance expectations towards 
technological aids compared to human counterparts leading to higher initial trust10,11. However, if a system fail-
ure is experienced, performance expectations are not met for the technical system and both trust and perceived 
utility are reduced to a level even lower than that for human support. This effect has been coined as “perfect 
automation schema” and likely occurs because people are aware of their own fallibility but expect machines to 
work perfectly10,11.

Having in mind the possible alarming consequences of the perfect automation schema, it seems negligent 
to not broaden this view to novel technological developments like artificial intelligence (AI). This is important 
as even though classical decision support systems (DSS) and AI share many commonalities (e.g., the changed 
human role7 or the lack of systems transparency1,12,13), there might also be some key differences in the percep-
tion of those systems. First, due to its ability to continuously learn and improve, AI might be perceived as more 
of an expert system compared to DSS14. Thus, even though both kinds of support systems can provide highly 
reliable recommendations, an AI is likely perceived more competent than a DSS. Second, AI also extends DSS 
with a higher level of agency and autonomy15,16. This might result in the perception that the AI is the deliber-
ate initiator of the actions and their effects. In summary, both continuous learning as well as agency/autonomy 
might contribute to a higher perceived expertise of AI compared to DSS. Against the background of AI being 
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superior to classical DSS, one would expect this schema to be even more pronounced for AI than for DSS—both 
with a higher performance expectation and greater trust dissolution in case of errors. Specifically, the presumed 
expertise and utility10,11,17 of an aid is what drives the perfect automation schema, and with a superior system 
(AI), this should be more pronounced.

Due to AI’s rapid introduction into a plethora of workplaces, new challenges arise and require to go beyond 
the typically studied outcomes like perceived reliability, trust, and dependence8,9,18. The first key aspect emerges 
from the increased autonomy and agency of AI which poses a new question of perceived responsibility. Even 
though AI is far from legal responsibility19, the highly autonomous and often non-transparent decision-making 
processes might lead to a change in perceived responsibility20. In addition, novel technologies being applied in 
various contexts also require us to gain a better understanding of people being subject to decisions of technical 
systems21. For example, it seems clear that being the banker who receives automated advice is a different situation 
from being a loan applicant who asks for a credit. This change of perspective is the second key aspect which the 
present research tries to address.

The above-mentioned example already illustrates that AI is supporting or replacing humans in tasks which 
are not limited to quantifiable tasks with a demonstrably correct answer but also in more uncertain tasks where 
the true state of the world is more ambiguous22,23. In summary, we try to close two gaps in prior research. On 
the one hand, we aim to gain a better understanding of a change of perspective (i.e., from advice-taker to being 
assessed) that this new technology necessarily entails. On the other hand, we wanted to test and extend possible 
implications of a perfect automation schema to AI. To do this, we address the role of (artificial) support agents 
and how they are perceived in various application areas, involving different sorts of tasks. That is, if considering in 
which variety of areas AI is making its way into, it becomes indispensable to broaden the task view from classical 
visual detection tasks. For this reason, we started our set of experiments by using a novel real-life application, 
in which AI has been recently introduced1,2. Once it became clear that the perfect automation schema did not 
hold true in this application, we extended our research using a task similar to the one where a perfect automa-
tion schema had been found previously. We continued to systematically vary the task context to both replicate 
our findings as well as get an understanding of task factors. Specifically, in Experiment 1, we used a complex 
categorization with personal information (i.e., loan assignment), in Experiment 2, we used a classical detection 
task with the same personal information as in Experiment 1 (i.e., X-Ray assessment), and in Experiment 3, we 
used a classical detection task without personal information (i.e., simulated chemical plant). This allowed us to 
extend our findings and get an understanding of contributing task factors of trust in human-agent interaction.

To ensure good comparability between the experiments, the general structure was the same. That is, it was 
always the participant’s task to make the final decision after seeing the agent’s recommendation. Moreover, to 
study the predictions from the perfect automation schema (i.e., more forgiving towards human mistakes), half 
of the participants experienced an obviously erroneous recommendation from their support agent whereas the 
other half of the participants received correct recommendations only. After this interaction with the respective 
agent, participants were asked to rate the following outcomes from the perspective of the advice-taker: perceived 
reliability, their trust in the support, whether the support took responsibility for its actions, and whether the 
respective kind of support were useful in this context. Moreover, they were also asked to change the perspec-
tive and to rate whether they themselves would like to be judged by the respective support agent in case of the 
respective context.

Altogether, these experiments were used to extend the knowledge about a classical phenomenon of human-
automation interaction by investigating it in the context of novel technologies (i.e., AI), real-life application 
domains (i.e., loan application, X-Ray assignment, and chemical plant), and with a switch in perspective.

Results
Figure 1 visually illustrates perceived reliability (A), trust (B), responsibility (C) and willingness to be assessed by 
the respective agent (D), separately for the three different contexts. Results for all other subjective outcomes can 
be obtained via the open science framework (OSF). For the analysis of all relevant outcomes between-subjects 
ANOVAs were conducted to investigate main and interaction effects. Moreover, post-hoc tests with a Bonferroni-
corrected p-value were used to investigate significant interaction effects or main effects involving a three-level 
factor (for details see methods/statistics).

Experiment 1: loan decision.  As expected, participants who experienced a system failure deviated 
stronger from the agent’s recommendation ( M = 3905.34 ) than those who only received correct recommenda-
tions ( M = 2601.33 ), F(1, 275) = 6.799, p = 0.010 , η2G = 0.013 . In line with this, the respective support was per-
ceived as more reliable in the correct ( M = 86.39 ) than in the failure ( M = 82.67 ) condition, F(1, 275) = 7.552, 
p = 0.006 , η2G = 0.027 . These ratings around 85% are a significant ( t(280) = 15.30, p < 0.001 ) gap between 
the true experienced and perceived reliability, a common issue with highly reliable systems that can lead to an 
under-utilization of the support8. Surprisingly, the type of support did not play a role for neither the deviation 
from the system nor the perceived reliability. As reliability is closely linked to subjective trust towards any agent9, 
the fact that trust was descriptively lower after failure experience ( M = 77.71 ) than when receiving only cor-
rect recommendations ( M = 81.48 , p = 0.053 ) was as anticipated. Remarkably, the assumptions of the perfect 
automation schema were not met by our data. Instead, we found quite the opposite with higher trust towards 
human support ( M = 84.73 ) compared to both the AI ( M = 76.35 , p = 0.002 ) and the DSS ( M = 78.31 , p 
= 0.019 ), F(2, 275) = 6.778, p = 0.001 , η2G = 0.047 . This higher trust towards humans was also not affected by 
failure experience. Thus, the assumption that people are more lenient towards humans than automation11,24 if a 
failure occurs was not confirmed. This finding contradicts many earlier studies10,11,24–26 where technical systems 
(i.e., automated support agents) were subject of higher performance expectations and trust. In contrast to human 
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interaction partners in earlier studies, our human support was characterized as a subject matter expert. Human 
support by an expert is of course much more realistic than support by a novice. Note that it is impossible to know 
to which degree participants believed the experimental manipulation—a limitation which is shared with earlier 
research10,11,24–26.

We assumed that users attribute more responsibility to an AI due to its autonomous learning processes. How-
ever, this was not the case. Specifically, more responsibility was attributed to the human ( M = 5.08 ) compared 
to the AI ( M = 3.66 , p < 0.001 ) and the DSS ( M = 3.40 , p < 0.001 ), F(2, 275) = 23.767, p < 0.001 , η2G = 0.147 . 
Against the background that humans are always held legally liable for the final decision, and the fact that it is 
virtually impossible to assign legal responsibility to computer code, it seems plausible that more responsibility is 
attributed to humans. However, it is worth noting that AI is not given more responsibility than DSS—irrespec-
tive of AI’s self-learning nature.

When changing the perspective to being assessed, the result pattern also changed. Even though it is in line 
with our a priori assumptions, the fact that participants were more willing to be assessed exclusively by either an 
AI ( M = 3.68 , p = 0.004 ) or a DSS ( M = 3.93 , p < 0.001 ) compared to a human ( M = 2.79 ), F(2, 275) = 8.836, 
p < 0.001 , η2G = 0.060 , contradicts the results mentioned above. Perhaps, a reason why the change of perspec-
tive went along with a change of preference was that when oneself is being assessed, one wants to be assessed as 
fairly and with as little personal bias as possible. A presumed major advantage of technical systems compared to 
humans is their objectivity and consistency27–29. This might have led participants to prefer the technical systems 
for their own assessment. As expected, participants were more willing to be assessed by a correct ( M = 3.68 ) 
compared to a faulty ( M = 3.24 ) system, F(1, 275) = 3.908, p = 0.049 , η2G = 0.014.

We contemplated whether the results (i.e., a general preference for humans over technical systems, except 
when being assessed oneself) might be related to the specific task context we used. In contrast to our experiment, 
previous research mostly used visual detection tasks, so perhaps the type of task (i.e., more verbalized, language-
based task in Experiment 1) made a difference here. In order to clarify whether the results were due to the task 
context, we used an image classification task in Experiment 2. The personal context of personas was held constant 
to enable comparability between the experiments and only the type of task was changed.
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Figure 1.   Means and standard errors for (A) perceived reliability, (B) trust, (C) responsibility, and (D) the 
willingness to be assessed by the respective agent as a function of support agent (i.e., AI, DSS, human) and 
failure condition (i.e., failure vs. all-correct), separately for three experiments with different task contexts 
(Experiment 1: loan assignment, Experiment 2: X-Ray assessment, Experiment 3: chemical plant). AI = artificial 
intelligence, DSS = decision support system.
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Experiment 2: X‑Ray assessment.  The task was changed to an X-Ray setting were participants had to 
estimate the amount of malignant cells in simulated X-Ray scans.

The X-Ray assessment task revealed the same pattern of results as the loan assessment task. First, and in 
line with the theoretical predictions, failure experience led to decreased agreement with the recommendations, 
F(1, 262) = 13.400, p < 0.001 , η2G = 0.049 , perceived reliability, F(1, 262) = 5.888, p = 0.016 , η2G = 0.022 , trust 
F(1, 262) = 6.621, p = 0.011 , η2G = 0.025 , and willingness to be assessed, F(1, 262) = 6.939, p = 0.009 , η2G = 0.026 . 
Again, participants interacting with different support agents did not differ in their forgiveness towards failures 
of the respective agent.

Second, the overall level of perceived reliability was again significantly ( t(267) = 15.57, p < 0.001 ) lower 
(77.04%) than the true experienced reliability of the support. Keep in mind here that the true reliability was 
either 90% (failure condition) or even 100%. This is particularly surprising for the technical systems, as the task 
(i.e., image processing) was well-suited for automated analysis. This gap between perceived and actual reliability 
of technical systems might be a reason why human technology interaction cannot realize its symbiotic potential 
and partially explain that often times, human-technology joint performance is worse than what the technol-
ogy can achieve by itself30–33. Third, despite the fit of task characteristics and technical agents, and against the 
predictions from the perfect automation schema, participants trusted the human ( M = 82.60 ) more than both 
the AI ( M = 65.74 , p < 0.001 ) and the DSS ( M = 69.57 , p < 0.001 ), F(2, 262) = 17.408, p < 0.001 , η2G = 0.117 . 
Moreover, in line with the results of Experiment 1, more responsibility was attributed to the human ( M = 5.07 ) 
compared to the AI ( M = 2.68 , p < 0.001 ) and the DSS ( M = 2.99 , p < 0.001 ), F(2, 262) = 49.254, p < 0.001 , 
η2G = .273.

Finally, the change of perspective led to a reversal of the support preference F(2, 262) = 4.911, p = 0.008 , 
η2G = 0.036 . Participants were more willing to be assessed exclusively by a DSS ( M = 3.10 ) compared to a human 
( M = 2.19 , p = 0.009 ). Descriptively, the willingness of exclusive evaluation by a DSS was higher than by an AI 
( M = 2.35 , p = 0.054 ), whereas no difference was found between the AI and the human ( p > 0.999 ). As in the 
case of loan assignment, technological judgment (i.e., DSS) was preferred over human judgment.

Again, despite using a task which resembled classical detection tasks, we did not find evidence for a preference 
for technical systems from the perspective of (artificial) colleagues. Perhaps, one possible reason for this might 
be that we again used personas with personal information shown along with the X-Ray images. Specifically, 
participants might have felt that support from another human is best-fitting in this personalized setting, despite 
the task characteristics itself (i.e., detection/scanning task). Thus, we conducted Experiment 3 in a task context 
which did not include any personal information at all.

Experiment 3: chemical plant.  In our third experiment, we used a simulated chemical plant task (i.e., 
estimation of container reactivity) to again study a visual detection task but without any personalized informa-
tion.

Failure experience negatively influenced all relevant outcome variables (all p < 0.016). Overall perceived reli-
ability was again quite low (74.64%) when considering the highly reliably support. It also significantly differed 
from the true reliability ( t(273) = 15.96, p < 0.001 ). This underestimation—and a possibly resulting disuse—can 
have negative consequences in all presented domains including financial, medical, and public safety-critical deci-
sions. Once more, participants trusted the human ( M = 78.75 ) more than the AI ( M = 66.75 , p < 0.001 ) as well 
as the DSS ( M = 67.13 , p < 0.001 ), whereas no trust difference between both technical systems was found ( p 
> 0.999 ), F(2, 268) = 8.953, p < 0.001 , η2G = 0.063 . Consistent with both other experiments, and quite contrary 
to our expectations, the present findings could well be coined as an imperfect automation schema. Furthermore, 
the human ( M = 4.42 ) was perceived as more responsible than the AI ( M = 2.81 , p < 0.001 ) and the DSS 
( M = 2.80 , p < 0.001 ), F(2, 268) = 25.377, p < 0.001 , η2G = 0.159.

When asking the participants to change the perspective to being the one assessed, in this experiment, we 
asked participants to imagine living close to a permanent container storage which will open soon, as oneself being 
evaluated directly is not possible within this scenario. Regardless, the pattern of results was quite similar to that 
obtained in the previous two experiments. Here, participants were more willing to be judged exclusively by an AI 
( M = 3.30 ) than by a human ( M = 2.35 , p = 0.006 ), F(2, 268) = 5.059, p = 0.007 , η2G = 0.036 . The willingness 
to be judged by a DSS ( M = 3.03 ) did not differ from either other support agent (p > 0.108).

Between‑experiment comparison.  Although a consistent pattern of results emerged throughout all 
three experiments, the level of ratings seem to differ between the different tasks. For this reason, we conducted a 
between-experiment comparison to investigate the still under-researched field of contextual influences (Experi-
ment  1: complex categorization with personal information, Experiment  2: classical detection task with per-
sonal information, Experiment 3: classical detection task without personal information) and included the factor 
experiment as an additional factor in the ANOVA along with support agent and failure experience, resulting in 
a 3 (task context) x 3 (support agent) x 2 (failure experience) ANOVA. As the deviation of system recommenda-
tion is not comparable across contexts, we limited the analysis to the remaining key variables.

Participants perceived the support as more reliable in the loan assignment task ( M = 84.66 ) compared to 
both detection tasks—the X-Ray assessment ( M = 77.04 , p < 0.001 ) and chemical plant task ( M = 74.64 , p 
< 0.001 ), F(2, 805) = 27.976, p < 0.001 , η2G = 0.065 . This is surprising as technical systems such as AI and DSS 
seem particularly well-suited for signal detection tasks (cancer detection, image analysis) rather than complex 
decision tasks with personal information (loan assignment)3,22,23. However, participants might not have con-
sidered the task-fit of technical systems but rather considered their own perceived task difficulty when judging 
perceived reliability.
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Irrespective of task characteristics, the situational risk is likely a key contributing factor to these context differ-
ences. Specifically, an event that involves financial matters is perceived as less risky than an event involving health 
concerns34 or public safety concerns. Moreover, the failure effect was also less pronounced in the loan decision 
task for perceived reliability, F(2, 805) = 3.172, p = 0.042 , η2G = 0.008 . This further supports the assumption that 
the expected consequences of failures had an influence.

Participants trusted the support more when working together on the loan assignment task ( M = 79.72 ) 
compared to both the X-Ray assessment ( M = 72.67 , p < 0.001 ) and the chemical plant task ( M = 70.91 , p 
< 0.001 ), F(2, 805) = 17.737, p < 0.001 , η2G = 0.042 . This makes sense as there is usually a close link between 
trust and perceived reliability, however, it is still interesting to see that in the image processing tasks, regardless 
of personal information, trust towards any agent is generally lower. In addition and in line with reliability, the 
negative effect of failure experience was present in the X-Ray assessment ( p = 0.008 ) and chemical plant task ( p 
< 0.001 ), but not in the loan assignment task ( p = 0.118 ), F(2, 805) = 3.223, p = 0.040 , η2G = 0.008 . The results 
of responsibility aligns well with the findings obtained for perceived reliability and trust. That is, participants 
ascribed more responsibility to the respective support in the loan assignment task ( M = 4.03 ) compared to the 
X-Ray assessment ( M = 3.59 , p = 0.006 ) and the chemical plant task ( M = 3.35 , p < 0.001 ), F(2, 805) = 11.636, 
p < 0.001 , η2G = 0.028.

Finally, the willingness to be assessed also changed with task context, F(2, 805) = 17.751, p < 0.001 , 
η2G = 0.042 . In line with the other context effects, participants were more willing to be assessed themselves in 
the loan assignment task ( M = 3.48 ) than in the X-Ray assessment ( M = 2.53 , p < 0.001 ) and chemical plant 
task ( M = 2.89 , p < 0.001 ), no difference was found between the X-Ray assessment and chemical plant task ( p 
= 0.112 ). This might perhaps be related to the fact that even though a wrong evaluation in a loan decision context 
is highly displeasing, it is not as life-threatening as a wrong evaluation of an x-ray scan or reactive containers 
stored close to your home.

Taken together, a consistent picture emerged, showing that the support in the loan decision task was not only 
perceived as more reliable, trustworthy, and responsible, but also preferred for the judgment of oneself compared 
to both detection tasks. Notably, no differences occurred between the X-Ray and chemical plant task contexts 
which were similar in the task characteristics but dissimilar in their degree of personalization. Thus, the type 
of task (and potentially, its perceived risk) and not the degree of personalization seems to make a difference. 
Moreover, the results might also be associated with the perceived difficulty and comprehensibility of the task 
on the part of the participant. In comparison to the mathematically deterministic demands of the X-Ray and 
chemical plant task, the more natural language-based decision-making process in the loan assessment task might 
be viewed as easier for the participants23,35. Despite the consistency of the findings, they still have to be taken 
with a grain of salt, as the interaction with the respective agent was limited to a rather short online experiment. 
Moreover, as the a priori sample size was determined on a single-experiment basis, the between-experiment 
comparison of the different contexts was likely over-powered. This is particularly relevant for the interaction 
effects, which were rather small, and therefore should be interpreted with caution. However, for the main effects, 
given that the effect sizes were mostly medium, the majority of the main effects of context would have also been 
obtainable with a smaller sample size. Regardless, the present results can still be an interesting starting point for 
future research and illustrate the need to consider multiple contexts and perspectives. Specifically, future research 
needs to corroborate the present results with longer human-agent interaction and ideally even real systems, given 
that the interaction in our experiments was quite short.

Discussion
In direct contrast to the widely held assumption of a perfect automation schema in human-automation interac-
tion, the findings hint in the opposite direction, i.e., to an imperfect automation schema. Moreover, the results 
suggest that this holds true for both classical automation and novel technological advancements like AI. It seems 
peculiar that there were virtually no differences between the two types of technological systems. One might 
wonder whether both systems are generally just not perceived differently from the general public. Specifically, 
both types of systems share some key commonalities which might be much more salient than how a technical 
system makes its decision—likely, both AI and DSS might be viewed as an opaque black box. Nonetheless, this 
assumption needs to be further corroborated in future online and offline research. If future research further 
confirms the present indifference between the perception of AI and DSS, then anyone working on future imple-
mentations of AI into virtually any field can learn from the many earlier findings18,36 and theoretical models8,9,37 
of human-automation interaction.

The most puzzling finding obtained consistently through three experiments was that when asking partici-
pants to change the perspective from an advice-taker to the person being assessed, the preference for humans 
over technical systems reversed. Perhaps, when working together, factors like a broad subject matter expertise 
and intuitiveness might be more relevant10. In contrast, when being assessed, these factors might not be as rel-
evant—tools tailored to a specific sub-task, their case-by-case performance, and lack of personal biases might 
determine the willingness to be assessed by machine intelligence. Specifically, a presumed major advantage of 
technical systems compared to humans is their objectivity and consistency27–29. A common fear when being 
judged by a technical system is reductionism of the algorithm, i.e., that unique individual factors might not be 
considered38,39. However, this reductionism is also what makes technical systems less biased than humans29 and 
might also be perceived as a strength when being assessed oneself. This finding should serve as food for thought, 
as new technological advancements require both more and more workers to collaborate with artificial colleagues 
as well as more and more persons being exposed to artificial assessors.
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Method
All experiments were preregistered via the OSF. Experiments were approved by the ethics committee at the 
Department of Psychology and Ergonomics, Technische Universität Berlin. All research was performed in accord-
ance with relevant guidelines/regulations and with the Declaration of Helsinki. Participants gave their informed 
consent prior to participation.

Participants.  The experimental data was collected sequentially and participants were only allowed to partic-
ipate in one of the experiments. All participants were recruited within a six-month time frame between Novem-
ber 2020 and April 2021. The same criteria of participant selection were used for all three experiments. This 
procedure and the close spacing of data collection in time should ensure that the samples recruited for each data 
collection were drawn from the same population. Altogether, we recruited 352 participants in Experiment 1, 348 
in Experiment 2, and 334 in Experiment 3. After applying an attention check, this resulted in 300 participants 
in each experiment, who were randomly assigned to one of the six experimental conditions in equal numbers. 
A sample size of 300 participants per experiment was targeted to obtain close to .90 power to detect a small to 
medium effect size of .20 at the standard .05 alpha error probability. Moreover, we also performed a manipula-
tion check in the failure condition (i.e., excluding all participants who exactly followed the obviously incorrect 
advice) which led to an additional exclusion of 19 participants in Experiment 1, 32 participants in Experiment 2, 
26 participants in Experiment 3. This additional check was done because it is impossible to separate a lack of 
attention from overtrust in this experiment. Each experiment took about 10 minutes in total and participants 
were reimbursed 1.40£.

In Experiment 1, the final sample consisted of 281 (mean age = 33.48, SD = 5.59, 42% female) participants. 
The participants in each condition did not differ in their disposition to trust technology (p = 0.989). In Experi-
ment 2, the sample consisted of 268 participants (mean age = 33.35, SD = 6.24, 49% female) and there were no 
differences for the control variable disposition to trust technology between experimental groups (p = 0.662). 
In Experiment 3, the final sample contained 274 participants (mean age = 33.33, SD = 4.94, 35% female) with 
again no differences in the control variable disposition to trust technology between the experimental conditions 
(p = 0.252).

Procedure.  All experiments were programmed in jspsych40 and run on a jatos server41. In all three experi-
ments, participants gave their informed consent and were briefed about the general aim of the study. Subse-
quently, the experiments started with a general introduction to the task. Then, participants were shown three 
written examples of previous scenarios, together with the decision made at that time including feedback about 
how the decisions later turned out (decisions were always correct in the examples). The interface used to display 
the examples was the same as used later in the experiment when the participants had to make their own deci-
sions in interaction with the support agent (despite the feedback on the correctness).

After these example scenarios, participants were informed that for their own decisions, they would be sup-
ported by either an AI, a DSS, or an experienced colleague. They were told that the respective agent took in all 
the information provided in the examples they saw earlier along with some additional information. In addition, 
some further information about their support agent was provided. Specifically, in the AI condition, participants 
were informed that the AI was an innovative technology which made its decisions based on deep neural networks 
and learned parameters. In the DSS condition, the DSS was framed as a well-established decision support system 
based on prior loan data which made its decisions based on predefined parameters and a fixed algorithm. In the 
human condition, the colleague was framed as a colleague with considerable experience with many previous 
cases and knowledgeable to decide which parameters one needs to pay attention to. Independent of the kind of 
support, all participant were informed that their support agent was more than 90% reliable and that decisions 
in the respective scenario were nowadays widely made with support of the respective support agent. After this 
framing information, two attention check questions were asked. They included two questions in order to check 
whether participants had correctly understood the specific definition of their condition. The first one was related 
to what type of support agent were giving the recommendations to the participant. The second one related to 
the characteristic of the respective agent.

Subsequent to the attention check, participants received information on how the task would look like and 
were familiarized with the interface and its function. Then participants made their own decisions with support 
of their respective agent in ten trials of the respective task. In all experiments, the trial structure was as follows: 
for 5 seconds, participants were shown all information except the agent’s recommendation with the note that the 
support agent (i.e., AI, DSS, or human) were processing (AI and DSS) or evaluating (human) the information. 
After 5 seconds, participants were told to press the space-bar to continue if they were ready to see the recom-
mendation of the agent. Upon key press, the recommendation was shown with an input field at the bottom of 
the page for their final decision. Examples of the interfaces displaying the recommendation in the different 
experiments are shown in Fig. 2. After each trial, participants were asked to press the space-bar to continue to 
the next trial. In the failure condition, all recommendations except one recommendation were correct. That is, 
in trial 7, the support agent gave an obviously wrong recommendation. In the correct condition, all recommen-
dations were perfectly reliable. After all 10 trials, participants were asked to fill out a short questionnaire about 
their interaction experience.

The experiments differed with respect to the specific information provided as basis for the decision-making 
in the different scenarios, as well as the kind of recommendation provided by the support agent. Specifically, in 
Experiment 1, the task was to assess the creditworthiness of personas. The experiment started with a general 
introduction on loan assignment and what typical factors are considered by banks before making a loan deci-
sion (e.g., income, debts, etc.). Then participants worked on ten trials where fictional personas applied for loans. 
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Personas differed in their name, age, job, family status, outstanding debts, securities, and desired loan. Recom-
mendations from the respective agent for loan grants were color coded (i.e., green: fully, orange: partially, red: 
rejected). In trial 7 of the failure condition, the support agent recommended granting a full loan to a persona 
without a job and with lots of debt.

In Experiment 2, the task was to evaluate which percentage of simulated X-Rays were brighter than a given 
cutoff (brighter than gray-scale value of 150). We used simulated 1/f 3 noise as stimulus material as this resembles 
the power spectrum of real-world mammograms42. To enable participants performing this task, the experiment 
started with an introduction where they were first shown a gray-scale continuum, with the critical cutoff thresh-
old marked, along with an example image. Participants were instructed that parts brighter than this could possibly 
be malignant and that later on, they would be asked to estimate the percentage of potentially malignant tissue in 
X-Ray samples. They were also instructed that this cutoff was very cautious, and that there is typically no reason 
for concern at all if the percentage is lower than 15%. The hypothetical X-Ray scans were embedded in the same 
personas as in Experiment 1 in regard to their name, age, job, and family status. Again, recommendations were 
color coded (i.e., green: < 15% malignant, orange: > 15% < 50% malignant, red: > 50% malignant). In trial 7 of 
the failure condition, a bright image (59%) was evaluated to be okay (8% malignant).

The task in Experiment 3 was to estimate the percentage of potentially reactive particles of the fictional min-
eral Rorigium at a simulated chemical plant. Specifically, the task was to evaluate the percentage of orange pixels in 
images which had orange and blue pixels with a fixed proportion of orange pixels which varied from trial to trial. 
At the beginning of the experiment, participants were told that each image represented one chemical container 
of the fictional element Rorigium which was considered to be moved to a permanent storage (or needed further 
treatment prior to that). Participants were told that the higher the percentage of orange pixels, the more reactive 
the respective container. To keep Experiment 3 as parallel as possible to Experiment 2, participants were again 
told that if the percentage is below 15%, the containers can be safely stored. All percentages of orange pixels were 
the same as the percentages of pixels brighter than the cutoff in Experiment 2. In the examples and in the task 
itself, the personas used in the first two experiments were replaced with neutral information in order to remove 
any direct personal involvement from the decision-task (i.e., only a serial number of the container was shown 
above each image). Recommendations were again color-coded (i.e., green: < 15% reactive, yellow: > 15% < 50% 
reactive, red: > 50% reactive). In trial 7 of the failure condition, an orange-dominant image (59% orange pixels) 
was evaluated to be okay (8% orange pixels).

Design and dependent variables.  Each experiment consisted of a 2 (failure experience: one vs. none) × 3 
(interaction agent: AI vs. DSS vs. human) between-subjects design. The dependent measures were kept the same 
for all experiments. As an objective indicator of compliance with the recommendation, we measured the partici-
pants’ deviation of the recommendation by the respective agent during the ten trials. In the subsequent question-
naire we then asked participants to indicate how reliable they perceived their support agent to be (0-100%) to 
measure perceived reliability. Trust was also assessed via a single item: participants were asked how much they 
trusted their support agent (0 (not at all) to 100 (completely)).

As one reviewer noted, the validity of a single-item trust measure was unclear in an earlier version of this 
manuscript compared to better validated and widely used trust questionnaires. To address this, we replicated 
the agent-effects in the all-correct condition of Experiment 2 using both our single-item trust as well as the 
questionnaire by Jian and colleagues43 and counterbalanced the order of the single-item and the questionnaire. 

Figure 2.   Depiction of the second trial in the decision support system condition in the context loan assignment 
of Experiment 1 (A), the artificial intelligence condition in the context radiology of Experiment 2 (B), and the 
human condition in the chemical plant task context of Experiment 3 (C).
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We obtained the same results with both approaches (i.e., main effect of support agent with significant differ-
ences in follow-up Bonferroni-corrected pairwise tests for the human vs. DSS ( ps < 0.019 ) and the human vs. 
AI ( ps < 0.006 ) comparisons but not in the AI vs. DSS comparisons) and a high correlation between the two 
trust measures ( r = 0.841, p < 0.001 ). We are therefore confident that the single-item can capture similar effects 
on trust as one of the most widely used questionnaires in the field. Besides these global subjective judgments 
on reliability and trust, participants also rated the perceived involvement of the support agent in the decision 
via an adopted version of the causal attribution scale44. Here, the last item was used to measure responsibility of 
the respective agent. More precisely, participants were asked to rate if the respective agent took responsibility 
for its actions on a seven-point Likert scale from strongly disagree to strongly agree. In addition, the participants 
were asked to change their perspective from collaboration to being assessed oneself. Specifically, they were asked 
whether they themselves would like to be judged exclusively by such type of system. This was assessed on a 
seven-point Likert scale from definitely not to definitely to measure the willingness to be assessed oneself. Note that 
this question involved the change of perspective from being a user of the respective support agent to becoming 
dependent on it as the person affected by its decision.

To prevent confounding effects of participants’ attitudes towards technology the disposition to trust 
technology45 was measured as a control variable at the end of the experiment. The questionnaire45 consisted of 
three items considering the general trust towards new information technologies (e.g., “I usually trust in informa-
tion technology until it gives me a reason not to.”), which were rated on a seven-point Likert scale from strongly 
disagree to strongly agree.

Some additional outcomes were measured but were not reported here for conciseness (please refer to the 
OSF for the full data). These outcomes included two questions on perceived usefulness and the first three items 
of the causal attribution scale44.

Statistics.  The data of the three experiments was analyzed in two stages. First, analyses were conducted on 
the level of the individual experiments. Therefore, the control variable disposition to trust technology was com-
pared between all six experimental conditions for each experiment via a one-way between-subjects ANOVA to 
check for intergroup differences. Furthermore, for all outcome variables of the respective experiment two-way 
between-subjects ANOVAs were conducted to investigate main effects of failure experience (i.e., failure experi-
ence vs. all-correct suggestions) and support agent (i.e., AI vs. DSS vs. human), as well as the interaction effect 
of both factors. Second, the between-experiments comparison was performed via three-way (i.e., context, sup-
port agent, failure experience) between-subjects ANOVAs to examine the main effect of the interaction context 
and possible interactions of this factor with failure experience and support agent. For all analyses, conventional 
values including F statistic, p-values and generalized eta-square are reported. In addition, for all intra- and 
inter-experimental analyses in which either a significant interaction effect or main effect of a three-level factor 
occurred, Bonferroni-corrected post-hoc test were conducted.

Data availability
Raw data, analysis scripts, and experiment files can be obtained via the Open Science Framework at https://​osf.​
io/​c5tsj/. All experiments were preregistered (Experiment 1: https://​osf.​io/​kbfvn, Experiment 2: https://​osf.​io/​
eyf8m, Experiment 3: https://​osf.​io/​pxq4k, comparison between experiments: https://​osf.​io/​y7fpw).
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