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Abstract: Magnetic sensors actuated by bulk acoustic wave (BAW) have attracted extensive attention
due to the fact of their high sensitivity, GHz-level high frequency, and small size. Different from
previous studies, suppression of energy loss and improvement in energy conversion efficiency of the
BAW magnetoelectric (ME) sensor were systematically considered during the device design in this
work. Finite element analysis models of material (magnetic composite), structure (ME heterostruc-
ture), and device (BAW ME magnetic sensor) were established and analyzed in COMSOL software.
Additionally, the magnetic composite was prepared by radio frequency magnetron sputtering, and its
soft magnetism was characterized by magnetic hysteresis loop and surface roughness. The research
results demonstrate that after inserting four layers of 5 nm Al2O3 films, a performance of 86.7%
eddy current loss suppression rate, a less than 1.1% magnetostriction degradation rate, and better
soft magnetism were achieved in 600 nm FeGaB. Furthermore, compared with other structures,
the two-layer piezomagnetic/piezoelectric heterostructure had a better ME coupling performance.
Eventually, the design of the BAW ME magnetic sensor was optimized by the resonance-enhanced
ME coupling to match the resonance frequency between the magnetic composite and the BAW
resonator. When a 54,500 A/m direct current bias magnetic field was applied, the sensor worked
at the first-order resonance frequency and showed good performance. Its linearity was better than
1.30%, the sensitivity was as high as 2.33 µmV/A, and the measurement range covered 0–5000 A/m.

Keywords: magnetic sensor; bulk acoustic wave; magnetic composite; ME heterostructure; resonance
enhanced; magnetoelectric coupling

1. Introduction

Strong strain-mediated magnetoelectric (ME) coupling in magnetic/electric heterostruc-
tures have demonstrated good energy conversion between magnetic and electric fields. It
shows great potential for practical devices such as sensors and tunable radio-frequency
(RF)/microwave devices. The ME coupling effect is derived from the piezoelectric effect of
the piezoelectric phase and the magnetostrictive effect of the piezomagnetic phase [1,2].
Generally, there are two types of ME heterostructures: bulk ME composites and thin-film
ME heterostructures. Over the last two decades, many magnetic sensors with bulk ME
composites have been reported; however, the device size was at the cm level or larger
and difficult to reduce in size [3–5]. Compared to the bulk composites, micro-magnetic
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sensors based on thin-film ME heterostructures driven by acoustic waves have become a
hot topic for their advantages of miniaturization, excellent elastic interactions, low cost,
and the potential capability to integrate with conventional complementary metal oxide
semiconductor (CMOS) technology [6–9]. Two types of magnetic sensors actuated by
acoustic waves have been demonstrated: surface acoustic waves (SAWs) and bulk acoustic
waves (BAWs). The sensor based on the SAW type is limited to working in the low- and
medium-frequency band of kHz or measuring static/quasi-static magnetic field signals,
although its static sensitivity is pretty high [10–15]. Whereas the sensor based on BAW
excitation has attracted tremendous attention in recent years because of its high-frequency
characteristics, high power capacity, and high energy conversion efficiency. The mechanism
of the BAW ME magnetic sensor is shown in Figure 1; when the external RF magnetic
field acts on the magnetostrictive material, strain occurs due to the magnetostrictive effect.
Furthermore, because of the ME coupling between the piezomagnetic and piezoelectric
phase, the strain transmitted to the piezoelectric material induces the longitudinal piezo-
electric effect, resulting in positive and negative opposite charges on the opposite surface
of the piezoelectric material, which are output by the electrode as a voltage. Especially, the
ME coupling between the two types of films via elastic interaction becomes maximum at
the mechanical resonant frequency of the heterostructures. Such resonance enhanced ME
coupling greatly benefits the performance of the BAW ME magnetic sensor.
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Figure 1. Mechanism of the BAW ME magnetic sensor and the optimizing method of the sensor’s
performance by fine-tuning the design of the material, structure, and device to improve the energy
coupling efficiency and decrease the energy loss.

Much effort has been focused on the experimental and theoretical investigations of the
BAW ME magnetic sensors. Hui et al. reported a MEMS resonant magnetic field sensor
based on an AlN/FeGaB bilayer nano-plate resonator [16], ME coupling by depositing a
composite ME heterostructure of a monolayer AlN/10 layers FeGaB/Al2O3 on an AlN
CMR, and a ME structure based on nano-plate resonators was reported by Nan et al., which
had good magnetic resolution [17,18]. Simultaneously, some works through modeling and
simulation methods are also demonstrated. Wu et al. reported a flexible magnetic sensor
based on a BAW resonator, the equivalent Mason model of the sensor circuit was established,
and its sensitivity was improved by selecting the electrode of giant magnetostrictive
material with a large frequency offset [19]. Martos et al. proposed a circuit simulation
model of a novel miniaturized magnetoelectric antenna which is applied in low-power
sensing [20]. However, there is little systematic research on the material, structure, and
device simulation and performance optimization of the micro-magnetic sensor based on
BAW actuation yet [21–23].

In order to design and optimize the BAW ME magnetic sensor, as shown in Figure 1,
this paper proposes a method to decrease the eddy current loss of the magnetic composite
and improve the energy coupling of different layers in the device by finite element analysis
(FEA) simulation and experiments. Additionally, models of material (magnetic composite),
structure (ME heterostructure), and device (BAW ME magnetic sensor) were established
and analyzed. Meanwhile, the magnetic composite was prepared by the RF magnetron
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sputtering method and characterized to optimize its soft magnetism. Eventually, the design
of a BAW ME magnetic sensor with higher sensitivity and better linearity can be achieved.

2. Materials and Methods

As shown in Figure 2a, a 3D simulation model of the magnetostrictive layer (Fe-
GaB) was built in COMSOL Multiphysics software, and parameters of the films were
referenced from data from Northeastern University. A magnetic field, Hy, and an electric
field, Ex, were applied to the magnetostrictive layer in an air-filled cavity to generate
high-frequency dynamic magnetic flux, which induced eddy current loops and magne-
tostriction in Figure 2a(i). The alumina films with different thickness (0~100 nm) and layers
(0~10 pieces) were uniformly inserted into the magnetostrictive layer to form a magnetic
composite in Figure 2a(ii), which induced a dramatic decrease in the eddy current density
and somehow degradation of the magnetostriction in Figure 2a(iii) [24,25]. Furthermore,
the thickness of the composite film was optimized in the range of 0~3000 nm. In order to
characterize the soft magnetism of the magnetic composite, FeGaB (600 nm) and (FeGaB
(120 nm)/Al2O3 (5 nm))4/FeGaB (120 nm) were layer by layer deposited on the SiO2
substrates with 100 Oe bias field by an RF magnetron sputtering tool at the frequency of
13.56 MHz, there was no vacuum broken between the FeGaB and Al2O3 deposition. The
sputtering power was RF 80 W for FeGaB and RF 90 W for Al2O3, while the sputtering
pressure and base pressure were 0.7 and 4 × 10−4 Pa, respectively. The cross-section and
diffraction pattern were characterized by TEM (transmission electron microscope) and EDX
(energy-dispersive X-ray spectroscopy). Magnetic hysteresis loops and surface roughness
were tested by VSM (vibrating sample magnetometer) and AFM (atomic force microscope),
respectively. Furthermore, the permeability of the magnetic composite was measured by
ESR (electron spin resonance).
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Figure 2. FEA models in COMSOL software. (a) Material: the magnetic composite, (i) a 3D model
in an air-filled cavity for eddy current and magnetostriction simulation; (ii) magnetic composite—
FeGaB inserted by alumina layers; (iii) suppression of eddy current loss—eddy current loops isolated
by uniformly laminated alumina in FeGaB. (b) Structure: ME coupling effect of the piezomag-
netic/piezoelectric heterostructure. (c) Device: resonance frequency matching between the FMR of
the magnetic composite and the resonance frequency of the BAW resonator.
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As shown in Figure 2b, the structure based on the 2–5 layer ME heterostructure was
simulated in the COMSOL Multiphysics software [6]. The FEA models of the ME het-
erostructure, including the piezomagnetic phase, piezoelectric phase, and air domain, were
constructed by coupling the magnetic field, solid mechanics module, and electrostatic
module in the 3D geometric model. The strain, ME coefficient, and voltage were sim-
ulated and compared under the conditions of DC bias to optimize the structure of the
ME heterostructure.

As shown in Figure 2c, based on the optimization result of the material and structure,
an FEA model of the magnetic sensor was constructed to analyze resonance enhanced ME
coupling between ferromagnetic resonance (FMR) of the magnetic composite and resonance
frequency of the resonator by fine-tuning the device size. Eventually, the design of the
BAW ME magnetic sensor was finalized, and the sensitivity, linearity, and full scope of the
sensor were optimized.

3. Results and Discussion
3.1. Material Design: Magnetic Composite
3.1.1. Eddy Current Loss

As shown in Figure 3a, the suppression rate of the ECL increased sharply with the
increase in Al2O3 thickness; then, it reached its saturation value at a thickness of 10 nm. In
particular, at a thickness of 5 nm, the suppression rate reached 98.5% of the saturation value,
but its overall suppression value was not higher than 66.8%. Therefore, the effective ECL
suppression could not be achieved yet just by increasing the thickness of the Al2O3 film. At
the same time, the degradation rate of the strain tensor kept increasing almost linearly with
the increase in the thickness of the Al2O3 film. After inserting a single 5 nm Al2O3 film,
the degradation rate of strain tensor could be controlled within 1.6% and obtained a 66.8%
saturated suppression rate of ECL.
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Figure 3. Suppression of the eddy current loss and degradation of magnetostriction by inserting an
alumina insulation layer into the FeGaB: (a) the thickness effect of the single-layer alumina; (b) the
layer number effect of the inserted 5 nm alumina; (c) the thickness effect of the magnetic composite.

Multi-layer Al2O3 films were inserted into the magnetic material, and a significant
improvement in the suppression rate can be observed in Figure 3b. The increasing rate of
ECL suppression gradually slowed down and then reached the maximum of 95.6%. To
insert multi-layer Al2O3 with a thickness of 5 nm, a higher suppression rate of over 90% can
be achieved, because the inserted insulation film can separate the eddy current loop into
several weaker ones by limiting the eddy current within a narrower space. Simultaneously,
the magnetostriction degradation rate of the magnetic film increased slowly with the
increase in the number of layers. It was less than 1.8% with 1~4 layers of inserted Al2O3 film;
then, it increased near-linearly beyond four layers, reaching 7.8% for 10 layers. Therefore,
with a trade-off between magnetostriction and ECL suppression, inserting four layers of
5 nm Al2O3 films into 1000 nm FeGaB film, the degradation rate of the magnetostriction
was less than 1.8%, and the ECL suppression reached more than 85.1%.
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As shown in Figure 3c, with the increase in composite thickness, the suppression rate
changed into the shape of a “rainbow”, which is supposed to be caused by the interaction
of the isolation effect and size effect. These two effects alternately dominate before and after
the thickness of 800 nm, respectively. Moreover, less degradation of magnetostriction for
thicker magnetic composites, especially at an ultralow 1.1% magnetostriction degradation
and 86.7% ECL suppression of the composites, was found at a thickness of 600 nm, which
may be enhanced by well magnetic coupling between two laminated magnetostrictive
layers after introducing a certain number of interfaces.

3.1.2. Soft Magnetism

As depicted in Figure 4a, the magnetic composite showed an amorphous state by the
cross-section and diffraction pattern, which can effectively suppress the crystallization and
grain growth of the film. Therefore, the soft magnetism of the composite can be enhanced
by decreasing the magnetocrystalline anisotropy and raising the inter-grain exchanging
coupling [25]. In Figure 4b,c, the magnetic hysteresis loops and surface roughness were
measured to compare the soft magnetism between the FeGaB film and the composite,
and a 98.9% and 35.2% decrease in the coercivity and surface roughness, respectively,
were achieved after inserting the four-layer alumina into the FeGaB film. Magnetostatic
interaction and surface roughness were also considered to play positive roles in improving
soft magnetic properties.
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Figure 4. Soft magnetism of the magnetic composite: (a) the cross-section and diffraction pattern of
(FeGaB (120 nm)/Al2O3 (5 nm))4/FeGaB (120 nm) by TEM and a comparison of the soft magnetism
between (b) FeGaB and (c) (FeGaB (120 nm)/Al2O3 (5 nm))4/FeGaB (120 nm) through a magnetic
hysteresis loop by VSM and surface roughness by AFM.

3.2. Structure Design: ME Heterostructure

Under different bias magnetic fields, the energy coupling of the ME heterostructure
was analyzed through the energy conversion of the magneto–electro–mechanical. Its
coupling generated an induced charge on the surface of the piezoelectric layer, resulting in
an induced voltage. Therefore, the structure of the sensor can be optimized by comparing
the strain, ME coefficient, and the output voltage of the ME heterostructures in different
layers. The strain and ME coefficient, αME, are the most important parameters to evaluate
the coupling performance of the ME heterostructure. Their calculation formulas are as
following equations [26]:

SH =
1
2
[(∇u)T +∇u] (1)

αME =
∂Ez

∂Hbias
=

∂Ez

∂Hy
(2)

As shown in Equation (1), SH, T, and u are the strain tensor, stress tensor, and displace-
ment of the magnetostrictive layer, respectively. The strain of the magnetostrictive layer
varies with its displacement gradient. Therefore, the ME coupling effect of the piezomag-
netic/piezoelectric heterostructure is mediated by strain or mechanical energy. As shown
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in Equation (2), Ez is the electric field added along the z-direction, and the DC bias, Hbias,
is the magnetic field added along the y-direction, Hy. The ME coefficient can be used to
characterize the ME coupling efficiency of heterostructures.

As shown in Figure 5a, the strain in the two-layer structure was the largest. This is
because the strain of the magnetostrictive layer was affected by the displacement gradient
(Equation (1)), and its strain change law was consistent with that of the displacement
gradient. Furthermore, the variation law of the ME coefficient was analyzed under the
bias magnetic field (0~500 Oe) (Equation (2)). The ME coefficient firstly increased and then
decreased with the addition of the bias magnetic field. The two-layer ME heterostructure
with the highest ME coefficient had the highest sensitivity, which also means the best
magnetoelectric conversion efficiency and the largest output voltage. As shown in Figure 5c,
the output voltage value of the two-layer structure was the largest one, too. Therefore, the
structure based on the two-layer ME heterostructure can achieve the best energy coupling.
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Figure 5. With the increase in the bias DC magnetic field: (a) the variation curve of the strain,
(b) the variation curve of the ME coefficient, and (c) the output voltage of the ME heterostructures in
different layers.

In summary, the result demonstrates a two-layer structure for improving the sensitivity
of the magnetic sensor by optimizing its strain, ME coefficient, and the output voltage of
the ME heterostructure layers.

3.3. Device Design: BAW Magnetic Sensor

The permeability of the magnetic composite is shown in Figure 6a, and its resonance
frequency was 1.51 GHz. In order to obtain the highest output voltage by resonance
enhanced ME coupling, the BAW ME magnetic sensor should work at the same reso-
nance frequency [27]. Therefore, the device size, including the thickness of the piezoelec-
tric/magnetic layer and the electrode, needs to be optimized to match the FMR of the mag-
netic composite and the resonance frequency of the BAW resonator. Figure 6b,c show that
the resonance frequency of the sensor can be fine-tuned by adjusting the thickness of the ME
heterostructure and the electrode. As shown in Figure 6d, the resonance frequency matched
well between the BAW resonator (2.65 GHz) and films (piezoelectric 600 nm/magnetic
600 nm; Mo electrode 200 nm) by considering the mass load effect. The first-order and
second-order resonance frequencies of the sensor were 1.51 and 3.60 GHz, respectively.

3.4. Performance Analysis

As shown in Figure 7a, the design of the BAW ME magnetic sensor was optimized,
including the magnetic composite (FeGaB with a four-layer alumina uniformly inserted;
TA was 5 nm), the structure (two-layer piezomagnetic/piezoelectric heterostructure; h was
600 nm), and the electrode (δ was 200 nm). In order to evaluate the performances of the
magnetic sensor, different DC biases magnetic fields (20,000–80,000 A/m) were applied
to characterize the output voltage and ME coefficients (Figure 7b). The output voltage
at the resonance frequency was significantly higher than that of others; additionally, the
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maximum output voltage at the first-order resonance frequency was larger than that of the
second-order one.
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Figure 6. Design of the magnetic sensor by resonance enhanced ME coupling: (a) permeability of the
FeGaB/Al2O3 composite by ESR and the FMR matching by changing the thickness of (b) the piezo-
magnetic/piezoelectric heterostructure and (c) the electrode; (d) after matching the frequency, the
admittance curve of the two-layer device was obtained by applying an AC voltage to the piezoelectric
layer of the ME heterostructure without a bias magnetic field.

The sensitivity and linearity were the most important parameters to evaluate the BAW
ME magnetic sensor. Their calculation formulas are shown in the following equations:

S =
∂V

∂Hy
=

∂Ez

∂Hy
h (3)

αL =
∆Ymax

YFS
× 100% (4)

As shown in Equation (3), S, V, and h are the sensitivity, output voltage, and thickness
of the piezoelectric phase, respectively. It was found that the sensitivity of the sensor was
dependent on the ME coupling of piezomagnetic/piezoelectric heterostructure, αME, and
thickness of piezoelectric phase, h. In order to obtain good ME coupling, it can thus be seen
that it is extremely necessary to improve energy conversion efficiency and suppress eddy
current loss in the design of the BAW ME magnetic sensor. In Equation (4), aL, ∆Ymax, and
YFS are the linearity, the maximum deviation between the calibration curve and the fitting
line, and the output voltage difference over the full-scale range. Therefore, the linearity
of the sensor was directly related to a selection of the fitting line and a full-scale range. In
this work, the fitting line was obtained by the least squares method. In Figure 7c, it can
be found that the output voltage at the first-order resonance frequency increased to be
the highest and then decreased at the bias magnetic field of 60,000 A/m; meanwhile, the
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sensitivity at the DC bias magnetic field of 54,500 A/m was found to be the highest by the
differential analysis method of the V–H curve. As shown in Figure 7d, a high sensitivity
of 2.33 µmV/A, a good linearity better than 1.30%, and a wide measurement range of
0–5000 A/m could be achieved while the DC bias magnetic field applied on the sensor was
kept at 54,500 A/m.
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Figure 7. The performance of the BAW ME magnetic sensor: (a) the finalized design of the BAW ME
magnetic sensor; (b) the output voltage variation at the first-order and the second-order resonance
frequencies; (c) the output voltage and sensitivity at the first-order resonance frequency under
different DC bias magnetic fields; (d) the linearity and the measurement range with a DC bias of
54,500 A/m.

4. Conclusions

In this work, a method was proposed to design and optimize the BAW ME magnetic
sensor; especially, the energy loss suppression and the energy conversion efficiency im-
provement were systematically considered. FEA models of material (magnetic composite),
structure (ME heterostructure), and device (BAW ME magnetic sensor) were established
and analyzed in COMSOL software. Additionally, the magnetic composite was prepared by
RF magnetron sputtering, and its soft magnetism was characterized by magnetic hysteresis
loop and surface roughness.

After inserting four-layers of 5 nm Al2O3 films, the performance of an 86.7% eddy
current loss suppression rate, less 1.1% magnetostriction degradation rate, and smaller
coercivity and roughness were achieved for (FeGaB (120 nm)/Al2O3 (5 nm))4/FeGaB
(120 nm). Furthermore, the strain, ME coefficient, and output voltage of the heterostructure
were simulated and analyzed. Compared with other structures, the two-layer piezomag-
netic/piezoelectric heterostructure had a better ME coupling performance. Eventually,
the design of the BAW ME magnetic sensor was optimized by matching the resonance
frequency between the magnetic composite and the BAW resonator as the first-order of
1.51 GHz. When a 54,500 A/m DC bias magnetic field was applied, the sensor worked at
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the first-order resonance frequency and showed good performance. The linearity was better
than 1.30%, the sensitivity was as high as 2.33 µmV/A, and the measurement range could
cover 0–5000 A/m. With the advantages of the highest energy conversion efficiency based
on resonance enhanced ME coupling and the lowest eddy current loss and the integrated
capability with CMOS technology, the BAW ME magnetic sensor has a bright future for
compact receiving antennas, biomedical application, and the Internet of Things (IoT) due to
the fact of its unique and particular properties. Furthermore, this achievement will further
guide the structural design and performance optimization of other ME coupling devices.
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