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Simple Summary: The DL model predictions in automated breast density assessment were indepen-
dent of the imaging technologies, moderately or substantially agreed with the clinical reader density
values, and had improved performance as compared to inclusion of commercial software values.

Abstract: Recently, convolutional neural network (CNN) models have been proposed to automate the
assessment of breast density, breast cancer detection or risk stratification using single image modality.
However, analysis of breast density using multiple mammographic types using clinical data has not
been reported in the literature. In this study, we investigate pre-trained EfficientNetB0 deep learning
(DL) models for automated assessment of breast density using multiple mammographic types with
and without clinical information to improve reliability and versatility of reporting. 120,000 for-
processing and for-presentation full-field digital mammograms (FFDM), digital breast tomosynthesis
(DBT), and synthesized 2D images from 5032 women were retrospectively analyzed. Each participant
underwent up to 3 screening examinations and completed a questionnaire at each screening encounter.
Pre-trained EfficientNetB0 DL models with or without clinical history were optimized. The DL
models were evaluated using BI-RADS (fatty, scattered fibroglandular densities, heterogeneously
dense, or extremely dense) versus binary (non-dense or dense) density classification. Pre-trained
EfficientNetB0 model performances were compared using inter-observer and commercial software
(Volpara) variabilities. Results show that the average Fleiss’ Kappa score between-observers ranged
from 0.31–0.50 and 0.55–0.69 for the BI-RADS and binary classifications, respectively, showing higher
uncertainty among experts. Volpara-observer agreement was 0.33 and 0.54 for BI-RADS and binary
classifications, respectively, showing fair to moderate agreement. However, our proposed pre-trained
EfficientNetB0 DL models-observer agreement was 0.61–0.66 and 0.70–0.75 for BI-RADS and binary
classifications, respectively, showing moderate to substantial agreement. Overall results show that the
best breast density estimation was achieved using for-presentation FFDM and DBT images without
added clinical information. Pre-trained EfficientNetB0 model can automatically assess breast density
from any images modality type, with the best results obtained from for-presentation FFDM and DBT,
which are the most common image archived in clinical practice.

Keywords: full-field digital mammograms (FFDM); digital breast tomosynthesis (DBT); deep learning
(DL); synthesized 2D images
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1. Introduction

Female breast cancer is the most common cancer diagnosed worldwide representing
11.7% of all cancers from both sexes while representing the fifth deadliest cancer for
women with a mortality rate of 6.9% in 2020 [1]. Thanks to technological and populational
health advancements, breast cancer can be detected and diagnosed earlier to offer optimal
treatment options, reducing the mortality rate by 38–60% [2–4]. However, mammography
cancer detection can be hampered by dense breast parenchyma. While high breast density is
also a risk factor for breast cancer, sensitivity of full-field mammography screening is lower
for subjects with high breast density, reducing the chance of early optimal treatment [5].

Personalized screening strategies incorporating risk assessment, utilization of appro-
priate radiologic modalities, and better image analysis are needed to improve breast cancer
detection in women with dense breasts [6,7]. To achieve this goal, breast density assign-
ment needs to be standardized, reproducible, and preferably automated [8]. Historically,
breast density is visually assessed on mammography during image interpretation in the
usual clinical workflow, but is prone to inter- and intra-observer variabilities, especially for
adjacent density categories (e.g., scattered fibroglandular densities and heterogeneously
dense) [9,10]. To promote standardization and consistency between radiologists, computer
software tools have been developed and proposed to assess breast density directly from for
processing or for-presentation mammograms. While commercially available tools may aid
in breast density categorization, visual assessment continues to be reported to provide the
best performance [11].

More recently, convolutional neural network (CNN) models have been proposed to
automate the assessment of breast density in an efficient and robust manner for large scale
screening [12–14]. CNN models also have been proposed for breast cancer detection or
risk stratification using clinical history with full field mammograms or multi-parametric
MRI, [15–18] showing promising results. Additionally, CNN-based applications have been
studied for purpose of risk assessment [19,20]. Despite these early results suggesting
clinical roles for CNN-based applications, deep learning-based approaches need to be
further investigated and validated prior to implementation in clinical practice.

This study investigates the role of state-of-the-art CNN architectures for breast density
estimation using multiple mammographic types. We explored the concordance between
radiologists, commercial breast density estimation software, and DL models trained on
different mammographic types. The models were evaluated with and without clinical
participant information. Breast density was estimated using two approaches: Breast
Imaging Reporting and Data System (BI-RADS) four breast density versus binary (non-
dense or dense) categorization.

2. Materials and Methods
2.1. Data

The Institutional Review Board approved this study and waived informed consent. We
performed a retrospective analysis of imaging and health questionnaire data from 5032 par-
ticipants enrolled in a prospective breast cancer screening cohort at a single academic
institution. The demographic composition of the cohort is representative of the female
population of a large metropolitan area served by the institution. The imaging dataset
contained a total of 120,000 for processing FFDM, for presentation FFDM, synthesized
2D and for-presentation digitally reconstructed DBT craniocaudal (CC) and mediolateral
oblique (MLO) views of both breasts acquired between 2017 and 2021. Each participant had
up to three consecutive routine bilateral mammographic exams included in the analysis.
At each screening the participants completed a detailed questionnaire. A combination of
all questions answered by each participant at each screening timepoint resulted in a single
consolidated questionnaire that was used for the study. The consolidated questionnaire
comprised twenty-one questions regarded as potentially pertinent to breast density and
were included in the analysis (Table S1, supplementary material). Each mammographic
study was assigned one of four BI-RADS breast density categories of fatty (A), scattered
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fibroglandular densities (B), heterogeneously dense (C), or extremely dense (D) by a breast
radiologist using the FFDM images. Table S1 contains the demographics of the study
population, the 21 questions included in the analysis, the number of images per modality,
and the BI-RADS breast density of the cohort per year of screening. All mammograms were
acquired using Selenia Dimensions Mammography System (Hologic, Marlborough, MA,
USA). All synthesized 2D mammograms were generated using the Hologic C-ViewTM
algorithm. All images were acquired as standard acquisition imaging parameters as shown
in supplementary material Table S2.

1000 of the 5032 participants have been previously reported using 4394 matched
pairs of for processing and for presentation FFDM [21]. This prior study developed a
DL-based approach to recreate for-processing FFDM from for-presentation mammograms.
The 5032 cases were consecutive cases enrolled into the MERIT screening study with no
history of breast cancer, no history of treatment for any invasive cancer within the last five
years, 25–80 years of age, and no breastfeeding within the last six months.

2.2. Convolutional Neural Networks (CNN)
2.2.1. Model Architectures

This study investigated the EfficientNetB0 architecture with pre-trained ImageNet
features [22]. The EfficientNetB0 architecture is composed of 7 layers including convolution
and inverted residual blocks with squeeze and excitation optimization and a 20% rate
dropout layer for regularization. EfficientNet architectures were initially developed to
provide the best compromise between Top1 and Top5 accuracy on ImageNet, and network
width, depth, resolution, number of parameters, and training time. This architecture was
selected for this study based on the excellent compromise between performance and model
size, allowing the combination of multiple sub models per mammographic image type.
Output of the EfficientNet model was a 1 × 1 convolution, normalization layer and swish
activation layers with output size of 16 × 16 × 1280 (x × y × Nfilters). The 2D and 3D
networks were trained with batch and group (n = 32) normalization layers, respectively.
For the classification part, a 2D global average pooling was used for all 2D input models
(FFDM for-processing, FFDM for-presentation, synthesized 2D) to flatten the convolution
output as a vector of 1280. For the 3D model using DBT, the batch size and slice dimensions
were squeezed together to extract 2D features on each of the tomosynthesis slices. The 2D
features in the 3D space were flatten together using a 3D global average pooling. The top
part of the architecture was composed of N dense layers with U units with swish activation,
no dropout, and a final softmax dense layers with 4 units for categorical classification. The
values of N/U were 0/0, 1/512, 2/256, and 0/0, for the for processing, for presentation,
synthesized 2D and DBT mammograms models, respectively. For the multimodal model,
each modality sub-model was frozen using the pre-trained features from the independent
models, only the classification part of the model was optimized.

To estimate the breast density using the participant’s health history and measurements
as input, a total of 21 features were extracted from the questionnaires and converted as
floating or categorical variables. Subject features were used to train a CNN of five layers
combining dense layers of 32 units, dropout layers of 5%, and swish activations followed
by a softmax dense layers with 4 units for categorical classification.

Figure 1A–C summarizes the different model architectures. A total of 11 CNN models
were defined in this study: 1 feature-based only model using the questionnaire, 4 models
(1 per mammographic type) without inclusion of clinical history (for processing FFDM, for
presentation FFDM, synthesized 2D, and DBT), 4 models (1 per mammographic type) with
inclusion of clinical history (for processing FFDM, for presentation FFDM, synthesized 2D,
and DBT), and 2 models including all modalities (1 without clinical history and 1 with
clinical history).
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Figure 1. Convolutional neural network model for (A) 2D mammograms (i.e., for processing, for
presentation, synthesized 2D), (B) digital breast tomosynthesis, (C) multimodal mammograms, with
clinical history.
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2.2.2. Training Strategy

The data were randomly separated into groups of mammograms from 3044, 993, and
995 subjects for the training, validation, and withheld test datasets, respectively. Random
distribution of subjects was stratified based on demographics (Table S1, supplementary ma-
terial). Multiple screenings and images from an individual participant were not distributed
among training, validation, and test datasets. Each of the 11 models listed above was
trained with both views (i.e., CC and MLO) and both sides (i.e., left and right). The back-
ground of the images was removed to avoid biased feature extraction outside the breast [21].
All image intensities were Z standardized and normalized between 0–255. The images
for the 2D and 3D networks were resized to 512 × 512 and 512 × 512 × 32 dimensions,
respectively, with in-plane ratio preservation. The 3D images were resized in 2 steps, first
by resizing the Z direction to 32 slices with a linear interpolator while keeping the XY
original size, second by resizing only the XY planes to 512 × 512 while keeping the size
ratio using image padding.

Each model was trained to output a categorical probability distribution at inference
on a single mammogram (e.g., left, right, CC or MLO views) representing the probability
of different BI-RADS density categories. To avoid gradient washing and fine tune the
ImageNet pre-trained model weights and features, respectively, we progressively trained
the model into 7 stages by unfreezing the weights of the convolution block layers using
Adam optimizer [23] with the categorical cross entropy loss function using a stable learning
rate of 0.0001 that was decreased by a factor of 4 at each stage of the training strategy. To
improve model generalization, all models were trained with data augmentation of random
left-right and up-down flips. The 2D network models were also trained with rotation
ranging between 0–15 degrees, translation ranging between 0–40 mm, scaling ranging from
0–20%.

No class imbalance adaptation was considered using weighted loss or oversampling
in our training strategy. However, training subject and class distributions shuffling was
performed at data creation, cache and before each epoch to improve stability, training time
and validation accuracy. For 2D and 3D network inputs, the batch size values were 32 and
1, respectively. For the multimodal model, batch size value was 1.

For the clinical history dataset, missing answers from participant were replaced by
zeros. To avoid overfitting, dropout layers with rate of 5% were included with clinical
history CNN to simulate random missing inputs from participant’s answer. For the clinical
history CNN, the batch size value was 64. No data augmentation was performed on the
history input.

2.3. Evaluation

To evaluate inter-observer uncertainty in the test dataset, a total of 7 fellowship trained
breast radiologists with 5–22 years of experience defined the BI-RADS breast density
categories on the baseline screening (year 0) for-presentation FFDM of 1000 participants
evaluated per breast, for a total of 2000 breasts. For this task, the FFDMs were randomly
divided into 10 groups of 200 subjects. Each group was evaluated by 3 radiologists, which
resulted in 6000 annotated studies. Inter-observer variability was compared per reading
group and by pair of observers for every group using the Fleiss’ Kappa score with and
without multiple raters, respectively. Percentage of agreement was also reported. The
Kappa score (κ) ranges from −1 and 1 where κ < 0 represents no agreement, 0.01 < κ < 0.20
slight agreement, 0.21 < κ < 0.40 fair agreement, 0.41 < κ < 0.60 moderate agreement,
0.61 < κ < 0.80 substantial agreement, and 0.1 < κ < 1.00 almost perfect agreement. Out of
the 1000 subjects, analysis was gathered on the 995 subjects from the test dataset.

2.3.1. Commercial Tool Evaluation

A commercially available software tool, Volpara Density Algorithm 3.4.1 (Volpara
Health Technologies, Wellington, New Zealand), was used on 960 out of the 995 test subjects
to assess breast density on FFDMs. Volpara reports the patient’s breast density as being
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the highest breast density from both sides. The performance of Volpara in assigning BI-
RADS was compared with the ground truth densities, inter-observer variability and DL
model predictions.

2.3.2. Model Evaluation

Model evaluation was reported on the validation and withheld test datasets using true
positive (TP), false positive (FP), categorical accuracy, precision, recall, F1-score per class,
receiver operating characteristic (ROC), area under the curve (AUC), percentage of agree-
ment, and Kappa metrics between the clinical reader density class and model predicted
probability of BI-RADS, and binary (non-dense [categories A and B] versus dense [cate-
gories C and D]) breast densities. The results were averaged between the available views of
each breast screening. To summarize the model performance per class, confusion matrices
were generated for categorical BI-RADS and binary breast densities. Binary breast density
was estimated to evaluate model uncertainty between neighbor categories (e.g., scattered fi-
broglandular densities and heterogeneously dense) versus non-dense and dense categories.
To assess the model interpretability in classification decision, both Gradient-weighted Class
Activation Mapping (Grad-CAM) [24] and Integrated Gradients [25] activation maps were
generated. A continuous BI-RADS score was estimated by weighting the category values by
their respective probabilities. Precision, recall, and AUC were computed using scikit-learn
python library with the “weighted” average parameter to account for multiple categories
classification and label imbalance. The other metrics were computed using TensorFlow 2.4
and Tensorflow Addons python libraries. The TP and FP metrics were computed as being
the sum of diagonal and non-diagonal values from the confusion matrix, respectively. F1
score values were reported per class.

3. Results
3.1. Expert Evaluation

The median (min-max) Fleiss’ Kappa scores assessing the 3 radiologists’ agreement per
group (i.e., a total of 7 radiologist assessing randomly distributed 10 groups of 200 patients)
and per density were 0.47 (0.21–0.87), 0.28 (−0.05–0.60), 0.55 (0.41–0.67), and 0.34 (0.13–0.70)
for fatty, scattered fibroglandular densities, heterogeneously dense, or extremely dense
breasts BI-RADS categories, respectively. Extracting agreement between pair of observers
on the same subject, Fleiss’ Kappa scores and percentage of agreement ranged between
−0.05–0.76 and 31–87%, respectively. Two observers with the lowest agreement within
the group had an average Fleiss’ Kappa score and percentage of agreement of 0.32–0.36
and 57–59% compared to 0.40–0.57 and 60–65% for the 5 others, respectively. Reducing the
number of categories to 2 (non-dense or dense), the Fleiss’ Kappa score and percentage of
agreement increased in average by 0.20 and 21%.

Figure 2A–D represents the Fleiss’ Kappa score and percentage of agreement as
confusion matrices for each available pair of observers. Figure 3A,B reports the distribution
of breast density assignment per observer for 4 and 2 categories.
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Figure 2. Variability in the estimation of breast density using Fleiss’ Kappa score and percentage
of agreement between pair of observers, for all reading groups. (A–D) represent the agreement
between 4 (i.e., fatty, scattered fibroglandular densities, heterogeneously dense or extremely dense)
and 2 categories (non-dense or dense), on the first screening year of the test dataset. Physician
experience in years of service: A = 8, B = 13, C = 8, D = 9, E = 5, F = 20 and G = 22 years. V = Volpara
version 17.
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Figure 3. Distribution of breast density category assignment by each observer and Volpara software
for (A) 4 categories and (B) 2 categories, on the first screening year of the test dataset. Physician
experience in years of service: A = 8, B = 13, C = 8, D = 9, E = 5, F = 20 and G = 22 years. V = Volpara
Density Algorithm 3.4.1 (Volpara Health Technologies, Wellington, New Zealand).

3.2. Commercial Software Evaluation

Figure 2A–D reports the Fleiss’ Kappa scores and percentage of agreement as confusion
matrices for Volpara compared to each observer from the inter-observer variability study
on the test dataset. The Fleiss’ Kappa score and percentage of agreement ranged from
0.17–0.48 and 43–64%, respectively. The average Fleiss’ Kappa score and percentage of
agreement were 0.34 and 56%, respectively, corresponding to fair agreement. Using binary
classification, the metrics increase by 0.25 and 25%, respectively, corresponding to moderate
agreement. Figure 3A,B reports the distribution of breast density assignment by Volpara
for 4 and 2 categories compared to each observer.

Comparing the Volpara classification with the clinical reader density class (i.e., used
to train the DL models), the Fleiss’ Kappa and percentage of agreement were 0.33 and 58%
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for 4 categories and 0.54 and 77% for 2 categories, respectively, on 960/995 test subjects
using year 0 screening.

3.3. DL Model Evaluation

Tables 1 and 2 report the accuracy of each DL model per mammographic type with and
without including subject history on the test dataset for BI-RADS and binary classifications,
respectively. Similarly, Tables S3 and S4 (supplementary material) report the accuracy for
the validation dataset.

Table 1. Model accuracy on their respective test dataset for all screening years for 4 BI-RADS categories.

Model Include History

Metric

TP FP Cat. Acc. Precision Recall AUC
F1 per Class

Kappa
1 2 3 4

History N/A 614 379 0.62 0.57 0.62 0.70 0.00 0.55 0.70 0.00 0.26

For processing
mammography

No 1458 390 0.79 0.78 0.79 0.91 0.29 0.78 0.84 0.47 0.61

Yes 1458 390 0.79 0.78 0.79 0.91 0.18 0.78 0.84 0.49 0.61

For presentation
mammography

No 2067 461 0.82 0.81 0.82 0.93 0.36 0.81 0.86 0.50 0.66

Yes 2063 465 0.82 0.81 0.82 0.93 0.31 0.81 0.86 0.47 0.66

Synthesized 2D
mammography

No 1512 353 0.81 0.81 0.81 0.93 0.10 0.81 0.85 0.51 0.65

Yes 1505 360 0.81 0.80 0.81 0.92 0.19 0.80 0.85 0.51 0.64

Digital breast
tomosynthesis

No 1282 304 0.81 0.80 0.81 0.92 0.27 0.80 0.85 0.51 0.65

Yes 1287 299 0.81 0.80 0.81 0.92 0.29 0.81 0.85 0.52 0.65

All modality
No 1058 260 0.80 0.77 0.80 0.92 0.00 0.78 0.86 0.45 0.63

Yes 1059 259 0.80 0.79 0.80 0.92 0.11 0.78 0.86 0.65 0.64

Table 2. Model accuracy on their respective test dataset for all screening years for 2 categories
(Non-dense and dense).

Model Include History

Metric

TP FP Cat. Acc. Precision Recall AUC
F1 per Class

Kappa
Non-Dense Dense

History N/A 669 324 0.67 0.67 0.67 0.73 0.60 0.72 0.33

For processing
mammography

No 1580 268 0.85 0.86 0.85 0.94 0.83 0.87 0.70

Yes 1581 267 0.86 0.86 0.86 0.94 0.83 0.87 0.71

For presentation
mammography

No 2218 310 0.88 0.88 0.88 0.95 0.86 0.89 0.75

Yes 2211 317 0.87 0.87 0.87 0.95 0.86 0.89 0.75

Synthesized 2D
mammography

No 1625 240 0.87 0.87 0.87 0.95 0.85 0.89 0.74

Yes 1625 240 0.87 0.87 0.87 0.95 0.85 0.89 0.74

Digital breast
tomosynthesis

No 1384 202 0.87 0.87 0.87 0.95 0.85 0.89 0.74

Yes 1384 202 0.87 0.87 0.87 0.94 0.85 0.89 0.74

All modality
No 1148 170 0.87 0.88 0.87 0.95 0.84 0.89 0.73

Yes 1142 176 0.87 0.87 0.87 0.95 0.83 0.89 0.72

Figure 4 reports the confusion matrix of BI-RADS classification for each model without
including subject history. Figure 5A,B reports the distribution of breast density assignment
per model for 4 and 2 categories. Figures S1 and S2 (supplementary material) report the
confusion matrices and distribution on the validation dataset.
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Figure 5. Distribution of breast density category assignment for the ground truth and DL models
on for (A) 4 categories and (B) 2 categories, on the test dataset considering every screening (except
H). Abbreviations: GT: ground truth (clinical reader), HT: history model, R1: for processing, M1: for
presentation, CV1: synthesized 2D, TM1: digital breast tomosynthesis, MM1: Multi model, 2: include
clinical history.

Using the for-presentation FFDM without history model, Figure 4C reports that the
model uncertainty was mostly present in the fatty and extremely dense categories, with 27%
and 36% of these classes being correctly classified, respectively. The model misclassified
73% of the fatty breast to scattered fibroglandular densities and 64% of the extremely dense
breast to heterogeneously dense. Within BI-RADS B and C classes, a total of 16% and 11%
of the subjects were misclassified as being dense compared to non-dense and non-dense
compared to dense, respectively.

For comparison between subgroup inter-observer, Volpara, and each DL model,
Figure S3 (supplementary material) reports the breast density distribution for the 4 and 2
categories classification using the year 0 screening on the 995 subjects from the test dataset.
On the year 0 screening of the test dataset, the Fleiss’ Kappa and percentage of agreement
range of the image-based DL models were 0.61–0.66 and 79–82% for 4 categories and
0.70–0.75 and 86–88% for 2 categories, respectively.

Figure 6 represents the Grad-CAM and integrated gradients activation maps for each
single input image model. Each example represents the normalized breast image with an
overlay of the Grad-CAM and integrated gradients activation maps. Each integrated gradi-
ents activation map represents the extracted features in the image that explain each class.
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Figure 6. Grad‐CAM and  integrated gradients activation maps  for  the (A)  for processing (B)  for 

presentation (C) synthesized 2D and (D) digital breast tomosynthesis mammography models on 

the test dataset. The legend includes the ground truth (GT) clinical reader density class, predicted 

(PRED) density, the probability for the 4 classes, the summed probability for binary output and the 

continuous BI‐RADS score. 

   

Figure 6. Grad-CAM and integrated gradients activation maps for the (A) for processing (B) for
presentation (C) synthesized 2D and (D) digital breast tomosynthesis mammography models on
the test dataset. The legend includes the ground truth (GT) clinical reader density class, predicted
(PRED) density, the probability for the 4 classes, the summed probability for binary output and the
continuous BI-RADS score.

4. Discussion

In this study, we investigated the performance of fine-tuned state of the art DL ar-
chitecture for breast density assessment using 4 mammography image types individually
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and in combination, with and without clinical history. The models were validated on a
completely withheld test dataset including 6300 to 12,000 breast images from 995 subjects.
The performance of the DL models was also compared with inter-observer variability,
quantified from the density estimated by 7 clinical radiology experts, and a commercially
available tool in the test dataset. To our knowledge, this study is the first to perform an
exhaustive evaluation of DL-based breast density assessment on all mammography types.

Our results demonstrate that the models with the highest categorial accuracy and
Kappa score for BI-RADS density classification were the for-presentation FFDM and
DBT models without inclusion of clinical history. For the binary classification, the for-
presentation FFDM model was the most accurate in classifying subjects’ density as being
non-dense or dense. The model using only the clinical history to predict the breast density
had only a fair agreement with the clinical reader density class (range 0.26–0.33). Including
clinical history with the image features in the classification step of the DL models slightly
decreased the accuracy. This could be in part due to the fact that a combined questionnaire
was used for each participant, and the answers might have changed over the course of
the observation, reducing its accuracy for each separate timepoint (years 1, 2 and 3). In
addition, the 21 questions selected for potential impact on breast density. Overall, only a
minimal difference was observed in the accuracy reported by every DL model regarding
modality and number of training images. All models provided a substantial agreement
with the clinical reader density class (range 0.61–0.75).

Lower agreement between model prediction and expert ground truth was observed
with the for- processing mammography; this could be explained by the larger differences
in intensity between subjects as well as the heavily skewed intensity histogram within the
breast that made standardization challenging. While the for-processing mammography
model extracts features within dense breast tissue (Figure 6A), the activation map shows a
systematic strong focus on the lower corner of the image that suggests sensitivity of the
model to image padding, frailness to differentiate BI-RADS categories, or even limited
transferability of the ImageNet pretrained features on that modality.

The findings from this study suggest that combining modalities or including subject
history do not improve accuracy compared to the per-modality model. They also suggest
that no modality is superior to another in terms of assessing breast density. However, we
did observe differences in misclassification of adjacent classes (Figure 4 and Figure S1,
supplementary material), with the best models to distinguish 86% of non-dense and 94% of
the dense categories being the for- presentation FFDM and DBT without history models,
respectively. This is potentially clinically useful, since these image types are the ones most
archived in clinical practice and are easily accessible for density evaluation. The results
show that no modality is superior to another in terms of assessing breast density. Therefore,
in the future real-time implementation of our research in the clinical environment will act
as an aided tool for the radiologist to perform breast density evaluation more effectively
and efficiently using AI models irrespective of image modalities. Compared to the recent
published study by Lehman et al. [13] that investigated a DL model for automatic breast
density evaluation for 4 BI-RADS or binary categories, we obtained similar Kappa scores
(0.66 vs. 0.67, ours vs. theirs, respectively) but with a higher BI-RADS classification for
the scattered fibroglandular and heterogeneously dense categories. For a binary breast
density classification and comparing to their model development validation (test dataset),
the percentage of well classified non-dense and dense categories were 86% vs. 89% and
90% vs. 84% (ours vs. theirs, respectively, using for-presentation FFDM), respectively.

Our study also reports high variability in assessing breast density of 1000 subjects
by groups of three radiologists. The reported agreement between observers showed
larger uncertainty in assigning the scattered fibroglandular densities and extremely dense
categories, with averaged Fleiss’ Kappa scores of 0.28 and 0.34. These results are similar
to previously reported data, with a Kappa score of 0.48 (moderate agreement) described
by Gweon et al. [26] To evaluate a clinically available automated breast density tool, we
also computed the breast density on 960/995 test subjects using a commercially available



Cancers 2022, 14, 5003 14 of 16

algorithm, Volpara Density Algorithm 3.4.1, that showed an averaged Kappa score of 0.34
and 0.33 (fair agreement) with the inter-observer study and clinical reader ground truth at
baseline screening, respectively. Reducing the categories to non-dense and dense, Kappa
score and percentage of agreement at baseline screening with clinical reader ground truth
increased to 0.54 and 77%, respectively. This was close to the value reported in a previous
study by Brandt et al. evaluating Volpara and reporting an average Kappa score of 0.46 [27].

During the CNN ablation study, we investigated two strategies to compensate class
imbalance by integrating the training dataset class imbalance in the categorical cross entropy
loss function or by oversampling minority classes in our dataset pipeline. However, we did
not observe any improvements but reduced validation accuracy, showing that the model
was not able to learn and converge properly. To compensate for class imbalance in the best
way possible, we heavily shuffled the training dataset before each epoch and chose a large
batch size for the 2D models to show a large number of examples per class to the model.

Our study has several limitations. First, the dataset comes from one clinical center,
although our patient population reflects the demographic diversity of the female population
served by the center (Table S1, supplementary material). Second, all images were acquired
using one type of mammography acquisition system and the third, ground truth was
determined by a single clinical radiologist as part of clinical process. The clinical radiologists
had access to the Volpara results for all cases when making their clinical decision. We
randomly split the data into training, validation and withheld test datasets with subject
demographics stratification. However, we observed a slight decrease of 0.05 Kappa score in
the accuracy on the test dataset compared to the validation dataset (Tables 1 and S3). Third,
the different number of images per modality group and dataset hampers direct comparison
of the proposed per-modality models. However, this reflects the challenge of collecting
a large amount of data per subject in a clinical workflow to train large DL models with
different modalities. In the future, the results of this study will need to be confirmed with
external data from other clinical centers with different imaging systems. The results show
that no modality is superior to another in terms of assessing breast density. Therefore, in
the future real-time implementation of our research in the clinical environment will act as
an aided tool for the radiologist to perform breast density evaluation more effectively and
efficiently using AI models irrespective of image modalities.

The lack of improvement of model performance with clinical information in our study
may be due to the fact that a consolidated questionnaire combining multiple timepoints was
used, limiting the per time point accuracy of the information. In addition, we used questions
with variable direct relevance to breast density. Using a more focused historical information
to include the data traditionally associated with breast density, such as age, menstrual
status, body mass index and exogenous hormone intake, may prove useful for improving
DL model performance [28,29]. The next step of this study will be to further evaluate the
DL model on an external test dataset, potentially using different image acquisition systems,
as well as deploying the proposed models in a clinical workflow to gather clinical expert
feedback from automated assessment of breast density and back-propagated activation
map overlaid on the breast images.

5. Conclusions

DL models can be used to automatically assess breast density using images from any
mammographic modality or image type. For-processing images in our database did not
improve the model performance in our study, which suggests that routine storage of this
data may not be needed for ML/DL studies. The best model performance was achieved
on for-presentation FFDM and DBT images, which are the most common mammography
image types archived in clinical centers. A set of 21 subject history questions chosen for
this study deteriorated model performance, which may potentially be improved with a
more focused choice of questions to include in the model. Further evaluation and cross-
institutional model validation are needed before a multi-modality automated breast density
model could be reliably deployed for multiple users.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14205003/s1, Figure S1: Confusion matrix for binary
breast density for each model on every screening year of the test dataset without including patient
history for (A) history, (B) for processing, (C) for presentation, (D) Synthesized 2D, (E) digital breast
tomosynthesis, mammograms and (F) all modalities models; Figure S2: Distribution of breast density
category assignment for the ground truth and DL models on for (A) 4 categories and (B) 2 categories,
on the validation dataset considering every screening (except H); Figure S3: Distribution of breast
density category assignment for the ground truth and DL models on for (A) 4 categories and (B) 2 cat-
egories, on the test dataset considering the year 0 screening; Table S1: Participant demographics in
training, validation and test datasets of a total 5032 participants randomly separated in 3044, 993, and
995 subjects; Table S2: Image parameters in training, validation and test datasets; Table S3: Model
accuracy on their respective validation dataset for all screening years for 4 BI-RADS categories; Table
S4: Model accuracy on their respective validation dataset for all screening years for 2 categories
(Non-dense and dense).
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