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a b s t r a c t 

Strains identified as Campylobacter concisus may belong to one of at least two biochemically indistinguishable, but genomically distinct, groups referred to as 

“genomospecies ” that may differ in their pathogenic and zoonotic potential. Reliable, affordable and available identification methods are required to improve 

understanding of their significance in human illness. We examined the potential for MALDI-TOF MS, increasingly used in routine laboratories, for this task. Nineteen 

well-characterised strains were examined using a widely used MALDI-TOF MS commercial system, however only one strain confidently identified using their database. 

Data mining of the spectra obtained revealed a number of markers that could be used to help discriminate these genomospecies. We conclude that careful application 

of MALDI-TOF analysis could be useful to determine the role and significance of diverse C. concisus genomospecies in human disease. 
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. Introduction 

Since its initial isolation and description from the oral cavity

f humans with periodontal disease ( Tanner et al., 1981 ), Campy-

obacter concisus has been associated with a range of gastrointesti-

al ailments, including acute and chronic diarrhoea ( Aabenhus et al.,

002 ; Cornelius et al., 2012 ; Lastovica, 2009 ; Tanner et al., 1981 ;

nderwood et al., 2016 ; Vandamme et al., 1989 ), inflammatory bowel

yndrome ( Kirk et al., 2018 ; Zhang et al., 2010 , 2014 ), Crohn’s disease

 Guslandi et al., 2009 ; Liu et al., 2018 ), and microscopic ( Yde Aagaard

t al., 2020 ) and ulcerative ( Liu et al., 2020 ) colitis . Its presence in do-

estic pet dogs infers potential for zoonotic transmission ( Chaban et al.,

010 ). However, C. concisus may also be found in humans with good

ral health ( Ismail et al., 2012 ) and in faecal samples from individuals

n which gastrointestinal disturbances have not been detected or diag-

osed ( Cornelius et al., 2012 ; Van Etterijck et al., 1996 ). 

These apparent conflicts as to the pathogenic potential of the or-

anism has been proposed by some to be explained by its exten-

ive genetic diversity, which has been demonstrated in various studies

 Aabenhus et al., 2005 ; Kirk et al., 2018 ; Liu et al., 2020 ; Matsheka et al.,

002 ). Critically, strains identified as C. concisus may in fact belong to

losely related, yet genetically distinct taxa referred to as “genomo-

pecies ”, of which two appear predominant ( Aabenhus et al., 2005 ;

iu et al., 2020 ; Mahendran et al., 2015 ; Vandamme et al., 1989 ). Multi-

ocus Sequence Typing (MLST) generally supports a phylogenetic dis-

inction between these two groups, although the separation is not perfect

 Miller et al., 2012 ). The C. concisus g enomospecies could be proposed as

omenclaturally distinct species if a clearly defined, readily determined
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henotypic marker were identified, however at this time no such trait

as been found. This hinders the accurate attribution of the major C.

oncisus genomospecies in healthy and diseased individuals, and in do-

estic pets, to improve our understanding of the public health impact

f these bacteria. Given the frequency that C. concisus has been found

n human faeces ( Cornelius et al., 2012 ; Lastovica, 2009 ; Nielsen et al.,

013 ), this is an important question to resolve. 

Microbial identification in routine laboratories has been transformed

n many countries with the implementation of commercial platforms

o undertake Matrix-Associated Laser Desorption/Ionisation – Time-Of-

light Mass Spectroscopic (MALDI-TOF MS) analysis ( van Belkum et al.,

015 ). This method involves the breakdown of cells by laser energy

nto molecules that are separated and detected on the basis of their dif-

ering mass and electrical charge. The resulting spectrum can then be

ompared to databases containing similar spectra derived from those of

nown organisms and an identification attained when a threshold simi-

arity level is reached. This process is automated in commercial systems,

ut is reliant upon the relevant taxon being present in the database. 

This paper examines the performance of a commercial MALDI-TOF

S identification system for strains assigned to each of the two major

. concisus genomospecies, and explores the potential for enhanced dis-

rimination using this method. 

. Materials and methods 

.1. Strains examined 

Strains examined and their sources are listed in Table 1 . Genomo-

pecies attribution had been determined previously by DNA-DNA hy-
0 December 2020 
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Table 1 

Genomospecies designations and sources of Campylobacter concisus strains examined, and summary of their identification results with the commercial (Bruker) 

database. Genbank accession numbers for genome sequences and Multi-Locus Sequence (MLS) Types ( Miller et al., 2012 ) where available are also listed. All newly 

determined MLS types were unique. 

Genomospecies 

designation 

Strain no. Source Whole-genome 

accession no. 

MLS type Bruker database classification 

(no. of replicates/no. samples) 

1 CCUG 13144 T Adult, gingivitis, USA CP01254 77 CI (24/24) 

1 L24.99 Faecal, fever PGI (2/2) 

1 L28.99 Bloody diarrhoea NDYO00000000 New PI (1/2); PGI (1/2) 

1 L61.99 Dysentery, 12 months, Shigella dysenteriae co-isolated NEFM00000000 New PGI (1/1) ∗ 

1 L64.99 Bloody diarrhoea NDYP00000000 New PI (22/24); PGI (2/24) 

1 L115.99 Faecal, aplastic anaemia 29 PI (2/2) 

1 L220.96 Bloody diarrhoea NDYS00000000 25 PGI (2/2) 

1 L389.96 Chronic diarrhoea PI (1/2); PGI (1/2) 

2 CCUG 19,995 Faeces, adult, recurrent fever and exanthema, Sweden NDYN00000000 New PI (15/24); PGI (9/24) 

2 L104.93 Loose stools PGI (2/2) 

2 L113.99 Prolonged diarrhoea, Cryptosporidium spp. co-isolated PI (13/24); PGI (11/24) 

2 L127.99 Chronic diarrhoea NDYQ00000000 39 PGI (2/2) 

2 L131.99 Dysentery, S. flexneri co-isolated 26 PGI (2/2) 

2 L135.99 Faecal, maladsorption, S.dysenteriae co-isolated NI (2/2) 

2 L140.99 Bloody diarrhoea PI (1/2); PGI (1/2) 

2 L275.95 Rectal prolapse and diarrhoea, Trichuris spp. co-isolated PI (1/2); PGI (1/2) 

2 L312.98 Chronic diarrhoea PGI (1/2); NI (1/2) 

2 L316.98 Dysentery, S. flexneri co-isolated PI (1/2); PGI (1/2) 

2 L377.96 Bloody diarrhoea 21 PI (1/2); PGI (1/2) 

T = Type strain. CCUG = Culture collection of the University of Gothenberg, Sweden. L = from the collection of Prof. A. Lastovica, Cape Town. S. Africa. ∗ = one sample 

failed to yield peaks. Bruker identification codes (scores): CI, Correct species identification (2.3 − 3.0). PI, Probable Species/secure genus (2.0–2.299). PGI, Probable 

Genus Identification (1.7–1.99). NI, Not reliably Identified (0–1.699). 

Fig. 1. Cluster analysis of the MALDI-TOF MS spectra determined for the 19 C. concisus genomospecies (GS) strains examined.The scale bar along the top of the 

dendrogram represents the per cent similarity calculated between the strains by the Dice coefficient and UPGMA clustering. Figures displayed on the nodes of clusters 

containing ≥ 3 strains represent cophenetic correlation values that evaluate the congruence between the similarity matrix and the dendrogram. 
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3 
ridisation and/or Amplified Fragment Length Polymorphism (AFLP)

nalysis ( On et al., 2013 ; Vandamme et al., 1989 ).Where whole genome

equences and MLS types are available, these details are also given. Ac-

ording to AFLP profiling, all strains were distinct ( On et al., 2013 ). 

.2. MALDI-TOF MS analysis and routine identification of strains 

Strains were cultured for 3 days under microaerobic conditions (80%

 2 , 10% CO 2 , 3% O 2 , 7% H 2 ) in a dedicated workstation (Don Whitley

cientific, Bingley, UK) on 5% blood agar. MALDI-TOF MS profiling was

erformed using a Flex Biotyper instrument (Bruker Diagnostics, Karl-

ruhe, Germany). Discrete samples of bacterial growth were smeared

nto the steel analysis plate and 1 μl of 70% formic acid added before

ddition of the matrix solution; samples were air dried before analysis,

s described previously ( Werno et al., 2012 ). For four strains, 24 sam-

les of bacterial growth were examined (the number recommended for

etermining reference samples), and for the remaining 15 strains, dupli-

ate samples were examined. The resulting spectra were then compared

o existing data in a proprietary database (v.6903; Bruker Diagnostics)

sing manufacturers recommended guidelines, as described previously

 Ge et al., 2017 ). The proprietary software evaluates the degree of re-

emblance of profiles, and outlines the best identification to its database

ntries ( n = 6903 as of this study), as follows. Highly probable species

dentification (2.3-3.0); secure genus identification, probable species

dentifications (2.0-2.299); probable genus identification (1.7-1.999); or

ot reliable identification (0-1.699). Samples were compared with the

ruker database on 7th October 2020. 

.3. Cluster analysis and biomarker identification 

Strain MALDI-TOF MS spectra were exported in a textfile format,

nd assimilated into the software BioNumerics 7.6 (Applied Maths, Ko-

trijk, Belgium) for analysis. Cluster analysis was performed using the

eak based-Dice coefficient using the parameters of minimum height

%, peak matching of constant tolerance 1, linear tolerance 500 ppm,

hift factor 1, and UPGMA (unweighted-pair group method with arith-

etic mean) algorithm. 

The potential biomarkers were identified using the matrix mining

ool according to the BioNumerics Tutorial “Peak matching and follow

p analysis of spectra ”. The peak matching was performed using de-

ault settings (constant tolerance 1.9, linear tolerance 550 ppm, peak

etection rate 10). All peak classes with a p -value < 0.05 were initially

elected and further considered as the potential biomarker, combined

ith visual observation. 

. Results 

.1. Identification of C. concisus strains using the proprietary bruker 

atabase 

The range of identification scores for each of the MALDI-TOF sample

eplicates for the strains examined is summarised in Table 1 . Only the

ype strain of C. concisus was consistently confidently (24/24 replicate

amples with scores > 2.3; 40.6% of all genomospecies 1 samples tested)

dentified to this species, and this was the only strain we tested that is

resent in the Bruker database. Of the remaining C. concisus genomo-

pecies 1 strains, 45.7% of samples were considered probable species

dentifications and 13.5% probable genus identifications, in each case

ith C. concisus named as the most likely species. Genomospecies 2

trains yielded less definitive results, with 55.1% samples considered

robable to species level, and 39.6% considered probable to genus level,

gain with C. concisus named as the most likely species. However, 5.1%

f samples were not identified to any defined species ( Table 1 ). 



S.L.W. On, J. Zhang, A.J. Cornelius et al. Current Research in Microbial Sciences 2 (2021) 100019 

3

 

T  

G  

a  

o

3

 

a  

i  

v  

d  

i  

e  

7  

s

4

 

w  

2  

n  

w  

T  

c  

f  

f  

d  

(  

w  

a  

t  

p  

a  

t

 

1  

T  

c  

1  

S  

t  

b

 

p  

p  

s  

M

D

 

i  

t

R

A  

 

A  

 

C  

 

C  

 

G  

 

 

 

G  

 

I  

 

 

K  

 

 

L  

L  

 

 

L  

 

 

M  

 

 

M  

 

 

M  

 

 

N  

 

 

O  

 

 

O  

 

 

 

T  

 

 

 

U  

 

 

v  

 

 

V  

 

 

V  

 

W  

 

 

Y  

 

 

.2. Cluster analysis of MALDI-TOF spectra of C. concisus genomospecies 

Two major clusters were formed at the 44% similarity level ( Fig. 1 ).

he first contained each of the eight Genomospecies 1 strains, plus one

S2 strain (L104.93). The second comprised GS2 strains only. The rel-

tively low level of similarity exhibited among the strains is indicative

f substantive diversity among the spectra. 

.3. MALDI-TOF MS markers of C. concisus genomospecies 

Table 2 lists marker peaks identified by the BioNumerics software,

nd confirmed by careful scrutiny of these data, that provided discrim-

nation between the two genomospecies. Minor differences in the m/z

alues displayed were not considered by the software to be sufficient to

istinguish them and also could not be differentiated when displayed

n the cluster analysis (data not shown). Fourteen markers were consid-

red useful for differentiation of the subspecies, although only one (m/z

634.66) provided clear discrimination, being found only among GS1

trains. 

. Discussion 

The genotypic variability of the C. concisus genomospecies has been

ell documented ( Aabenhus et al., 2005 ; Kirk et al., 2018 ; Liu et al.,

020 ; Matsheka et al., 2002 ) and likely underpins the substantive phe-

otypic diversity observed in this study, and indeed in others where

hole-cell protein profiling has been used ( Vandamme et al., 1989 ).

he variation demonstrated illustrates the difficulties that have been en-

ountered for many years in identifying a single discriminating marker

or these two taxa; the absence of a simple such differential feature is the

undamental reason that these taxa have not been formally described as

istinct species, as clearly indicated by their whole-genomic relatedness

 Vandamme et al., 1989 ). In this respect, it is encouraging to note that

e have determined the presence of a single marker that is present only

mong GS1 isolates. Further investigation and characterization of this

rait may provide an important key towards the development of a sim-

le test that can then be applied for easy genomospecies discrimination

nd subsequent description of novel species in accordance with minimal

axonomic standards ( On et al., 2017 ). 

As of 7th October 2020, the Bruker identification database contained

4 strains of C. concisus, including the type strain examined in our study.

he genomospecies designations of the other strains is not known and

learly do not represent the full diversity of C. concisus phenotypes, since

8 of our 19 isolates did not achieve convincing identification scores.

uch performance can easily be improved by incorporating our data into

he proprietary database and the manufacturer has a standard protocol

y which this can be achieved. 

The role of C. concisus genomospecies in gastrointestinal disease and

otential zoonotic infection has long been difficult to resolve given the

roblems in routinely identifying them. It is hoped this study provides

ome insights into the use of an increasingly available tool, MALDI-TOF

S, for achieving this aim. 
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