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Abstract
The	severe	acute	respiratory	syndrome	coronavirus	2	(SARS-CoV-2)	is	the	etiological	
agent	for	the	Coronavirus	Disease	2019	(COVID-19).	The	COVID-19	pandemic	has	
created	unimaginable	and	unprecedented	global	health	crisis.	Since	the	outbreak	of	
COVID-19,	millions	 of	 dollars	 have	 been	 spent,	 hospitalization	 overstretched	with	
increasing	morbidity	and	mortality.	All	these	have	resulted	in	unprecedented	global	
economic	 catastrophe.	 Several	 drugs	 and	 vaccines	 are	 currently	 being	 evaluated,	
tested,	 and	 administered	 in	 the	 frantic	 efforts	 to	 stem	 the	 dire	 consequences	 of	
COVID-19	with	varying	degrees	of	successes.	Zinc	possesses	potential	health	ben-
efits	against	COVID-19	pandemic	by	improving	immune	response,	minimizing	infec-
tion	and	inflammation,	preventing	lung	injury,	inhibiting	viral	replication	through	the	
interference	of	the	viral	genome	transcription,	protein	translation,	attachment,	and	
host	infectivity.	However,	this	review	focuses	on	the	various	mechanisms	of	action	of	
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1  | INTRODUC TION

The	infection	of	humans	with	the	severe	acute	respiratory	syndrome	
coronavirus	2	(SARS-CoV-2)	in	Wuhan,	the	capital	of	Hubei	Province	
in	the	People's	Republic	of	China	in	December	2019	led	to	the	stag-
geringly	 devastating	 Coronavirus	 disease	 2019	 (COVID-19).	 The	
COVID-19	pandemic	has	reached	unprecedented	global	magnitude	
in	which	almost	every	country	affected	in	the	first	two	quarters	of	
2020	(Zhu	et	al.,	2020).	The	etiological	agent	of	COVID-19	is	SARS-
CoV-2.	 It	 is	transmitted	rapidly	from	one	 individual	to	the	other	 in	
close	proximity	via	contact	with	virus-laden	aerosols	discharged	in	
coughs	and	sneezes	of	symptomatic	patients	 (Dhama	et	al.,	2020).	
COVID-19	is	a	systemic	disease	that	can	move	beyond	the	lungs	by	
blood-based	 dissemination	 affecting	 multiple	 organs,	 tissues,	 and	
blood	vessels	 (see	Figure	1).	Although,	most	 affected	patients	 die	
as	a	result	of	acute	respiratory	distress	syndrome.	Also,	several	or-
gans	including	the	liver,	hearts,	kidney,	muscles,	spleen,	and	nervous	
system are severely affected worsening prognostic outcomes initi-
ated by epithelial infection and alveolar macrophage activation in 
the	 lungs	(Nishiga	et	al.,	2020).	Although,	several	drugs	have	been	
evaluated,	tested,	and	administered	in	the	frantic	efforts	to	stem	the	
dire	consequences	of	 the	COVID-19.	A	definitive	therapeutic	 regi-
men is yet to be established for disease prevention and or manage-
ment	 in	symptomatic	patients.	However,	drugs	such	as	remdesivir,	
lopinavir/ritonavir,	 favipiravir,	are	some	of	the	antiviral	agents	that	
have been used with varying degrees of successes in the manage-
ment	 of	 COVID-19	 (Wang	 et	 al.,	 2020).	 The	 intravenous	 adminis-
tration of remdesivir has been reported to ameliorate the disease 

symptoms	 in	 COVID-19	 patients	 in	 the	 United	 States	 of	 America	
(Holshue	 et	 al.,	 2020).	 Similarly,	 favipiravir	 has	 been	 reported	 to	
show	promising	desirable	therapeutic	effects,	without	apparent	side	
effects,	 in	COVID-19	(Chen	et	al.,	2020).	Furthermore,	tocilizumab	
(a	 recombinant	humanized	monoclonal	 antibody	of	 the	 IgG1	class)	
have been recommended for the treatment of severe rheumatoid 
arthritis,	systemic	juvenile	idiopathic	arthritis,	giant	cell	arteritis,	and	
life-threatening	cytokine	release	syndrome	(see	Figure	2).	Similarly,	
dexamethasone,	has	been	used	as	 supportive	 therapy	 for	COVID-
19	(Lester	et	al.,	2020).	Recently,	Ebselen,	a	new	therapeutic	candi-
date	against	SARS-CoV-2	have	been	reported	to	significantly	alter	
the	disease	outcomes	in	hospitalized	COVID-19	patients,	albeit	with	
some	controversy,	(Guaraldi	et	al.,	2020;	Haritha	et	al.,	2020).

Zinc	(Zn)	is	the	second	most	abundant	trace	metal	in	the	human	
body	after	iron.	Zinc	is	a	transition	element	in	the	periodic	table	with	
atomic	number	30	and	atomic	weight	65.37.	Zinc	exists	as	a	diva-
lent,	non-redox	active	cation	that	 is	neither	a	reducing	nor	an	oxi-
dizing	agent	in	mammalian	physiological	systems	(Solomons,	2001).	
The	physiological	and	biochemical	effects	of	this	essential	element	
is	manifested	in	all	organs	and	cell	types,	with	zinc	representing	an	
integral	component	of	approximately	10%	of	the	human	proteome,	
and	encompassing	hundreds	of	key	enzymes	and	transcription	fac-
tors.	Consequently,	zinc	is	an	essential	modulator	of	the	mammalian	
epigenome	with	well	 characterized	 structural,	 catalytic,	 and	 regu-
latory	roles.	In	humans,	Zn	is	found	in	all	tissues	and	approximately	
1.4–2.3	g	of	zinc	 is	found	in	the	body	of	an	adult.	The	distribution	
of	zinc	 in	mammalian	tissues	and	organs	vary	greatly,	with	85%	of	
total	amount	found	in	muscles	and	bones,	up	to	11%	occurring	in	the	

zinc	and	its	supplementation	as	adjuvant	for	vaccines	an	effective	therapeutic	regi-
men	in	the	management	of	the	ravaging	COVID-19	pandemic.

Practical applications
The	severe	acute	respiratory	syndrome	coronavirus	2	(SARS-CoV-2),	the	etiological	
agent	for	the	Coronavirus	Disease	2019	(COVID-19),	has	brought	unprecedented	un-
told	hardship	to	both	developing	and	developed	countries.	The	global	race	for	vac-
cine	development	against	COVID-19	continues	with	success	in	sight	with	attendant	
increasing	hospitalization,	morbidity,	and	mortality.	Available	drugs	with	anti-inflam-
matory	actions	have	become	alternative	to	stem	the	tide	of	COVID-19	with	atten-
dant	global	financial	crises.	However,	Zinc	is	known	to	modulate	several	physiological	
functions	 including	 intracellular	 signaling,	 enzyme	 function,	 gustation,	 and	 olfac-
tion,	as	well	as	reproductive,	skeletal,	neuronal,	and	cardiovascular	systems.	Hence,	
achieving	a	significant	therapeutic	approach	against	COVID-19	could	imply	the	use	
of	zinc	as	a	supplement	together	with	available	drugs	and	vaccines	waiting	for	emer-
gency	authorization	to	win	the	battle	of	COVID-19.	Together,	it	becomes	innovative	
and	creative	to	supplement	zinc	with	currently	available	drugs	and	vaccines.

K E Y W O R D S

antioxidant,	antiviral,	immunomodulatory,	SARS-CoV-2,	zinc	supplementation
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F I G U R E  1  This	shows	the	renin	angiotensin	aldosterone	system	(RAAS)	and	the	involvement	of	novel	angiotensin	converting	enzyme	
(ACE2)	in	the	pathogenesis	of	severe	acute	respiratory	syndrome	coronavirus	2	(SARS-CoV-2.	Angiotensinogen	(AGT)	is	cleaved	by	
renal	renin	to	produce	angiotensin	I,	while	angiotensin	converting	enzyme	(ACE)	produces	angiotensin	II	(a	vaso-constrictive	agent)	from	
angiotensin	1.	However,	a	novel	angiotensin	converting	enzyme	2	(ACE2)	cleaves	angiotensin	II	to	produce	two	molecules	namely	Ang	(1–7)	
Ang	(1–9),	respectively.	The	same	ACE2	is	the	receptor	for	SARS-CoV-2.	Binding	of	SARS-CoV-2	its	receptor	ACE2	facilitates	the	entry	of	the	
virus	in	the	host	cell	with	ultimate	initiation	of	COVID-19	pathogenesis

F I G U R E  2  This	shows	the	roles	of	cytokine	storm,	novel	angiotensin	converting	enzyme	(ACE2)	and	cardiovascular	dysfunctions	in	the	
pathogenesis	of	severe	acute	respiratory	syndrome	coronavirus	2	(SARS-CoV-2	and	the	potential	benefits	of	zinc	supplementation.	Zinc	
inhibits	macrophage	infiltration	and	T-cell	activation,	thereby	attenuating	production	of	pro-inflammatory	cytokine,	lung	inflammation	and	
ultimately,	cytokine	storm,	oxidative	stress	and	organ	damage.	In	pathological	condition	as	in	COVID-19,	ACE2	activity	is	reduced,	therefore,	
production	of	beneficial	molecules	such	as	Ang	(1–7)	Ang	(1–9)	s	significantly	impeded.	Zinc	supplementation	could	therefore	offer	
protection	against	cytokine	storm-induced	organ	damage
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skin,	and	only	0.1%	of	total	body	zinc	of	1µg/ml	is	found	in	plasma.	In	
extracellular	fluids,	zinc	is	predominantly	bound	to	proteins	includ-
ing	 albumin,	 alpha-2-macroglobulin	 (A2M),	 transferrin,	 and	 others	
(Livingstone,	2015).

The	intracellular	zinc	level	is	tightly	regulated	via	the	modulation	
of	 the	 zinc-sequestering	 proteins	 such	 as	metallothioneins,	 which	
are	 low	 molecular	 mass	 metal-binding	 protein	 of	 approximately	
6,500	Da	 that	 induces	 cytokine	 secretion	 from	macrophages.	The	
zinc	transporter	proteins	are	divided	into	two	general	subtypes,	that	
is,	 the	14-membered	SLC39s/ZIPs	 subtype	and	 the	10-membered	
SLC30s/ZnTs	subtype,	both	of	which	are	responsible	for	the	trans-
portation	of	 zinc	 intracellularly	 (Hojyo	&	Fukada,	2016).	The	ZnT1	
located	 in	 the	 cell	membrane	 transports	 zinc	 from	 the	basolateral	
membrane	of	erythrocytes	into	the	systemic	circulation,	while	ZnT2	
promotes	 the	 accumulation	 of	 zinc	 in	 lysosomes	 and	 endosomes	
thereby	ameliorating	toxic	cellular	effects	of	zinc.	The	ZnT3	is	found	
in	 the	 synaptic	 vesicles	 and	 is	 concerned	with	 zinc	 transportation	
to	synaptic	vesicles.	Furthermore,	ZnT4	modulates	zinc	absorption	
at the apical membrane of enterocytes and prominently involved in 
mammary	gland	zinc	metabolism.	However,	ZnT5	is	highly	expressed	
in pancreatic tissues but is found in other mammalian tissue where 
it	 plays	 several	modulatory	 roles,	 for	 instance,	 the	 loading	of	 zinc	
to	 alkaline	 phosphatase	 in	 secretory	 vesicles	 and	 maturation	 of	
osteoblasts	 in	 bone.	 ZnT6	 modulates	 the	 translocation	 of	 zinc	 to	
intracellular	 organelles	 including	 the	 secretory	 vesicles	 and	 Golgi	
apparatus,	but	ZnT7	is	essential	for	the	incorporation	of	zinc	into	the	
metalloenzymes	 that	modulates	various	physiological	processes	 in	
mammalian	tissues.	The	ZnT8	also	contributes	to	the	translocation	
of	cytoplasmic	zinc	to	secretory	vessels	and	is	the	key	transporter	
for	the	provision	of	zinc	to	the	storage	process	in	the	insulin-secret-
ing	pancreatic	beta	cells.	The	ZnT9	is	present	in	many	cells	and	tis-
sues,	and	is	probably	a	contributor	to	periparturient	and	increased	
lactogenesis,	while	ZnT10	 transports	 zinc	 to	 secretory	vesicle	 and	
is	 reported	 to	be	highly	expressed	 in	various	 tissues	 including	 the	
brain	and	the	liver	(Baltaci	et	al.,	2017).	This	review	strengthens	the	
need for a global cooperative effort to urgently identify and develop 
effective therapeutic strategies in the absence of vaccine.

1.1 | Epidemiology

The	unprecedented	COVID-19	pandemic	is	caused	by	a	novel	RNA	
coronavirus	 called	 SARS-CoV-2	 that	 produces	 a	 severe	 acute	 res-
piratory	 distress	 syndrome	 (ARDS)	 (Gao	 et	 al.,	 2020).	 The	 SARS-
CoV-2	was	first	detected	in	Wuhan	province	of	China	in	December	
2019	 (14),	 and	 by	 March	 11	 2020,	 COVID-19	 was	 declared	 as	 a	
global	 pandemic	 by	World	 Health	 Organization	 (2020).	 This	 virus	
is	highly	infectious	with	a	high	prevalence	rate.	As	of	December	5,	
2020,	 66,000,000	 people	 have	 tested	 positive	 to	 the	 COVID-19	
with mortality rate of more than 1,520,000,	and	42,	400,	000	re-
covered	globally.	Presently	 in	Nigeria,	 there	are	more	than	68,627 
confirmed cases with over 1,179	deaths	due	to	COVID-19.	The	 in-
flammation of the lungs has been implicated as one of the initiating 

factors	in	the	pathogenesis	of	COVID-19	infection,	while	underlying	
medical	conditions	such	as	hypertension,	asthma,	and	diabetes	are	
co-morbidities	associated	with	COVID-19.	For	now,	some	vaccines	
are	 in	 the	 last	 stage	 clinical	 trial,	 and	while	drugs	 currently	 in-use	
have	 achieved	 limited	 success.	 Interestingly,	 vaccines	 from	 Pfizer	
and	BioNTech	(USA/Germany)	have	received	emergency	authoriza-
tion	for	use.	Similarly,	vaccines	from	Moderna	(USA),	Sinovac	(China),	
and	Sputnik	V	(Russia)	have	also	been	approved	accordingly	for	use.	
There	is,	therefore,	an	urgent	need	to	identify,	develop,	and	deploy	
trace	element	such	as	zinc	as	adjuvant	for	vaccines/drugs	treatment	
and	management	of	COVID-19.

1.2 | Structure and genome of the SARS-CoV-2

The	family	Coronaviridae	is	a	large	group	of	viruses	that	infect	both	
animals	 and	 humans.	 The	 SARS-CoV-2	 is	 an	 enveloped	 virus	with	
roughly	 spherical	 or	 moderately	 pleomorphic	 virions	 of	 approxi-
mately	60–140	nm	in	diameter	(Yan	et	al.,	2020).	The	membrane	of	
the	virus	contains	the	spike	(S)	glycoprotein	that	forms	the	peplom-
ers	on	the	virion	surface,	giving	the	virus	its	“corona”––or	crown-like	
morphology	as	elucidated	by	electron	microscopy.	The	membrane	
(M)	glycoprotein	and	the	envelope	(E)	protein	are	known	to	provide	
the	ring	structure.	Within	the	interior	of	the	entire	virus	particle	is	
the	helical	nucleocapsid	comprised	of	the	nucleocapsid	(N)	protein	
complexed	with	a	single	positive-strand	RNA	genome	of	about	30	kb	
in	length	(Gralinski	&	Menachery,	2020).	The	first	genomic	sequence	
of	SARS-CoV-2	named	Wuhan-Hu-1	was	isolated	and	sequenced	in	
China	in	January	2020	as	documented	by	Gralinski	and	Menachery	
(2020)	and	Yan	et	al.	(2020).	It	is	worth	to	note	that	the	SARS-CoV-2	
genome	has	approximately	96%	similarity	to	the	bat	coronavirus	Bat	
CoV	 RaTH13	 with	 an	 estimated	 80%	 similarity	 with	 SARS-CoV-2	
(Gralinski	&	Menachery,	2020),	and	similarly	an	estimated	50%	iden-
tity	with	MERS-CoV	(Wu,	Peng,	et	al.,	2020;	Wu,	Liu,	et	al.,	2020).

1.3 | Possible mechanisms of Zinc in COVID-19-
related pathogenesis

Previous	 study	 suggested	 that	 ACE-2	 expression	 is	 regulated	 by	
Sirtuin	1	(SIRT1);	and	that	zinc	decreases	SIRT1	activity,	hence,	regu-
lation	of	 SIRT1	by	 zinc	 could	decrease	ACE-2	expression	 and	ulti-
mately	viral	entry	 into	the	cell	 (Cao	et	al.,	2019;	Patel	et	al.,	2016;	
Rosenkranz	et	al.,	2016).	Serum	zinc	concentration	has	been	posi-
tively	correlated	to	healthy	pulmonary	function,	as	high	zinc	levels	
have been shown to improve lung tolerance against damage by me-
chanical	ventilation	(Boudreault	et	al.,	2017).	In	an	ex	vivo	model	of	
the	chronic	obstructive	pulmonary	disease	(COPD),	decreasing	zinc	
levels	was	reported	to	exacerbate	the	leakage	of	the	epithelium	of	
the	 respiratory	 tract	 (Roscioli	et	al.,	2017).	Moreover,	 zinc	 supple-
mentation has been reported to improve lung integrity in an in vivo 
murine	model	of	acute	lung	injury	(Wessels	et	al.,	2020).	Therefore,	
infections with coronaviruses has been reported to precipitate 
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damage	of	the	ciliated	epithelium	and	ciliary	dyskinesia	with	ultimate	
impairment	of	 the	mucociliar	 clearance	 (Chilvers	et	al.,	2001).	 It	 is	
particularly important to note that physiological concentrations of 
zinc	 increase	 ciliary	beat	 frequency,	 thereby	preventing	 the	 infec-
tion	of	the	lung	by	COVID-19	(Woodworth	et	al.,	2010).	More	impor-
tantly,	persistent	low	serum	zinc	has	been	documented	in	critically	
ill	patients,	and	this	is	associated	with	recurrent	sepsis	and	inversely	
correlated	with	mortality	from	sepsis,	emphasizing	the	importance	
of	zinc	supplementation	in	COVID-19	therapy	(Hoeger	et	al.,	2017).

1.4 | Interaction of SARS-CoV with zinc

Recently,	Prasad	(2013)	reported	that	supportive	therapy	of	zinc	sup-
plementation	along	with	vitamin	C,	and	D	could	be	used	to	mitigate	
COVID-19	infection	as	zinc	inhibits	pH-dependent	steps	of	corona-
virus	 replication	by	 increasing	pH	 in	 intracellular	 vesicles	 and	also	
interfere	with	the	virus	entry	into	cells.	Again,	the	effectiveness	of	
zinc	can	be	enhanced	using	chloroquine	as	an	ionophore	while	zinc	
inside	 the	 infected	 cell	 can	 stop	 SARS-CoV-2	 replication	 (Rahman	
&	Idid,	2020).	In	addition	to	SARS-CoV,	a	number	of	other	viruses,	
including	HIV,	HSV,	 and	 vaccinia	 virus,	 are	 known	 to	 be	 inhibited	
by	zinc	salts	 (Rahman	&	 Idid,	2020).	Abd-Elsalam	et	al.	 (2020)	and	
Skalny	et	al.	(2020)	reported	that	chloroquine	can	act	as	ionophore	
for	zinc.	Chloroquine	enhances	uptake	of	zinc	by	the	lysosomes,	and	
the	combination	of	zinc	and	chloroquine	enhances	chloroquine	cy-
totoxicity	and	induces	apoptosis	in	malignant	cells.	It	has	also	been	
reported	that	Zn2	+	found	to	specifically	inhibit	the	SARS-CoV	RdRp	
elongation	and	template	binding	(Celik	et	al.,	2020;).	Earlier,	 it	was	
also	shown	that	Zn2+ inhibited the proteolytic processing of repli-
case	polyproteins	(Celik	et	al.,	2020;	Mossink,	2020).

2  | DIETARY SOURCES OF ZINC

Zinc	is	found	in	large	quantities	in	many	types	of	food	sources	includ-
ing	meat,	milk,	shell	fish,	chocolate,	legumes,	seeds,	nuts,	eggs,	whole	
grains,	and	some	vegetables.	Although,	zinc	occurs	naturally	in	a	wide	
variety	of	food	sources,	the	bioavailability,	that	 is	the	quantity	avail-
able	 for	 systemic	 use,	 also	 varies	 overwhelmingly.	 Interestingly,	 red	
meat,	leguminous	crops,	and	whole	grains	are	some	of	the	food	types	
with	 highest	 bioavailability	 of	 zinc	 following	 ingestion.	 Generally,	
plant-based	diets	are	poorer	zinc	sources	than	animal-based	diets,	with	
consequent	higher	prevalence	of	zinc	deficiency	 in	vegetarians	 than	
people	on	meat-based	diets	(Allès	et	al.,	2017).	Inadequacy	of	dietary	
intake	 of	 zinc	 has	 been	 characterized	 as	 zinc	 deficiency	 a	 common	
medical phenomenon particularly in the aged and patients consum-
ing	 meat-free	 diets	 (Haase	 et	 al.,	 2006).	 Although,	 diet-related	 zinc	
deficiency is more prevalent in third world countries it has also been 
reported	 in	developed	nations	such	as	the	United	States	of	America	
and	Japan,	where	less	acute	deficiency	states	have	been	suggested	to	
occur	with	high	prevalence	(Mayneris-Perxachs	et	al.,	2016).

Clinically,	 absence	 of	 zinc	 in	 the	 diet	 may	manifest	 as	 altered	
reproductive	 functioning,	 severe	 immune	 dysfunctions	 leading	 to	
increased	susceptibility	to	infections,	hyperammonemia,	neurosen-
sory	 disorders,	 decreased	 lean	 body	 mass,	 diarrhea,	 skin	 lesions,	
stunted	 growth,	 and	 increased	 susceptibility	 to	 chronic	 noncom-
municable	 diseases	 (Prasad,	 2008).	Moreover,	 patients	 consuming	
zinc-deficient	diet	have	also	been	reported	to	suffer	from	thymic	and	
splenic atrophy. In utero,	adverse	effects	of	chronic	consumption	of	
zinc-deficient	diets	have	been	reported	to	include	high	rates	of	fetal	
resorption,	 reduced	 litter	 size,	 congenital	 malformations,	 reduced	
splenocyte	responsiveness	to	mitogen,	and	reduced	serum	levels	of	
IgG2a	and	IgA	(Raqib	et	al.,	2007).	Also,	inadequacy	of	zinc	in	diets	
has	been	associated	with	attenuated	activity	of	the	osteoblast,	and	
reduced synthesis of collagen and proteoglycans in the presence of 
reduced	phosphatase	activity	(Tapiero	&	Tew,	2003).	In	addition	to	
inadequate	 dietary	 zinc	 intake,	 deficiency	 of	 zinc	may	 result	 from	
impaired	absorption	or	resorption	or	increased	excretion	of	zinc,	and	
several	 pathologic	 statuses	 including	 chronic	 diarrhea,	 extensive	
burns,	or	traumatic	and	surgical	wounds	(Aliev	et	al.,	2019).

Replenishing	 body	 zinc	 through	 adequate	 dietary	 intake	 is	 re-
quired	for	optimal	physiological	functioning	of	mammalian	organs	or	
tissues	due	to	the	non-availability	of	dedicated	storage	compartment	
for	 zinc	 and	 almost	 absolute	 reliance	 on	 tightly	 regulated	 homeo-
static	 concentrations	 (Gibson	 et	 al.,	 2016).	 Zinc	 is	 hydrophilic	 and	
cannot	diffuse	passively	through	the	cell	membrane.	As	a	result,	zinc	
is absorbed actively from the gastrointestinal tract with the aid of 
the	transmembrane	protein	transporter.	Zinc	transporter	(ZIP4)	also	
known	as	solute	carrier	family	member	A4	in	humans	is	encoded	by	
the	SLC39A4	gene	and	is	located	at	the	apical	surface	of	the	intesti-
nal	enterocytes,	whereas,	the	uptake	of	zinc	from	blood	is	believed	
to	be	 the	 function	of	ZIP5	which	 is	 largely	expressed	 in	 intestine,	
pancreas,	kidney,	and	embryonic	yolk	sac	(Jeong	&	Eide,	2013).	The	
zinc	 transporters	 function	 as	 zinc/hydrogen	 exchangers	 and	 play	
several important modulatory effects in diverse physiologic and 
pathologic	mechanisms	in	the	mammalian	systems	(Lu	et	al.,	2008).	
Genetic	 abnormalities	 with	 polymorphisms	 of	 the	 SLC39A4	 gene	
encoding	the	ZIP4	transporter	manifest	clinically	as	acrodermatitis	
enteropathica,	a	form	of	zinc	deficiency.

Zinc	modulates	several	physiological	functioning,	an	ability	that	
has	been	attributed	 to	 the	essentiality	of	 zinc	 to	 the	 formation	of	
several	endogenous	enzymatic	antioxidants	and	the	stabilization	of	
protein	domains	 that	 interact	 intracellularly	with	deoxyribonucleic	
acid	(Skrajnowska	&	Bobrowska-Korczak,	2019).	Established	physio-
logical	roles	for	zinc	are	seen	in	immunomodulation,	with	effects	on	
innate	and	adaptive	immunity.	Hojyo	et	al.	(2014)	reported	decreased	
immune	 system	 response	 with	 consequent	 altered	 resistance	 to	
pathogenic	 organism	 in	 zinc-deficient	 individuals.	 Moreover,	 zinc	
plays	 important	roles	 in	protein	and	deoxyribonucleic	acid	synthe-
sis,	growth	and	development	in utero,	intracellular	signaling,	enzyme	
function,	gustation,	and	olfaction,	as	well	as	reproductive,	skeletal,	
neuronal,	 cardiovascular	 systems,	 and	 wound	 healing	 (King	 et	 al.,	
2016;	Yu	et	al.,	2018).
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3  | ROLES OF ZINC A S AN IMMUNE 
BOOSTER

Zinc	is	an	important	regulator	of	the	immune	system	activities,	with	
adequate	level	of	zinc	in	the	systemic	circulation	required	for	T	cells	
maturation	and	thymulin	activity.	The	administration	of	zinc	report-
edly	elevated	CD4+	and	CD8+	cells	 in	zinc-deficient	patients,	and	
adequate	 zinc	 level	 is	 required	 for	 the	 activation	 of	 natural	 killer	
cells	(Baltaci	et	al.,	2018).	Furthermore,	the	number	and	functional	
ability of granulocytes to phagocytose invading pathogenic organ-
isms	are	significantly	reduced	in	zinc-deficient	patients	(Rosenkranz	
et	al.,	2011).	Zinc	is	important	for	the	maturation	of	T	and	B	lympho-
cytes,	but	the	development	of	the	T	lymphocytes	under	physiologi-
cal	conditions	are	more	severely	affected	in	zinc-deficient	individuals	
(Chung	et	al.,	2009).	Zinc	deficiency	has	been	reported	to	directly	or	
indirectly	 induce	a	dysregulation	of	physiological	zinc	homeostasis	
via mechanisms that interferes with specific immunomodulatory ac-
tivities	such	as	the	recruitment,	chemotactic,	and	phagocytic	activi-
ties	of	granulocytes,	as	well	as	alteration	of	monocyte	adhesion	to	
epithelial	cells	and	cytotoxicity	of	natural	killer	cells	(Nishikawa	et	al.,	
2020).	Moreover,	zinc	modulates	the	recognition	of	major	histocom-
patibility	complex	 (MHC)	by	natural	killer	 cells,	 and	 the	CD3+ dif-
ferentiation	and	cytotoxic	activity	has	been	reported	to	significantly	
increase	zinc	availability	(Jarosz	et	al.,	2017).

4  | ANTI- INFL AMMATORY ROLE OF ZINC

Several	cytokines	such	as	interleukins	1,	2,	6,	10,	and	12,	tumor	ne-
crosis	 factor	 alpha	 (TNFα),	 transforming	 growth	 factor	 (TGF),	 and	

interferon	gamma	(IFγ)	enhance	local	and	systemic	inflammatory	ef-
fects,	fever,	hormone	release,	and	increased	migration	of	leukocytes	
have been reported to be modulated by varying physiological levels 
of	zinc	in	mammalian	systems	(see	Figure	3).	Moreover,	zinc	has	been	
reported	to	inhibit	the	activation	of	nuclear	factor	kappa-light-chain-
enhancer	 of	 activated	B	 cells	 (NF-κB)	 in	 the	DNA	nuclear-binding	
domain	 by	 increasing	 the	 expression	 of	 peroxisome	 proliferator-	
activated receptor α	(PPAR-α),	which	is	a	mediator	for	lipoprotein	me-
tabolism,	inflammation,	and	glucose	homeostasis.	Increase	in	PPAR-α  
leads	to	the	downregulation	of	inflammatory	cytokines	and	adhesion	
molecule	 (see	Figure	3).	Consequently,	 the	 suppression	of	 the	 im-
mune system manifesting as increased susceptibility of the patients 
to	opportunistic	pathogenic	agents	is,	therefore,	observed.	Zinc	has	
been	reported	to	inhibit	phosphodiesterase	with	consequent	eleva-
tion	of	cyclic	guanosine	monophosphate	(cGMP),	activation	of	pro-
tein	kinase	A,	and	NF-κB	inhibition.	The	mechanisms	that	can	lead	to	
NF-κB	inhibition	include	blockage	of	the	incoming	stimulating	signal	
at	an	early	stage,	interference	with	a	cytoplasmic	step	in	the	NF-κB	
activation	pathway	by	blockage	of	a	specific	component	of	the	cas-
cade,	and	inhibition	of	NF-κB	binding	to	DNA,	thereby	altering	the	
modulatory	roles	in	inflammation	(Gilmore	&	Herscovitch,	2006).

Supplementation	 of	 zinc	 in	 diets	 has	 been	 reported	 to	 down-
regulate	 the	 production	 of	 inflammatory	 cytokines	 from	 T	 helper	
cells	 and	macrophages	probably	by	decreasing	gene	expression	of	
IL-1β	 and	TNF-α	 through	upregulation	of	mRNA	and	DNA-specific	
binding	 for	A20,	 subsequently	 inhibiting	NF-κB	 activation	 (Prasad	
et	 al.,	 2004).	 In	 in	 vitro	 studies,	 decreased	 levels	 of	 NF-κB,	 TNF-
α,	 and	 IL-1β	 are	 associated	with	 altered	 zinc	 levels	 (see	 Figure	 3).	
Similarly,	zinc	can	bind	to	a	zinc	 finger-like	motif	 found	on	protein	
kinase	C	(PKC)	and	inhibit	PMA-mediated	PKC	translocation	to	the	

F I G U R E  3  This	shows	biological	and	pharmacological	roles	of	Zinc	in	the	management	and	prevention	of	COVID-19	pandemic.	Anti-
inflammatory	property	of	zinc	is	demonstrated	through	the	inhibition	of	translocation	of	NF-κB	from	cytoplasm	to	nucleus	where	it	binds	to	
pro-inflammatory	genes	leading	to	exaggerated	production	of	pro-inflammatory	cytokines	and	inflammatory	mediators	such	as	Interleukin	
1	beta	(IL-1β),	Interleukin	6	(IL-6),	tumor	necrosis	factor	alpha	(TNFα),	Integrins,	Intercellular	Adhesion	Molecule	1	(ICAM-1),	Vascular	cell	
adhesion	protein	1	(VCAM-1),	Inducible	nitric	oxide	synthase	(iNOS)	and	yclooxygenase-2	(COX2)	with	attendant	intravascular	disseminated	
coagulation and atherosclerosis
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membrane.	When	 this	 occurs	 in	mast	 cells,	NF-κB	activity	 is	 indi-
rectly	 inhibited	 (Brieger	 et	 al.,	 2013).	 Furthermore,	 zinc	 has	 been	
shown to influence cellular signal transduction by inhibition of sev-
eral	dephosphorylating	enzymes	 like	protein	tyrosine	phosphatase	
(PTPs),	 cyclic	 nucleotide	 phosphodiesterases,	 and	 dual	 specificity	
phosphatases.

5  | ZINC IN MANAGING COVID -19-
A SSOCIATED CY TOKINE STORM

Severe	 infection	 of	 the	 respiratory	 epithelium	 can	 precipitate	 an	
ARDS,	 characterized	 by	 excessive,	 exaggerated,	 and	 fulminating	
inflammation,	 termed	 a	 cytokine	 storm	 (Calder,	 2020).	 Cytokine	
storm	occurs	when	an	immune	system	is	overactivated	by	infection,	
drug,	and/or	some	other	stimuli,	leading	to	exaggerated	response	of	
cytokines	 (IFN,	 IL,	chemokines,	CSF,	TNF,	etc.)	being	released	 into	
circulation with a widespread and detrimental impact on multiple 
organs	 (Tisoncik	 et	 al.,	 2012).	 It	 has	 been	hypothesized	 that	 tran-
sient	 zinc	deficiency	 that	occurs	during	COVID-19	 infection	 could	
result	in	a	hyperinflammatory	state,	and	recently,	symptoms	such	as	
loss	 of	 taste	 and	 smell	 have	 been	 positively	 correlated	COVID-19	
(Pisano	&	Hilas,	2016;	Stratton	et	al.,	2020;	Vaira	et	al.,	2020).	Pro-
inflammatory	cytokines	such	as	IL-1	and	IL-6	have	been	reported	to	
play	an	important	role	in	severe	lung	inflammation,	leading	to	ARDS,	
and	ultimately	death	of	COVID-19	patients	(Conti	et	al.,	2020;	Wang	
et	 al.,	 2020).	 Furthermore,	 high	 serum	 levels	 of	 pro-inflammatory	
cytokines	 [IL-1,	 IL-6,	 IL-12,	 interferon	 g	 (IFN-g),	 and	 transform-
ing	 growth	 factor-β]	 and	 chemokines	 (CCL2,	CXCL9,	CXCL10,	 and	
IL-8)	were	 found	 in	patients	with	SARS	compared	with	 individuals	
with	uncomplicated	SARS	(Martinez-Urbistondo	et	al.,	2020;	Wong	
et	 al.,	 2004).	 In	 mild	 diseases,	 C-reactive	 protein	 (CRP)	 levels	 of	
15	mg/L,	and	a	10%	decrease	in	zinc	was	observed	(Galloway	et	al.,	
2000).	 In	 severe	 infectious	 diseases,	 CRP	 levels	 can	 reach	 100–
200	mg/L,	with	a	much	greater	decrease	 in	zinc	 levels	 (40%–60%)	
(Galloway	et	al.,	2000).

Excessive	 inflammatory	 response	 elicited	 by	 SARS-CoV-2	 in-
fection	 has	 been	 found	 to	 result	 in	 the	 overproduction	 of	 pro-in-
flammatory	 cytokines	 and	 cytokine,	 and	 this	 is	 known	 to	 play	 a	
significant	 role	 in	COVID-19	pathogenesis	 (Patterson	et	al.,	2020).	
However,	 the	 anti-inflammatory	 activity	 of	 zinc	 has	 been	 demon-
strated	 through	 the	 regulation	of	T-cell	 function,	 inhibition	of	 IKK	
activity,	 and	 subsequent	NF-κB	 signaling	with	 concomitant	 reduc-
tion	in	pro-inflammatory	cytokine	production	(Wessels	et	al.,	2013).	
Previous	 findings	 demonstrated	 that	 zinc	 deficiency	 increases	 the	
susceptibility	 to	 systemic	 inflammation	 and	 sepsis-induced	 organ	
damage	including	lungs	(Knoell	et	al.,	2009).	Again,	Bao	et	al.	(2010)	
reported	 that	 in	a	model	of	multiple	 infection-induced	sepsis,	 zinc	
deficiency	 resulted	 in	 increased	NF-κB	p65	mRNA	expression	and	
production	in	lungs	resulting	in	up-regulation	of	target	genes	such	as	
IL-1β,	TNFα,	and	ICAM-1,	whereas	neutrophil	infiltration	and	MPO-
mediated	oxidative	damage	was	attenuated	by	zinc	supplementation	

(Ganatra	et	al.,	2017).	Therefore,	zinc	supplementation	might	offer	
unparalleled	mitigation	of	excessive	inflammation	during	COVID-19	
infection.

6  | ANTIOXIDANT PROPERTIES OF ZINC

Although	zinc	does	not	inhibit	the	destructive	effects	of	reactive	
oxygen	species	(ROS)	directly,	zinc	retards	the	oxidative	processes	
on	 a	 long-term	 basis	 by	 inducing	 the	 expression	 of	metallothio-
neins.	These	are	metal-binding	cysteine-rich	proteins	responsible	
for	 maintaining	 zinc-related	 cell	 homeostasis	 and	 act	 as	 potent	
electrophilic	scavengers	and	cytoprotective	agents.	Furthermore,	
zinc	increases	the	activation	of	antioxidant	proteins	and	enzymes,	
such	 as	 glutathione	 and	 catalase.	 Zinc	 exerts	 its	 antioxidant	 ef-
fect	via	two	acute	mechanisms,	one	of	which	is	the	stabilization	of	
protein	sulfhydryls	against	oxidation,	whereas,	the	second	mecha-
nism	involves	the	antagonism	of	transition	metal-catalyzed	oxida-
tive	reactions.	Moreover,	zinc	can	exchange	redox	active	metals,	
such	as	copper	and	iron,	in	certain	binding	sites	and	attenuate	cel-
lular	site-specific	oxidative	injury.	Zinc	is	a	component	of	superox-
ide	dismutase	(SOD	1,	SOD3)	which	catalyzes	the	dismutation	of	
superoxide	anion	radicals	to	hydrogen	peroxide	 (H2O2)	and	thus,	
preventing	the	generation	of	other	toxic-free	radicals	and	their	de-
rivatives,	for	example,	hydroxyl	or	peroxynitrite	radicals	(Strange	
et	al.,	2003).	Zinc	acts	as	a	co-factor	for	cytosolic	and	extracellular	
Zn/Cu	SOD	enzyme,	which	acts	as	a	scavenger	of	ROS	by	catalyz-
ing	 the	dismutation	of	O2 −	 radical	 into	 the	 less	 harmful	O2 and 
H2O2	(Mariani,	2008).

Zinc	potently	inhibits	the	Mia40/Erv1	pathway	associated	with	
the transmembrane immunoglobulin and mucin domain family pro-
teins	 that	 modulate	 T-cell	 proliferation	 and	 cytokine	 production	
(Morgan	et	al.,	2009).	Alteration	in	intracellular	zinc	level	has	been	
suggested	 to	 be	 linked	with	 the	 dysregulation	 of	 physiological	 ar-
rangement	of	mitochondrial	proteins,	thereby	interfering	with	mito-
chondrial	synthesis,	and	in	some	cases	activation	of	stress	response	
in the endoplasmic reticulum due to accumulation of misfolded pro-
teins that induce a vicious cycle of endoplasmic reticulum stress and 
oxidative	stress	(Malhotra	et	al.,	2008).Zinc	has	been	reported	to	in-
crease	the	levels	of	glutathione,	catalase,	glutathione	S-transferase,	
and	heme	oxygenase	(Goel	et	al.,	2005;	Prasad,	2014).	In	the	same	
vein,	low	levels	of	zinc	as	seen	in	zinc-deficient	individuals	has	been	
experimentally	 associated	 with	 oxidative	 stress-medicated	 tissue	
destruction	(Zhao	et	al.	2011),	probably	by	upregulating	nuclear	fac-
tor	erythroid	2-related	factor	2	(Sehsah	et	al.,	2019).

Increased	 levels	of	ROS	seen	with	decreased	dietary	 intake	of	
zinc	might	be	associated	with	reduced	functional	activity	of	the	zinc	
containing	SOD	(Jarosz	et	al.,	2017).	Moreover,	zinc	protects	sulfhy-
dryl	 groups	 in	 proteins	 against	 oxidative	 stress-mediated	 damage,	
thereby	modulating	the	regulation	of	enzymatic	activities	and	alter-
ing	the	total	antioxidant	capacity	 in	biological	systems	 (Krężel	and	
Maret,	2016).
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7  | ANTIVIR AL PROPERTIES OF ZINC

Zinc	 has	 been	 reported	 to	 exert	 potent	 antiviral	 activities	 against	
diverse	 array	 of	 viruses	 including	 the	 herpes	 simplex	 virus	 1	 and	
2,	 rhinovirus,	 influenza,	 coronaviruses,	 human	 immunodeficiency	
virus,	and	a	host	of	other	pathogenic	viruses.	Zinc	has	been	reported	
to	ameliorate	the	pathogenic	effects	of	HSV-1	and	HSV-2	by	alter-
ing	 the	 viral	 polymerase	 function,	 protein	 production,	 and	 direct	
inactivation	 of	 the	 viruses	 as	well	 as	 reducing	HSV	 replication	 by	
interfering	with	the	protein	ubiquitination	pathway	(Qiu	et	al.,	2013).	
Furthermore,	in	a	mouse	study,	intra-vaginal	zinc	inoculation	in	liquid	
or	gel	form	demonstrated	significant	reductions	in	HSV-2	infection,	
whereas	topical	zinc	application	has	been	reported	to	significantly	
reduce	recurrence	and	duration	of	HSV-1	and	HSV-2	infection	(Qiu	
et	 al.,	 2013).	 The	 efficacy	 of	 topical	 application,	 together	 with	 in	
vitro	results,	suggest	that	free	zinc	might	indeed	coat	HSV	virions,	
thus	preventing	infection	(Lim	et	al.,	2013).

Clinical	studies	using	zinc	supplementation	are	primarily	limited	
to	rhinovirus	infection,	and	are	often	grouped	with	other	“common	
cold”	viruses	such	as	influenza	and	coronaviruses	with	several	studies	
using	zinc	lozenges	and	formulations.	The	replication	of	rhinoviruses	
was	potently	inhibited	by	Zinc	salts	in	in	vitro	experiments	and	ame-
lioration of clinical symptoms associated with common cold has been 
reported	to	occur	following	increased	level	of	zinc	salts	in	the	nasal	
cavity	 (Vakili	 et	al.,	2009).	For	 instance,	 the	administration	of	 zinc	
bisglycinate reduced significantly the duration of illness and mani-
festation	of	symptoms	under	experimental	conditions	(Sanguansak	
&	Lakkana,	2013).	Similarly,	zinc	salts	have	been	reported	to	inhibit	
respiratory	syncytial	virus	in	vitro	(Suara	&	Crowe,	2010).

Similar	 to	viral	RNA-dependent	RNA	polymerase,	zinc	has	also	
been identified as an inhibitor of retrovirus reverse transcriptases 
with	zinc	cations	displacing	magnesium	ions	from	HIV-1	RT,	thereby	
potentiating	 the	 formation	 of	 an	 inefficient	 replication	 complex	
(Fenstermacher	&	DeStefano,	2011).	In	HIV-infected	patients,	mani-
festation	of	zinc	deficiency	has	been	reportedly	linked	with	immuno-
logical	inadequacy	that	sometimes	contribute	to	the	poor	prognostic	
disease	outcome.	However,	prophylactic	application	of	zinc	has	been	
reported	to	show	significant	reduction	in	viral	load	of	HIV	patients	
and	protected	against	vaginal	SHIV-RT	(a	simian	HIV	virus	express-
ing	the	human	RT)	(Mizenina	et	al.,	2017).

8  | THER APEUTIC ROLE OF ZINC

The	application	of	zinc	as	a	drug	to	treat	diseases	is	increasing	due	to	
advances	in	the	understanding	of	modulatory	roles	of	zinc	in	mam-
malian	 systems.	Reported	beneficial	 effects	of	 zinc	 administration	
include	reduction	in	the	incidence	of	diarrhea	and	pneumonia,	and	
the	 rate	 of	mortality	 among	 young	 children	 in	 low-middle	 income	
countries	(Tran	et	al.,	2011).	Zinc	supplementation	in	young	children	
has	been	reported	to	reduce	child	mortality	by	6%	in	deficient	popu-
lations	and	reduced	deaths	of	children	over	1	year	of	age	by	18%.	

Moreover,	supplemental	administration	of	zinc	to	the	diet	has	been	
reported	 to	prevent	stunted	growth	 in	children	 (Tran	et	al.,	2011).	
Zinc	has	been	found	to	be	very	useful	in	the	management	of	acute	
childhood	diarrhea	with	a	recommendation	of	10-	to	14-day	course	
of	 zinc	 treatment,	 in	addition	 to	 the	usual	 administered	oral	 rehy-
dration	solution,	by	the	World	Health	Organization	and	the	United	
Nations	Children's	Fund	(Patel	et	al.,	2011).	Zinc	has	been	used	ther-
apeutically for the management of chronic gastrointestinal disor-
ders,	renal	diseases,	sickle	cell	anemia,	and	malabsorption	syndrome	
acrodermatitis	enteropathica	(Rosenkranz	et	al.,	2015).

9  | CONCLUSION

The	beneficial	roles	of	zinc	on	physiological	and	pathological	states	
have	been	well	described	in	literature,	and	highlighted	the	usefulness	
of	zinc	 in	many	clinical	diseases.	More	 importantly,	 the	usefulness	
of	zinc	as	an	antiviral	agent	 for	 the	management	of	 such	viral	dis-
eases	as	influenza,	rhinovirus,	and	coronaviruses	strongly	suggests	
potential	beneficial	roles	and	applications	of	zinc	in	the	management	
of	COVID-19,	 probably	 through	 the	 enhancement	 of	 the	 total	 an-
tioxidant	 capacity	 and	 immunomodulatory	 effects.	 Therefore,	 the	
inclusion	 of	 Zinc	 as	 a	 component	 of	 therapeutic	 or	 prophylactic	
regimen	in	the	current	treatment	of	COVID-19	is	strongly	advised.	
Furthermore,	immunomodulatory	effect	of	zinc	will	be	of	significant	
benefits	to	patients	with	co-morbidity	and	those	with	severe	under-
lying	medical	conditions.	 Interestingly,	zinc	supplementation	might	
decrease	angiotensin-converting	enzyme	2	(ACE-2)	expression,	and	
thus,	viral	entry	into	the	host	cell.	Therefore,	the	high	the	concen-
tration	of	zinc,	the	lower	the	activity	and	entry	of	SARS-CoV-2	into	
the	 host	 cell.	 Hence,	 zinc	 supplementation	 could	 be	 of	 potential	
benefit	 for	 mitigating	 COVID-19	 that	 has	 brought	 unprecedented	
global	health	crises	and	economic	burden.	In	the	current	pandemic	
of	 COVID-19,	 zinc	 supplementation	 could	 play	 significant	 roles	 in	
the	fight	against	COVID-19	as	immune	booster	with	anti-viral	drugs	
and	 inhibiting	 SARS-CoV-2	 replication	 in	 infected	 cells	 especially	
if	combined	with	chloroquine	and	anti-inflammatory	drugs	such	as	
dexamethasone	by	preventing	the	release	of	pro-inflammatory	cy-
tokines.	 Therefore,	 foods	 rich	 in	 zinc	 and	 zinc	 supplements	 could	
serve	as	adjuvants	in	combination	with	up-coming	vaccines	for	the	
treatment	of	COVID-19	pandemic.	Together,	research	on	inhibitory	
action	of	zinc	supplementation	on	the	pathogenesis	of	SARS-CoV-2	
across	all	ages,	race,	and	sex	should	be	urgently	conducted	as	alter-
native	anti-inflammatory	and	 immuno-modulatory	 regimen	against	
the	current	COVID-19	pandemic.	Furthermore,	studies	on	zinc	sup-
plementation	in	hospitalized	COVID-19	patients	might	give	a	novel	
insight in containing the unprecedented global health crisis and eco-
nomic	catastrophe	created	by	COVID-19	pandemic.
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