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Potential health benefits of zinc supplementation for the 
management of COVID-19 pandemic
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Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological 
agent for the Coronavirus Disease 2019 (COVID-19). The COVID-19 pandemic has 
created unimaginable and unprecedented global health crisis. Since the outbreak of 
COVID-19, millions of dollars have been spent, hospitalization overstretched with 
increasing morbidity and mortality. All these have resulted in unprecedented global 
economic catastrophe. Several drugs and vaccines are currently being evaluated, 
tested, and administered in the frantic efforts to stem the dire consequences of 
COVID-19 with varying degrees of successes. Zinc possesses potential health ben-
efits against COVID-19 pandemic by improving immune response, minimizing infec-
tion and inflammation, preventing lung injury, inhibiting viral replication through the 
interference of the viral genome transcription, protein translation, attachment, and 
host infectivity. However, this review focuses on the various mechanisms of action of 
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1  | INTRODUC TION

The infection of humans with the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) in Wuhan, the capital of Hubei Province 
in the People's Republic of China in December 2019 led to the stag-
geringly devastating Coronavirus disease 2019 (COVID-19). The 
COVID-19 pandemic has reached unprecedented global magnitude 
in which almost every country affected in the first two quarters of 
2020 (Zhu et al., 2020). The etiological agent of COVID-19 is SARS-
CoV-2. It is transmitted rapidly from one individual to the other in 
close proximity via contact with virus-laden aerosols discharged in 
coughs and sneezes of symptomatic patients (Dhama et al., 2020). 
COVID-19 is a systemic disease that can move beyond the lungs by 
blood-based dissemination affecting multiple organs, tissues, and 
blood vessels (see Figure 1). Although, most affected patients die 
as a result of acute respiratory distress syndrome. Also, several or-
gans including the liver, hearts, kidney, muscles, spleen, and nervous 
system are severely affected worsening prognostic outcomes initi-
ated by epithelial infection and alveolar macrophage activation in 
the lungs (Nishiga et al., 2020). Although, several drugs have been 
evaluated, tested, and administered in the frantic efforts to stem the 
dire consequences of the COVID-19. A definitive therapeutic regi-
men is yet to be established for disease prevention and or manage-
ment in symptomatic patients. However, drugs such as remdesivir, 
lopinavir/ritonavir, favipiravir, are some of the antiviral agents that 
have been used with varying degrees of successes in the manage-
ment of COVID-19 (Wang et al., 2020). The intravenous adminis-
tration of remdesivir has been reported to ameliorate the disease 

symptoms in COVID-19 patients in the United States of America 
(Holshue et al., 2020). Similarly, favipiravir has been reported to 
show promising desirable therapeutic effects, without apparent side 
effects, in COVID-19 (Chen et al., 2020). Furthermore, tocilizumab 
(a recombinant humanized monoclonal antibody of the IgG1 class) 
have been recommended for the treatment of severe rheumatoid 
arthritis, systemic juvenile idiopathic arthritis, giant cell arteritis, and 
life-threatening cytokine release syndrome (see Figure 2). Similarly, 
dexamethasone, has been used as supportive therapy for COVID-
19 (Lester et al., 2020). Recently, Ebselen, a new therapeutic candi-
date against SARS-CoV-2 have been reported to significantly alter 
the disease outcomes in hospitalized COVID-19 patients, albeit with 
some controversy, (Guaraldi et al., 2020; Haritha et al., 2020).

Zinc (Zn) is the second most abundant trace metal in the human 
body after iron. Zinc is a transition element in the periodic table with 
atomic number 30 and atomic weight 65.37. Zinc exists as a diva-
lent, non-redox active cation that is neither a reducing nor an oxi-
dizing agent in mammalian physiological systems (Solomons, 2001). 
The physiological and biochemical effects of this essential element 
is manifested in all organs and cell types, with zinc representing an 
integral component of approximately 10% of the human proteome, 
and encompassing hundreds of key enzymes and transcription fac-
tors. Consequently, zinc is an essential modulator of the mammalian 
epigenome with well characterized structural, catalytic, and regu-
latory roles. In humans, Zn is found in all tissues and approximately 
1.4–2.3 g of zinc is found in the body of an adult. The distribution 
of zinc in mammalian tissues and organs vary greatly, with 85% of 
total amount found in muscles and bones, up to 11% occurring in the 

zinc and its supplementation as adjuvant for vaccines an effective therapeutic regi-
men in the management of the ravaging COVID-19 pandemic.

Practical applications
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological 
agent for the Coronavirus Disease 2019 (COVID-19), has brought unprecedented un-
told hardship to both developing and developed countries. The global race for vac-
cine development against COVID-19 continues with success in sight with attendant 
increasing hospitalization, morbidity, and mortality. Available drugs with anti-inflam-
matory actions have become alternative to stem the tide of COVID-19 with atten-
dant global financial crises. However, Zinc is known to modulate several physiological 
functions including intracellular signaling, enzyme function, gustation, and olfac-
tion, as well as reproductive, skeletal, neuronal, and cardiovascular systems. Hence, 
achieving a significant therapeutic approach against COVID-19 could imply the use 
of zinc as a supplement together with available drugs and vaccines waiting for emer-
gency authorization to win the battle of COVID-19. Together, it becomes innovative 
and creative to supplement zinc with currently available drugs and vaccines.
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F I G U R E  1  This shows the renin angiotensin aldosterone system (RAAS) and the involvement of novel angiotensin converting enzyme 
(ACE2) in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2. Angiotensinogen (AGT) is cleaved by 
renal renin to produce angiotensin I, while angiotensin converting enzyme (ACE) produces angiotensin II (a vaso-constrictive agent) from 
angiotensin 1. However, a novel angiotensin converting enzyme 2 (ACE2) cleaves angiotensin II to produce two molecules namely Ang (1–7) 
Ang (1–9), respectively. The same ACE2 is the receptor for SARS-CoV-2. Binding of SARS-CoV-2 its receptor ACE2 facilitates the entry of the 
virus in the host cell with ultimate initiation of COVID-19 pathogenesis

F I G U R E  2  This shows the roles of cytokine storm, novel angiotensin converting enzyme (ACE2) and cardiovascular dysfunctions in the 
pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 and the potential benefits of zinc supplementation. Zinc 
inhibits macrophage infiltration and T-cell activation, thereby attenuating production of pro-inflammatory cytokine, lung inflammation and 
ultimately, cytokine storm, oxidative stress and organ damage. In pathological condition as in COVID-19, ACE2 activity is reduced, therefore, 
production of beneficial molecules such as Ang (1–7) Ang (1–9) s significantly impeded. Zinc supplementation could therefore offer 
protection against cytokine storm-induced organ damage
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skin, and only 0.1% of total body zinc of 1µg/ml is found in plasma. In 
extracellular fluids, zinc is predominantly bound to proteins includ-
ing albumin, alpha-2-macroglobulin (A2M), transferrin, and others 
(Livingstone, 2015).

The intracellular zinc level is tightly regulated via the modulation 
of the zinc-sequestering proteins such as metallothioneins, which 
are low molecular mass metal-binding protein of approximately 
6,500 Da that induces cytokine secretion from macrophages. The 
zinc transporter proteins are divided into two general subtypes, that 
is, the 14-membered SLC39s/ZIPs subtype and the 10-membered 
SLC30s/ZnTs subtype, both of which are responsible for the trans-
portation of zinc intracellularly (Hojyo & Fukada, 2016). The ZnT1 
located in the cell membrane transports zinc from the basolateral 
membrane of erythrocytes into the systemic circulation, while ZnT2 
promotes the accumulation of zinc in lysosomes and endosomes 
thereby ameliorating toxic cellular effects of zinc. The ZnT3 is found 
in the synaptic vesicles and is concerned with zinc transportation 
to synaptic vesicles. Furthermore, ZnT4 modulates zinc absorption 
at the apical membrane of enterocytes and prominently involved in 
mammary gland zinc metabolism. However, ZnT5 is highly expressed 
in pancreatic tissues but is found in other mammalian tissue where 
it plays several modulatory roles, for instance, the loading of zinc 
to alkaline phosphatase in secretory vesicles and maturation of 
osteoblasts in bone. ZnT6 modulates the translocation of zinc to 
intracellular organelles including the secretory vesicles and Golgi 
apparatus, but ZnT7 is essential for the incorporation of zinc into the 
metalloenzymes that modulates various physiological processes in 
mammalian tissues. The ZnT8 also contributes to the translocation 
of cytoplasmic zinc to secretory vessels and is the key transporter 
for the provision of zinc to the storage process in the insulin-secret-
ing pancreatic beta cells. The ZnT9 is present in many cells and tis-
sues, and is probably a contributor to periparturient and increased 
lactogenesis, while ZnT10 transports zinc to secretory vesicle and 
is reported to be highly expressed in various tissues including the 
brain and the liver (Baltaci et al., 2017). This review strengthens the 
need for a global cooperative effort to urgently identify and develop 
effective therapeutic strategies in the absence of vaccine.

1.1 | Epidemiology

The unprecedented COVID-19 pandemic is caused by a novel RNA 
coronavirus called SARS-CoV-2 that produces a severe acute res-
piratory distress syndrome (ARDS) (Gao et  al.,  2020). The SARS-
CoV-2 was first detected in Wuhan province of China in December 
2019 (14), and by March 11 2020, COVID-19 was declared as a 
global pandemic by World Health Organization (2020). This virus 
is highly infectious with a high prevalence rate. As of December 5, 
2020, 66,000,000 people have tested positive to the COVID-19 
with mortality rate of more than 1,520,000, and 42, 400, 000 re-
covered globally. Presently in Nigeria, there are more than 68,627 
confirmed cases with over 1,179 deaths due to COVID-19. The in-
flammation of the lungs has been implicated as one of the initiating 

factors in the pathogenesis of COVID-19 infection, while underlying 
medical conditions such as hypertension, asthma, and diabetes are 
co-morbidities associated with COVID-19. For now, some vaccines 
are in the last stage clinical trial, and while drugs currently in-use 
have achieved limited success. Interestingly, vaccines from Pfizer 
and BioNTech (USA/Germany) have received emergency authoriza-
tion for use. Similarly, vaccines from Moderna (USA), Sinovac (China), 
and Sputnik V (Russia) have also been approved accordingly for use. 
There is, therefore, an urgent need to identify, develop, and deploy 
trace element such as zinc as adjuvant for vaccines/drugs treatment 
and management of COVID-19.

1.2 | Structure and genome of the SARS-CoV-2

The family Coronaviridae is a large group of viruses that infect both 
animals and humans. The SARS-CoV-2 is an enveloped virus with 
roughly spherical or moderately pleomorphic virions of approxi-
mately 60–140 nm in diameter (Yan et al., 2020). The membrane of 
the virus contains the spike (S) glycoprotein that forms the peplom-
ers on the virion surface, giving the virus its “corona”––or crown-like 
morphology as elucidated by electron microscopy. The membrane 
(M) glycoprotein and the envelope (E) protein are known to provide 
the ring structure. Within the interior of the entire virus particle is 
the helical nucleocapsid comprised of the nucleocapsid (N) protein 
complexed with a single positive-strand RNA genome of about 30 kb 
in length (Gralinski & Menachery, 2020). The first genomic sequence 
of SARS-CoV-2 named Wuhan-Hu-1 was isolated and sequenced in 
China in January 2020 as documented by Gralinski and Menachery 
(2020) and Yan et al. (2020). It is worth to note that the SARS-CoV-2 
genome has approximately 96% similarity to the bat coronavirus Bat 
CoV RaTH13 with an estimated 80% similarity with SARS-CoV-2 
(Gralinski & Menachery, 2020), and similarly an estimated 50% iden-
tity with MERS-CoV (Wu, Peng, et al., 2020; Wu, Liu, et al., 2020).

1.3 | Possible mechanisms of Zinc in COVID-19-
related pathogenesis

Previous study suggested that ACE-2 expression is regulated by 
Sirtuin 1 (SIRT1); and that zinc decreases SIRT1 activity, hence, regu-
lation of SIRT1 by zinc could decrease ACE-2 expression and ulti-
mately viral entry into the cell (Cao et al., 2019; Patel et al., 2016; 
Rosenkranz et al., 2016). Serum zinc concentration has been posi-
tively correlated to healthy pulmonary function, as high zinc levels 
have been shown to improve lung tolerance against damage by me-
chanical ventilation (Boudreault et al., 2017). In an ex vivo model of 
the chronic obstructive pulmonary disease (COPD), decreasing zinc 
levels was reported to exacerbate the leakage of the epithelium of 
the respiratory tract (Roscioli et al., 2017). Moreover, zinc supple-
mentation has been reported to improve lung integrity in an in vivo 
murine model of acute lung injury (Wessels et al., 2020). Therefore, 
infections with coronaviruses has been reported to precipitate 
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damage of the ciliated epithelium and ciliary dyskinesia with ultimate 
impairment of the mucociliar clearance (Chilvers et al., 2001). It is 
particularly important to note that physiological concentrations of 
zinc increase ciliary beat frequency, thereby preventing the infec-
tion of the lung by COVID-19 (Woodworth et al., 2010). More impor-
tantly, persistent low serum zinc has been documented in critically 
ill patients, and this is associated with recurrent sepsis and inversely 
correlated with mortality from sepsis, emphasizing the importance 
of zinc supplementation in COVID-19 therapy (Hoeger et al., 2017).

1.4 | Interaction of SARS-CoV with zinc

Recently, Prasad (2013) reported that supportive therapy of zinc sup-
plementation along with vitamin C, and D could be used to mitigate 
COVID-19 infection as zinc inhibits pH-dependent steps of corona-
virus replication by increasing pH in intracellular vesicles and also 
interfere with the virus entry into cells. Again, the effectiveness of 
zinc can be enhanced using chloroquine as an ionophore while zinc 
inside the infected cell can stop SARS-CoV-2 replication (Rahman 
& Idid, 2020). In addition to SARS-CoV, a number of other viruses, 
including HIV, HSV, and vaccinia virus, are known to be inhibited 
by zinc salts (Rahman & Idid, 2020). Abd-Elsalam et al. (2020) and 
Skalny et al. (2020) reported that chloroquine can act as ionophore 
for zinc. Chloroquine enhances uptake of zinc by the lysosomes, and 
the combination of zinc and chloroquine enhances chloroquine cy-
totoxicity and induces apoptosis in malignant cells. It has also been 
reported that Zn2 + found to specifically inhibit the SARS-CoV RdRp 
elongation and template binding (Celik et al., 2020;). Earlier, it was 
also shown that Zn2+ inhibited the proteolytic processing of repli-
case polyproteins (Celik et al., 2020; Mossink, 2020).

2  | DIETARY SOURCES OF ZINC

Zinc is found in large quantities in many types of food sources includ-
ing meat, milk, shell fish, chocolate, legumes, seeds, nuts, eggs, whole 
grains, and some vegetables. Although, zinc occurs naturally in a wide 
variety of food sources, the bioavailability, that is the quantity avail-
able for systemic use, also varies overwhelmingly. Interestingly, red 
meat, leguminous crops, and whole grains are some of the food types 
with highest bioavailability of zinc following ingestion. Generally, 
plant-based diets are poorer zinc sources than animal-based diets, with 
consequent higher prevalence of zinc deficiency in vegetarians than 
people on meat-based diets (Allès et al., 2017). Inadequacy of dietary 
intake of zinc has been characterized as zinc deficiency a common 
medical phenomenon particularly in the aged and patients consum-
ing meat-free diets (Haase et  al.,  2006). Although, diet-related zinc 
deficiency is more prevalent in third world countries it has also been 
reported in developed nations such as the United States of America 
and Japan, where less acute deficiency states have been suggested to 
occur with high prevalence (Mayneris-Perxachs et al., 2016).

Clinically, absence of zinc in the diet may manifest as altered 
reproductive functioning, severe immune dysfunctions leading to 
increased susceptibility to infections, hyperammonemia, neurosen-
sory disorders, decreased lean body mass, diarrhea, skin lesions, 
stunted growth, and increased susceptibility to chronic noncom-
municable diseases (Prasad,  2008). Moreover, patients consuming 
zinc-deficient diet have also been reported to suffer from thymic and 
splenic atrophy. In utero, adverse effects of chronic consumption of 
zinc-deficient diets have been reported to include high rates of fetal 
resorption, reduced litter size, congenital malformations, reduced 
splenocyte responsiveness to mitogen, and reduced serum levels of 
IgG2a and IgA (Raqib et al., 2007). Also, inadequacy of zinc in diets 
has been associated with attenuated activity of the osteoblast, and 
reduced synthesis of collagen and proteoglycans in the presence of 
reduced phosphatase activity (Tapiero & Tew, 2003). In addition to 
inadequate dietary zinc intake, deficiency of zinc may result from 
impaired absorption or resorption or increased excretion of zinc, and 
several pathologic statuses including chronic diarrhea, extensive 
burns, or traumatic and surgical wounds (Aliev et al., 2019).

Replenishing body zinc through adequate dietary intake is re-
quired for optimal physiological functioning of mammalian organs or 
tissues due to the non-availability of dedicated storage compartment 
for zinc and almost absolute reliance on tightly regulated homeo-
static concentrations (Gibson et al., 2016). Zinc is hydrophilic and 
cannot diffuse passively through the cell membrane. As a result, zinc 
is absorbed actively from the gastrointestinal tract with the aid of 
the transmembrane protein transporter. Zinc transporter (ZIP4) also 
known as solute carrier family member A4 in humans is encoded by 
the SLC39A4 gene and is located at the apical surface of the intesti-
nal enterocytes, whereas, the uptake of zinc from blood is believed 
to be the function of ZIP5 which is largely expressed in intestine, 
pancreas, kidney, and embryonic yolk sac (Jeong & Eide, 2013). The 
zinc transporters function as zinc/hydrogen exchangers and play 
several important modulatory effects in diverse physiologic and 
pathologic mechanisms in the mammalian systems (Lu et al., 2008). 
Genetic abnormalities with polymorphisms of the SLC39A4 gene 
encoding the ZIP4 transporter manifest clinically as acrodermatitis 
enteropathica, a form of zinc deficiency.

Zinc modulates several physiological functioning, an ability that 
has been attributed to the essentiality of zinc to the formation of 
several endogenous enzymatic antioxidants and the stabilization of 
protein domains that interact intracellularly with deoxyribonucleic 
acid (Skrajnowska & Bobrowska-Korczak, 2019). Established physio-
logical roles for zinc are seen in immunomodulation, with effects on 
innate and adaptive immunity. Hojyo et al. (2014) reported decreased 
immune system response with consequent altered resistance to 
pathogenic organism in zinc-deficient individuals. Moreover, zinc 
plays important roles in protein and deoxyribonucleic acid synthe-
sis, growth and development in utero, intracellular signaling, enzyme 
function, gustation, and olfaction, as well as reproductive, skeletal, 
neuronal, cardiovascular systems, and wound healing (King et al., 
2016; Yu et al., 2018).
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3  | ROLES OF ZINC A S AN IMMUNE 
BOOSTER

Zinc is an important regulator of the immune system activities, with 
adequate level of zinc in the systemic circulation required for T cells 
maturation and thymulin activity. The administration of zinc report-
edly elevated CD4+ and CD8+ cells in zinc-deficient patients, and 
adequate zinc level is required for the activation of natural killer 
cells (Baltaci et al., 2018). Furthermore, the number and functional 
ability of granulocytes to phagocytose invading pathogenic organ-
isms are significantly reduced in zinc-deficient patients (Rosenkranz 
et al., 2011). Zinc is important for the maturation of T and B lympho-
cytes, but the development of the T lymphocytes under physiologi-
cal conditions are more severely affected in zinc-deficient individuals 
(Chung et al., 2009). Zinc deficiency has been reported to directly or 
indirectly induce a dysregulation of physiological zinc homeostasis 
via mechanisms that interferes with specific immunomodulatory ac-
tivities such as the recruitment, chemotactic, and phagocytic activi-
ties of granulocytes, as well as alteration of monocyte adhesion to 
epithelial cells and cytotoxicity of natural killer cells (Nishikawa et al., 
2020). Moreover, zinc modulates the recognition of major histocom-
patibility complex (MHC) by natural killer cells, and the CD3+ dif-
ferentiation and cytotoxic activity has been reported to significantly 
increase zinc availability (Jarosz et al., 2017).

4  | ANTI- INFL AMMATORY ROLE OF ZINC

Several cytokines such as interleukins 1, 2, 6, 10, and 12, tumor ne-
crosis factor alpha (TNFα), transforming growth factor (TGF), and 

interferon gamma (IFγ) enhance local and systemic inflammatory ef-
fects, fever, hormone release, and increased migration of leukocytes 
have been reported to be modulated by varying physiological levels 
of zinc in mammalian systems (see Figure 3). Moreover, zinc has been 
reported to inhibit the activation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) in the DNA nuclear-binding 
domain by increasing the expression of peroxisome proliferator-
activated receptor α (PPAR-α), which is a mediator for lipoprotein me-
tabolism, inflammation, and glucose homeostasis. Increase in PPAR-α  
leads to the downregulation of inflammatory cytokines and adhesion 
molecule (see Figure 3). Consequently, the suppression of the im-
mune system manifesting as increased susceptibility of the patients 
to opportunistic pathogenic agents is, therefore, observed. Zinc has 
been reported to inhibit phosphodiesterase with consequent eleva-
tion of cyclic guanosine monophosphate (cGMP), activation of pro-
tein kinase A, and NF-κB inhibition. The mechanisms that can lead to 
NF-κB inhibition include blockage of the incoming stimulating signal 
at an early stage, interference with a cytoplasmic step in the NF-κB 
activation pathway by blockage of a specific component of the cas-
cade, and inhibition of NF-κB binding to DNA, thereby altering the 
modulatory roles in inflammation (Gilmore & Herscovitch, 2006).

Supplementation of zinc in diets has been reported to down-
regulate the production of inflammatory cytokines from T helper 
cells and macrophages probably by decreasing gene expression of 
IL-1β and TNF-α through upregulation of mRNA and DNA-specific 
binding for A20, subsequently inhibiting NF-κB activation (Prasad 
et  al.,  2004). In in vitro studies, decreased levels of NF-κB, TNF-
α, and IL-1β are associated with altered zinc levels (see Figure  3). 
Similarly, zinc can bind to a zinc finger-like motif found on protein 
kinase C (PKC) and inhibit PMA-mediated PKC translocation to the 

F I G U R E  3  This shows biological and pharmacological roles of Zinc in the management and prevention of COVID-19 pandemic. Anti-
inflammatory property of zinc is demonstrated through the inhibition of translocation of NF-κB from cytoplasm to nucleus where it binds to 
pro-inflammatory genes leading to exaggerated production of pro-inflammatory cytokines and inflammatory mediators such as Interleukin 
1 beta (IL-1β), Interleukin 6 (IL-6), tumor necrosis factor alpha (TNFα), Integrins, Intercellular Adhesion Molecule 1 (ICAM-1), Vascular cell 
adhesion protein 1 (VCAM-1), Inducible nitric oxide synthase (iNOS) and yclooxygenase-2 (COX2) with attendant intravascular disseminated 
coagulation and atherosclerosis
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membrane. When this occurs in mast cells, NF-κB activity is indi-
rectly inhibited (Brieger et  al.,  2013). Furthermore, zinc has been 
shown to influence cellular signal transduction by inhibition of sev-
eral dephosphorylating enzymes like protein tyrosine phosphatase 
(PTPs), cyclic nucleotide phosphodiesterases, and dual specificity 
phosphatases.

5  | ZINC IN MANAGING COVID -19-
A SSOCIATED CY TOKINE STORM

Severe infection of the respiratory epithelium can precipitate an 
ARDS, characterized by excessive, exaggerated, and fulminating 
inflammation, termed a cytokine storm (Calder,  2020). Cytokine 
storm occurs when an immune system is overactivated by infection, 
drug, and/or some other stimuli, leading to exaggerated response of 
cytokines (IFN, IL, chemokines, CSF, TNF, etc.) being released into 
circulation with a widespread and detrimental impact on multiple 
organs (Tisoncik et  al.,  2012). It has been hypothesized that tran-
sient zinc deficiency that occurs during COVID-19 infection could 
result in a hyperinflammatory state, and recently, symptoms such as 
loss of taste and smell have been positively correlated COVID-19 
(Pisano & Hilas, 2016; Stratton et al., 2020; Vaira et al., 2020). Pro-
inflammatory cytokines such as IL-1 and IL-6 have been reported to 
play an important role in severe lung inflammation, leading to ARDS, 
and ultimately death of COVID-19 patients (Conti et al., 2020; Wang 
et al., 2020). Furthermore, high serum levels of pro-inflammatory 
cytokines [IL-1, IL-6, IL-12, interferon g (IFN-g), and transform-
ing growth factor-β] and chemokines (CCL2, CXCL9, CXCL10, and 
IL-8) were found in patients with SARS compared with individuals 
with uncomplicated SARS (Martinez-Urbistondo et al., 2020; Wong 
et  al.,  2004). In mild diseases, C-reactive protein (CRP) levels of 
15 mg/L, and a 10% decrease in zinc was observed (Galloway et al., 
2000). In severe infectious diseases, CRP levels can reach 100–
200 mg/L, with a much greater decrease in zinc levels (40%–60%) 
(Galloway et al., 2000).

Excessive inflammatory response elicited by SARS-CoV-2 in-
fection has been found to result in the overproduction of pro-in-
flammatory cytokines and cytokine, and this is known to play a 
significant role in COVID-19 pathogenesis (Patterson et al., 2020). 
However, the anti-inflammatory activity of zinc has been demon-
strated through the regulation of T-cell function, inhibition of IKK 
activity, and subsequent NF-κB signaling with concomitant reduc-
tion in pro-inflammatory cytokine production (Wessels et al., 2013). 
Previous findings demonstrated that zinc deficiency increases the 
susceptibility to systemic inflammation and sepsis-induced organ 
damage including lungs (Knoell et al., 2009). Again, Bao et al. (2010) 
reported that in a model of multiple infection-induced sepsis, zinc 
deficiency resulted in increased NF-κB p65 mRNA expression and 
production in lungs resulting in up-regulation of target genes such as 
IL-1β, TNFα, and ICAM-1, whereas neutrophil infiltration and MPO-
mediated oxidative damage was attenuated by zinc supplementation 

(Ganatra et al., 2017). Therefore, zinc supplementation might offer 
unparalleled mitigation of excessive inflammation during COVID-19 
infection.

6  | ANTIOXIDANT PROPERTIES OF ZINC

Although zinc does not inhibit the destructive effects of reactive 
oxygen species (ROS) directly, zinc retards the oxidative processes 
on a long-term basis by inducing the expression of metallothio-
neins. These are metal-binding cysteine-rich proteins responsible 
for maintaining zinc-related cell homeostasis and act as potent 
electrophilic scavengers and cytoprotective agents. Furthermore, 
zinc increases the activation of antioxidant proteins and enzymes, 
such as glutathione and catalase. Zinc exerts its antioxidant ef-
fect via two acute mechanisms, one of which is the stabilization of 
protein sulfhydryls against oxidation, whereas, the second mecha-
nism involves the antagonism of transition metal-catalyzed oxida-
tive reactions. Moreover, zinc can exchange redox active metals, 
such as copper and iron, in certain binding sites and attenuate cel-
lular site-specific oxidative injury. Zinc is a component of superox-
ide dismutase (SOD 1, SOD3) which catalyzes the dismutation of 
superoxide anion radicals to hydrogen peroxide (H2O2) and thus, 
preventing the generation of other toxic-free radicals and their de-
rivatives, for example, hydroxyl or peroxynitrite radicals (Strange 
et al., 2003). Zinc acts as a co-factor for cytosolic and extracellular 
Zn/Cu SOD enzyme, which acts as a scavenger of ROS by catalyz-
ing the dismutation of O2  −  radical into the less harmful O2  and 
H2O2 (Mariani, 2008).

Zinc potently inhibits the Mia40/Erv1 pathway associated with 
the transmembrane immunoglobulin and mucin domain family pro-
teins that modulate T-cell proliferation and cytokine production 
(Morgan et al., 2009). Alteration in intracellular zinc level has been 
suggested to be linked with the dysregulation of physiological ar-
rangement of mitochondrial proteins, thereby interfering with mito-
chondrial synthesis, and in some cases activation of stress response 
in the endoplasmic reticulum due to accumulation of misfolded pro-
teins that induce a vicious cycle of endoplasmic reticulum stress and 
oxidative stress (Malhotra et al., 2008).Zinc has been reported to in-
crease the levels of glutathione, catalase, glutathione S-transferase, 
and heme oxygenase (Goel et al., 2005; Prasad, 2014). In the same 
vein, low levels of zinc as seen in zinc-deficient individuals has been 
experimentally associated with oxidative stress-medicated tissue 
destruction (Zhao et al. 2011), probably by upregulating nuclear fac-
tor erythroid 2-related factor 2 (Sehsah et al., 2019).

Increased levels of ROS seen with decreased dietary intake of 
zinc might be associated with reduced functional activity of the zinc 
containing SOD (Jarosz et al., 2017). Moreover, zinc protects sulfhy-
dryl groups in proteins against oxidative stress-mediated damage, 
thereby modulating the regulation of enzymatic activities and alter-
ing the total antioxidant capacity in biological systems (Krężel and 
Maret, 2016).
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7  | ANTIVIR AL PROPERTIES OF ZINC

Zinc has been reported to exert potent antiviral activities against 
diverse array of viruses including the herpes simplex virus 1 and 
2, rhinovirus, influenza, coronaviruses, human immunodeficiency 
virus, and a host of other pathogenic viruses. Zinc has been reported 
to ameliorate the pathogenic effects of HSV-1 and HSV-2 by alter-
ing the viral polymerase function, protein production, and direct 
inactivation of the viruses as well as reducing HSV replication by 
interfering with the protein ubiquitination pathway (Qiu et al., 2013). 
Furthermore, in a mouse study, intra-vaginal zinc inoculation in liquid 
or gel form demonstrated significant reductions in HSV-2 infection, 
whereas topical zinc application has been reported to significantly 
reduce recurrence and duration of HSV-1 and HSV-2 infection (Qiu 
et  al.,  2013). The efficacy of topical application, together with in 
vitro results, suggest that free zinc might indeed coat HSV virions, 
thus preventing infection (Lim et al., 2013).

Clinical studies using zinc supplementation are primarily limited 
to rhinovirus infection, and are often grouped with other “common 
cold” viruses such as influenza and coronaviruses with several studies 
using zinc lozenges and formulations. The replication of rhinoviruses 
was potently inhibited by Zinc salts in in vitro experiments and ame-
lioration of clinical symptoms associated with common cold has been 
reported to occur following increased level of zinc salts in the nasal 
cavity (Vakili et al., 2009). For instance, the administration of zinc 
bisglycinate reduced significantly the duration of illness and mani-
festation of symptoms under experimental conditions (Sanguansak 
& Lakkana, 2013). Similarly, zinc salts have been reported to inhibit 
respiratory syncytial virus in vitro (Suara & Crowe, 2010).

Similar to viral RNA-dependent RNA polymerase, zinc has also 
been identified as an inhibitor of retrovirus reverse transcriptases 
with zinc cations displacing magnesium ions from HIV-1 RT, thereby 
potentiating the formation of an inefficient replication complex 
(Fenstermacher & DeStefano, 2011). In HIV-infected patients, mani-
festation of zinc deficiency has been reportedly linked with immuno-
logical inadequacy that sometimes contribute to the poor prognostic 
disease outcome. However, prophylactic application of zinc has been 
reported to show significant reduction in viral load of HIV patients 
and protected against vaginal SHIV-RT (a simian HIV virus express-
ing the human RT) (Mizenina et al., 2017).

8  | THER APEUTIC ROLE OF ZINC

The application of zinc as a drug to treat diseases is increasing due to 
advances in the understanding of modulatory roles of zinc in mam-
malian systems. Reported beneficial effects of zinc administration 
include reduction in the incidence of diarrhea and pneumonia, and 
the rate of mortality among young children in low-middle income 
countries (Tran et al., 2011). Zinc supplementation in young children 
has been reported to reduce child mortality by 6% in deficient popu-
lations and reduced deaths of children over 1 year of age by 18%. 

Moreover, supplemental administration of zinc to the diet has been 
reported to prevent stunted growth in children (Tran et al., 2011). 
Zinc has been found to be very useful in the management of acute 
childhood diarrhea with a recommendation of 10- to 14-day course 
of zinc treatment, in addition to the usual administered oral rehy-
dration solution, by the World Health Organization and the United 
Nations Children's Fund (Patel et al., 2011). Zinc has been used ther-
apeutically for the management of chronic gastrointestinal disor-
ders, renal diseases, sickle cell anemia, and malabsorption syndrome 
acrodermatitis enteropathica (Rosenkranz et al., 2015).

9  | CONCLUSION

The beneficial roles of zinc on physiological and pathological states 
have been well described in literature, and highlighted the usefulness 
of zinc in many clinical diseases. More importantly, the usefulness 
of zinc as an antiviral agent for the management of such viral dis-
eases as influenza, rhinovirus, and coronaviruses strongly suggests 
potential beneficial roles and applications of zinc in the management 
of COVID-19, probably through the enhancement of the total an-
tioxidant capacity and immunomodulatory effects. Therefore, the 
inclusion of Zinc as a component of therapeutic or prophylactic 
regimen in the current treatment of COVID-19 is strongly advised. 
Furthermore, immunomodulatory effect of zinc will be of significant 
benefits to patients with co-morbidity and those with severe under-
lying medical conditions. Interestingly, zinc supplementation might 
decrease angiotensin-converting enzyme 2 (ACE-2) expression, and 
thus, viral entry into the host cell. Therefore, the high the concen-
tration of zinc, the lower the activity and entry of SARS-CoV-2 into 
the host cell. Hence, zinc supplementation could be of potential 
benefit for mitigating COVID-19 that has brought unprecedented 
global health crises and economic burden. In the current pandemic 
of COVID-19, zinc supplementation could play significant roles in 
the fight against COVID-19 as immune booster with anti-viral drugs 
and inhibiting SARS-CoV-2 replication in infected cells especially 
if combined with chloroquine and anti-inflammatory drugs such as 
dexamethasone by preventing the release of pro-inflammatory cy-
tokines. Therefore, foods rich in zinc and zinc supplements could 
serve as adjuvants in combination with up-coming vaccines for the 
treatment of COVID-19 pandemic. Together, research on inhibitory 
action of zinc supplementation on the pathogenesis of SARS-CoV-2 
across all ages, race, and sex should be urgently conducted as alter-
native anti-inflammatory and immuno-modulatory regimen against 
the current COVID-19 pandemic. Furthermore, studies on zinc sup-
plementation in hospitalized COVID-19 patients might give a novel 
insight in containing the unprecedented global health crisis and eco-
nomic catastrophe created by COVID-19 pandemic.
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