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The aim of this review was to understand the effects of �-adrenergic stimulation on oxida-

tive stress, structural remodeling, and functional alterations in the heart and cerebral artery.

Diverse stimuli activate the sympathetic nervous system, leading to increased levels of cat-

echolamines. Long-term overstimulation of the �-adrenergic receptor (�AR) in response to

catecholamines causes cardiovascular diseases, including cardiac hypertrophy, stroke, coro-

nary artery disease, and heart failure. Although catecholamines have identical sites of action

in the heart and cerebral artery, the structural and functional modifications differentially

activate intracellular signaling cascades. �AR-stimulation can increase oxidative stress in

the heart and cerebral artery, but has also been shown to induce different cytoskeletal and

functional modifications by modulating various components of the �AR signal transduction

pathways. Stimulation of �AR leads to cardiac dysfunction due to an overload of intracellu-

lar Ca2+ in cardiomyocytes. However, this stimulation induces vascular dysfunction through

disruption of actin cytoskeleton in vascular smooth muscle cells. Many studies have shown

that excessive concentrations of catecholamines during stressful conditions can produce

coronary spasms or arrhythmias by inducing Ca2+-handling abnormalities and impairing

energy production in mitochondria, In this article, we highlight the different fates caused
by excessive oxidative stress and disruptions in the cytoskeletal proteome network in the

heart and the cerebral artery in responsed to prolonged �AR-stimulation.

© 2014 Korea Institute of Oriental Medicine. Published by Elsevier. This is an open access

levels of catecholamines stimulate the �-adrenergic recep-
tor and �-adrenergic receptor (�AR); however, most of the
1. Introduction

Chronic increased sympathetic activation occurs in many sit-

uations, including obesity, sleep apnea, mental stress, and
hypertension, promoting the development of cardiovascu-
lar diseases through sustained stimulation of adrenergic
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receptors.1–4 These fatal cardiac events include cardiac hyper-
trophy, heart failure, and sudden cardiac death.5–9 Elevated
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adverse cardiac effects associated with increased sympathetic
tone on the heart have been believed to be caused mostly by
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timulation of �AR in the heart. In fact, �AR blockade consis-
ently improves cardiac function and survival in patients with
eart failure.10,11 By contrast, �-adrenergic receptor blockades

s an effective antihypertensive approach, but may actually
ncrease the risk of cardiovascular events, as shown in patients
aking doxazosin in the ALLHAT (Antihypertensive and Lipid-
owering Treatment to Prevent Heart Attack Trial) trial.12 Use
f the �AR blocker metoprolol during the perioperative period

n patients with non-cardiac diseases was associated with an
ncreased the risk of strokes and death.13 These studies sug-
est that sympatholytic agents are unlikely to be accepted as
common regimen for the treatment of both the heart and

he vasculature simultaneously. Based on these findings, over-
timulation of �AR appears to have different effects on the
eart and cerebral artery. Therefore, the focus of this review is
o compare cardiac and vascular, effects of beta AR stimulation
nd effects on related signal transduction processes.

. Effect of prolonged �AR stimulation on
he heart

ong-term �AR activation by various stressors induces serious
yocardial damages, including cardiac hypertrophy, necro-

is/apoptosis, and fibrosis.7,9,14–16 Cardiac hypertrophy is an
ndependent cause of heart failure and major cause of mor-
idity and mortality throughout the world; thus, research
nd clinical interventions for cardiac hypertrophy have been
xtensively studied.17–19

Once cardiac hypertrophy develops, it progresses to heart
ailure.17 The underlying mechanisms associated with �AR
verstimulation have been studied in vivo in heart tissue
sing isoproterenol (ISO)-treated models and in vitro in cul-
ured cardiomyocytes. This �AR overstimulation represents an
mportant hallmark of pathologic cardiac hypertrophy.15,20–24

ISO treatment increases oxidative stress, protein synthesis,
roto-oncogene expression, and stimulation of mitogen-
ctivated protein kinases. These events are caused by altered
f electrical and mechanical capabilities that induce three
odes of cell death: necrosis, apoptosis, and autophagy (see

able 1).
Furthermore, ISO treatment alters related signal transduc-

ion pathways. In the normal heart, �AR activation stimulates
denylyl cyclase activity via Gs protein-coupled receptors,
hich leads to the formation of cAMP. Increased cAMP ele-

ates intracellular concentrations of Ca2+, which activates
rotein kinase A (PKA)-mediated phosphorylation of dif-
erent Ca2+-handling proteins, producing positive inotropic
ffects in the heart. However, long-term ISO stimulation
esults in desensitization of the PKA-dependent receptor after
revious phosphorylation, thus attenuating �AR-mediated
esponse.15,25,26

Tse et al26 showed that cardiac hypertrophy develops in
ats treated chronically with ISO stimulation; further, these
ats showed decreased magnitude and sensitivity of contrac-
ility in vitro in response to ISO stimulation. These effects

ere, related to biochemical alterations, including decreased
umbers of �ARs, decreased sensitivity and magnitude of
denylate cyclase activity, and decreased cAMP formation. We
lso clearly showed that PKA activity, but not protein kinase
205

C (PKC) activity, in the rabbit heart decreased gradually with
time after prolonged �AR stimulation.15 In addition to the
study of Tse et al,26 underlying mechanisms of �AR desensiti-
zation to an agonist may be associated with an increased �AR
kinase activity.27 This possibility is supported by the finding
that �AR stimulation can significantly increase the expres-
sion of �AR kinase 1, whereas �AR blockade decreases the
expression.28

3. Effect of prolonged �AR stimulation on
the vasculature

Despite massive studies on the effects of ISO treatment on the
heart, few studies have been performed to evaluate its effects
on the vasculature. Pathological cardiac hypertrophy caused
by overstimulation of �AR is a potent, independent predictor
of cerebrovascular events such as stroke.29,30

In diverse vessels, such as the femoral, pulmonary,
and carotid arteries, acute stimulation of �AR induces
vasodilation.31 Long-term stimulation of �AR in arteries, how-
ever, can induce alterations in vascular contractility.

Previously, we demonstrated that prolonged ISO treat-
ment in rabbits leads to abnormalities in the coronary
arterial functions through alterations in the Ca2+-activated
K+ and inward- rectifier K+ channels in smooth muscle
cells. This implies a novel mechanism for vascular dys-
function during cardiac hypertrophy.14,32 With regard to the
rat aorta, Davel et al33 demonstrated that prolonged ISO
stimulation induced endothelial dysfunction and increased
vasoconstriction by phenylephrine, an �-adrenergic recep-
tor agonist, due to endothelial dysfunction. They suggested
that ISO treatment enhanced the vasoconstrictor response
and increased oxidative stress via Endothelial Nitric Oxide
Synthase (eNOS) uncoupling, through the �2AR/Gi� signaling
pathway.34 Interestingly, we found that �AR stimulation
decreased transient Ca2+ efflux and attenuated contraction
in response to angiotensin II in the rabbit cerebral artery.35

Possible mechanisms of abnormal response to vasoactivity in
different arteries may be due to factors other than biochemical
alterations, as shown in the heart. These include the possi-
bility that vascular tissues are vulnerable to oxidative stress,
which may disrupt the cytoskeleton further.35

4. Differential modulation of the proteome
in the heart and cerebral artery during �AR
stimulation

To help improve interventions for managing cerebrovascu-
lar events during cardiac hypertrophy, here we focus on
differences between cardiac and vascular signaling during
prolonged �AR stimulation.

Inducible proto-oncogenes encode nuclear transcription
factors and activate promoters of many target genes playing
a that have roles in cellular functions, adaptive processes, or
cell death.36–38 Prolonged �AR stimulation increases the phos-

phorylation of Extracellular signal-Regulated Kinase (ERK)
increasing expression of c-fos and c-myc in the cerebral
arteries, whereas only c-fos expression corresponds to the
increased phosphorylation of ERK in the heart. Therefore,
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Table 1 – Gene/protein expression profiles in heart and cerebral artery by prolonged �AR stimulation

Identification and
functional category

Heart Cerebral artery ref.

increase decrease increase decrease

Apoptosis/necrosis
Bcl2l1 Bcl-2-like-protein 1 (Bcl-XL) − 54
Bcl2l11 Bcl-2-like protein 11 + 54
Bmf Bcl-2 modifying factor + 54
Bak1 Bcl-2 antagonist − 54
Bax Bcl-2-associated X protein − 54
Pmaip1 Phorbol-12-myristate-13-acetate-induced protein 1 + 54
Sfn Stratafin − 54
Tp53 Tumor protein 53 (p53) − 54
Apaf1 Apoptotic protease activating factor 1 + 54
Casp1 Caspase-1 − 54
Casp2 Caspase-2 (initiator) − 54
Casp3 Caspase-3 (effector) + 54
Casp7 Caspase-7 (effector) − 54
Casp9 Caspase-9 (initiator) + 54
Tnfrsf1a Tumor necrosis factor receptor superfamily 1A − 54
Tnfsf10 Tumor necrosis factor (ligand) superfamily, 10 + 54
Fas Tumor necrosis factor receptor superfamily 6 + 54
Stress/energy
Abcb4 ATP-binding cassette, subfamily B (MDR/TAP) 1A − 54
Abcc3 ATP-binding cassette protein C3 − 54
Ahr Aryl-hydrocarbon receptor + 54
Akt v-akt murine thymoma viral oncogene homolog 1 + 54
ALDH1A1 Aldehyde dehydrogenase, family 1 member A1 + 35
ALDH2 Aldehyde dehydrogenase, mitochondrial precursor + 35
ANX6 Annexin VI isoform 1 + 35
ANXA1 Annexin A1 (annexin I) + 35
ARH ADP-ribosylhydrolase + 55
Arnt2 Aryl-hydrocarbon receptor nuclear translocator 2 − 54
ATP5b ATP synthase subunit �, mitochondrial precursor + 55
Bcat1 Branched chain amino acid transaminase 1 + 54
CCT2 Chaperonin containing TCP1, subunit 2 (beta) + 35
DPYSL2 Dihydropytimidinase-like2 + 35
EARH Ecto ADP-ribosylhydrolase precursor + 55
EARH Ecto ADP-ribosylhydrolase precursor + 55
EF1G Elongation factor 1-gamma + 35
GDI2 GDP dissociation inhibitor 2 + 35
GLUD1 Glutamate dehydrogenase + 35
GSTM5 Glutathione-S-transferase, mu5 + 35
Hif1an Hypoxia-inducible factor 1-alpha inhibitor − 54
Hif3a Hypoxia-inducible factor 3-alpha + 54
Hsp Heart shock protein 75 kDa − 55
Hspa1L Heat shock 70 kDa, protein 1-like − 54
Hspb7 Heat shock 27 kDa, cardiovascular + 54
HspA2 Heat shock 70 kDa, protein 2 + 54
HspA5 Heat shock 70 kDa, protein 5 − 54
HspA8 Heat shock 70 kDa, protein 8 (Hsp73) − 54
HSPA9 Heat shock protein 9A, mortalin + 35
IDH1 Isocitrate dehydrogenase 1 (NADP+) + 35
Lamc Isoform C of lamin-A/C − 55
NDUFS1 NADH dehydrogenase (ubiquinone) Fe–S protein 1 + 35
NDUFS8 NADH dehydrogenase (ubiquinone) Fe–S protein 8 + 35
Nos2 Nitric oxide synthase, inducible − 54
Nr1h4 Nuclear receptor subfamily 1, group H, member 4 − 54
OTUB1 Ubiquitin thioesterase protein OTUB1 + 55
PDIA3 Protein disulfide isomerase family A, member3 + 35
PEA15 Isoform 1 of astrocytic phosphoprotein PEA-15 + 55
Ppar� Peroxisome proliferator-activated receptor gamma − 54
Ppar� PPAR alpha − 54
PPIase Peptidyl-prolyl cis–trans isomerase E − 55
RALDH2 Aldehyde dehydrogenase 1A2 isoform 1 + 35
RanGAP Ran-specific GTPase-activating protein + 55

dx.doi.org/10.1016/j.imr.2014.10.002
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Table 1 – (Continued)

Identification and
functional category

Heart Cerebral artery ref.

increase decrease increase decrease

RCN3 Reticulocalbin-3 precursor − 55
STIP1 Stress-induced phosphoprotein 1 + 35
Ucp3 Mitochondrial uncoupling protein 3 − 54
VEGFA Vascular endothelial growth factor A + 54
14-3-3 �/� Isoform short 14-3-3 protein �/� − 55
Inflammation
C3 Complement C3 − 54
C9 Complement C9 + 54
Defb1 Beta-defensin 1 + 54
EHD1 EH-domain containing 1, isoform CRA a + 35
Fkbp1 FK506-binding protein 1 − 55
Ifna1 Interferon, alpha 1 − 54
Il-1� Interleukin-1 alpha + 54
Il-1� Interleukin-1 beta + 54
IL6 Interleukin-6 + 54
MSN Moesin + 35
PSME1 Proteasome activator complex subunit 1 − 55
TNF� Tumor necrosis factor alpha − 54
TGFb2 Transforming growth factor b2 − 54
Remodeling/fibrosis
ACTA20 Actin, alpha 2, smooth muscle + 35
ACTR1A Actin-related protein 1 + 35
ACTR2 Actin-related protein 2 homolog + 35
ACTC1 Alpha-actin + 35
ALB Albumin + 35
BMM Bone marrow macrophage cDNA − 55
CAPZB Capping protein (actin filament) muscle Z-line + 35
Ccl7 Chemokine ligand 7 + 54
COL6A2 Alpha-2-collagen type VI + 35
CORO1B Coronin-1B + 35
Ctgf Connective tissue growth factor − 54
Fhl1 Four half Lim domain − 54
GRIPAP1 GRIP1-associated protein 1 + 35
Il4 Interleukin-4 − 54
Pdlim1 PDZ and LIM domain protein 1 + 55
Reg3b Regenerating islet-derived 3 beta − 54
Reg3g Regenerating islet-derived 3 gamma − 54
SEPT8 Septin + 35
Spp1 Osteopontin − 54

m 8

p
e

r
�

c
P
a

c
p
R
o
t
l
p
R
a

Timp1 Tissue inhibitor metalloproteinase 1
VIM Vimentin
WDR1 WD repeat-containing protein 1 isofor

ost-translational modulation appears to progress via differ-
nt mechanisms in the heart and the cerebral artery.

Although cardiac hypertrophy is not known to be a pre-
equisite for altered expression of proto-oncogenes in vivo,39

AR stimulates Gi-dependent PI3 kinase (PI3K) activity and
ell growth.40 In human erythroid progenitors cells, PKC� and
I3K� pathways are parallel and converge to activate the c-fos
nd c-myc genes.41

In addition, decreased signaling of the Ras/Raf/MEK/ERK
ascade in the cerebral artery during cardiac hypertro-
hy can interrupt the actin cytoskeletal network, because
as/Raf/MEK/ERK is essential for actin-base cytoskeletal
rganization.42,43 In contrast, Ras and Raf are activated in
he heart during cardiac hypertrophy,44 and may roles in pro-

iferation and transformation. Decreased PKA activity may
ossibly contribute indirectly to decreased expressions of the
as/Raf/MEK/ERK signaling in the cerebral artery, because PKA
ctivity is well known to innately correspond with Ras/Raf
− 54
+ 35
+ 35

activation.45 However, recent findings also demonstrated that
PKA activation does not contribute to Ras/Raf activation.44,46

Thus we suggested that the underlying mechanism of vas-
cular dysfunction resulting from the decreased expression
levels of RhoA and ROCK1 proteins after �AR stimulation.35

RhoA and ROCK1 are involved in actin-cytoskeletal organi-
zation and phosphorylation of myosin light chain producing
smooth muscle contraction.47 The contractility of vascular
smooth muscle cells is widely regulated by the cytoskele-
tal proteome network.48 Our previous study clearly shows
that �AR stimulation disrupts the actin cytoskeletal proteome
network through downregulation of RhoA/ROCK1 proteins
attenuating angiotensin II-induced contraction in the cerebral
artery.35
Cardiac or cerebral remodeling by �AR stimulation may
involve changes in cellular energy. However, there are a few
studies of proteome analysis of �AR stimulated pathways in
the heart and the cerebral artery; these studies, revealed
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similarities in the main response, including: apo-
ptosis/necrosis, stress/energy, inflammation, and
remodeling/fibrosis (also see Table 1). In the heart, a greater
number of genes are altered in the category of energy or
remodeling, whereas, a greater number of genes involved in
cytoskeletal organization are altered in the cerebral artery.

Regarding oxidative stress, expression levels of several
cytoprotective chaperones and protein maturation elements
are significantly decreased in both the heart and the cerebral
artery. Excessive levels of reactive oxygen species (ROS) results
in oxidative stress, because the balance between production of
ROS and activation of the antioxidant system is essential for
controlling homeostasis. Sustained high levels of circulating
catecholamines induced by stress can result in cardiotoxic-
ity due to the production of oxygen free radicals.49 This is
supported by several recent findings demonstrating that �AR
stimulation increase ROS production in the HEK293 cells, rat
cardiac myocytes, and the rat aorta.50–52 Increased oxidative
stress can also lead to DNA damage.35,53

Interestingly, in either the heart or the cerebral artery,
decreased levels of cytoprotective proteins, including heat
shock protein 70/90 and stress-induced-phosphoprotein 1,
are more likely due to cause deleterious effects35,54,55 -rather
than increased ROS production. Heat shock proteins are cru-
cial to cellular defense and mitochondrial protection against
oxidative stress; these are ubiquitous and highly conserved
chaperones are associated with myocardial protection.56

Oxidative stress activates several kinase signaling pathways,
such as PKC, Mitogen-activated protein kinases (MAPK), and
PI3K.57

In particular, the Bcl-2 like protein 1 and Bak1, which
are associated with mitochondria, are significantly altered
in the heart.54 These proteins induce apoptosis by regu-
lating metabolite diffusion across the outer mitochondrial
membrane.58 Apoptosis during cardiac hypertrophy caused
by �AR stimulation is of particular interest, as recent litera-
ture indicates that deterioration of the hypertrophied heart is
linked to progressive loss of cardiomyocytes.59 Other groups
have also shown that inhibition of apoptosis is accompa-
nied by attenuation of heart failure and cardiac hypertrophy,
along with increased cardiomyocyte apoptosis prior to the
development of significant heart failure.60,61 Taken together,
modulation of apoptosis during cardiac hypertrophy as a
preventive for heart failure or stroke may lead to viable ther-
apeutic modalities in the near future.

5. Conclusion

Epinephrine and norepinephrine injections stimulate �AR and
�AR can cause cardiac cell damage to a qualitatively simi-
lar extent. In contrast, ISO injection stimulates only �AR can
impair the myocardium more severely. Therefore, most of the
studies have focused on understanding �AR-mediated sig-
nal transduction mechanisms and finding targets to prevent
�AR-mediated cardiac remodeling. More recently, �AR over-

stimulation of vascular structural and function has shown
differential effects compared to that of the heart. Therefore,
cerebrovascular remodeling and dysfunction reviewed in this
study may give a new insight into understanding cerebral
Integr Med Res ( 2 0 1 4 ) 204–210

damage after �AR overstimulation, during long-term stress
and therapeutic intervention of �AR overstimulation induced
cardiovascular events.
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