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Abstract: The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten)
and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is
characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission
of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for
CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal
mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic
mechanisms of celiac disease was suggested. The present review provides information on infectious
diseases associated with CD and the putative role of infections in CD development. Moreover, the
involvement of the microbiota as a factor contributing to pathological changes in the intestine is
discussed. Attention is paid to the mechanisms by which microbes and their components affect
mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and
function and the potential beneficial effects of probiotics in celiac disease are discussed.
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1. Celiac Disease—Introduction

The ingestion of wheat gliadin (the alcohol-soluble part of wheat grain storage pro-
teins, i.e., gluten) and phylogenetically related cereal proteins (secalin from rye, hordein
from barley, and avenin from oat) induces celiac disease (CD) in genetically susceptible
individuals bearing the human leukocyte antigens HLA-DQ2 (alleles DQA1*0501 and
DQB1*0201) and HLA-DQ8 (DQA1*0301 and DQB1*0302) haplotypes [1–4]. CD affects
about 1:100–200 of those who consume wheat. Helper T-cells (Th1) are the dominant effec-
tor immunocytes driving the damage to the small gut mucosa, which is characterized by
villous atrophy and crypt hyperplasia accompanied by malabsorption and gastrointestinal
symptoms. Th1 cells activated by gliadin peptides, via antigen-presenting cells, produce
high levels of pro-inflammatory cytokines (IL-2, IL-6, IFN-γ, and TNF-α) that promote
increased cytotoxicity of intraepithelial lymphocytes and natural killer T cells, which in
turn leads to damage of the small gut (villus) enterocytes (via abundant apoptosis) and si-
multaneously hyperplasia of crypts. Recruitment of Th2 cells during the immune response
against gliadin leads to activation of B cells, their transformation into plasma cells (plasma-
cytes), and the production of antibodies against gliadin as well as autoantibodies, of which
those against tissue transglutaminase and endomysium are considered to be serological
hallmarks of a CD diagnosis (Figure 1). Life-long adherence to a gluten-free diet (GFD) is
the sole rational therapy for CD, with the goal of healing pathological changes in the gut
mucosa and suppressing the production of antibodies and autoantibodies [3,5–9]. CD is
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associated with several extra-intestinal phenomena, including dermatitis herpetiformis
and ataxia [10–12]. Liver disorders, respiratory symptoms, and alveolitis have also been
linked to CD [13–15]. This corresponds to the increased prevalence of repeated infections
in CD [16,17]. Certain viral and bacterial infections occurring in early postnatal life have
been significantly associated with the development of CD [18,19].
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cosa to the level found in healthy individuals [23–26]; (3) onset of CD can occur in adults, 
i.e., years after the introduction of gluten into the diet [27]; (4) a more than 80% concord-
ance among monozygotic, i.e., equally genetically predisposed twins in the development 
of CD, indicates that one’s genetic background, represented mainly by HLA-DQ2/DQ8 
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Figure 1. Key characteristics of celiac disease pathogenesis. Impairment of mucosal barrier of small intestine and penetration
of food antigens, including wheat gliadin. Gliadin fragments are deamidated by tissue transglutaminase. Deamidated
gliadin fragments stimulate (boosted by adjuvant properties of microbiota) innate immune cells, counting professional
antigen presenting cells (dendritic cells), which present deamidated gliadin peptides by CD4+T cells. Polarization of
CD4+T lymphocyte development to Th1 cytokine profile leads to activation (intraepithelial) lymphocytes and damaging of
enterocytes. Activation of fibrocytes by Th1 cytokines trigger releasing of matrix metalloproteinases mediating pathological
remodeling of small gut mucosa of celiac patients. Simultaneously, antibodies against gliadin and autoantibodies against
tissue transglutaminase are developed.

Although gluten is unquestionably the trigger for CD, indirect evidence suggests that
microorganisms may also play an essential role in the pathogenesis of CD and can impact
the onset, progression, and even clinical presentation of the disease. The evidence includes:
(1) early, multiple gastrointestinal infections, the microbiome/dysbiome repertoire, early
vaccinations, and consumption of antibiotics or proton pump inhibitors (which themselves
can induce dysbiosis) can trigger CD [17,20–22]; (2) although a GFD reduces CD symp-
toms in most CD patients, it does not entirely restore the duodenal/jejunal mucosa to
the level found in healthy individuals [23–26]; (3) onset of CD can occur in adults, i.e.,
years after the introduction of gluten into the diet [27]; (4) a more than 80% concordance
among monozygotic, i.e., equally genetically predisposed twins in the development of CD,
indicates that one’s genetic background, represented mainly by HLA-DQ2/DQ8 haplotype
(and non-HLA genes), is necessary but insufficient for the development of CD [28–30]; and
(5) intestinal dysbiosis probably exists in both patients with active CD and those with long-
lasting adherence to a GFD [26,31–33]. There is an increase in the pathobionts Clostridium
spp. and Enterobacteriaceae while potentially protective bacteria (Bifidobacterium spp. and
the Lactobacillus group) are decreased in CD patients [32,34–36].
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2. Bacterial Infections in Celiac Disease

Infectious diseases are associated with both increased morbidity and mortality in
CD patients [37]. The increased susceptibility of CD patients to infections is probably ex-
plainable, even beyond the genetically determined aberration of immune system functions,
by impaired nutritional conditions, malnutrition, deficiency of vitamin D, folic acid, B12,
hyposplenism, and altered mucosal intestinal permeability [38–43].

It is assumed that recurrent infections increase the risk of CD development [44,45].
Children suffering from more than ten gastrointestinal (or respiratory) infections are at a
higher risk of CD development compared to children with less than four infection events
during the reference period [21,45]. Additionally, mucosal infections may contribute to the
impairment of immune tolerance to gluten, leading to tissue damage in CD patients [46].

Infections, mainly those induced by Clostridium difficile, Helicobacter pylori, and Strep-
tococcus pneumoniae (Pneumococcus), are frequently associated with CD. A significantly
higher hazard ratio, linked to Clostridium difficile, was found in CD patients compared to
controls. A higher incidence of Clostridium difficile infection in CD was found in a large-scale
population-based cohort study involving more than 28 thousand CD patients and more
than 141 thousand controls; the incidence of Clostridium difficile infection in the former
group was estimated at 56/100,000 person-years in contrast to the incidence of 26/100,000
in controls (i.e., the general population and non-CD controls). Interestingly, the risk of
Clostridium difficile infection was highest in the first 12 months after diagnosis (hazard ratio:
5.2, p < 0.0001) and remained high, for up to five years, compared to controls [47].

There is a risk of CD in children suffering from peptic ulcers: Helicobacter pylori
infection was present in 63% of patients with CD and 44% of non-celiac peptic ulcers;
however, the difference was not statistically significant. Of the entire ulcer group, 11%
of CD patients with peptic ulcers were negative for Helicobacter pylori infection [48]. The
Helicobacter and Megasphaera genera were highly abundant in duodenal biopsy samples
from adult CD patients compared to first-degree relatives and controls [49]. However, the
role of these bacteria in the pathogenesis of CD has not been completely elucidated. It is a
matter of debate whether these bacteria elicit pathological changes in the small gut mucosa
of the celiac patients or the presence of these bacteria, due to immune dysregulation or
intrinsic conditions in celiac patients, favor colonization by these bacterial species [30].

Nonetheless, CD patients are at increased risk for the development of bacterial infec-
tions [50]. There are also rare reports on CD patients with respiratory diseases; a Swedish
population-based 2006 study reported that the tuberculosis risk was 3–4 times higher in
CD patients [51,52]. CD is associated with an increased risk of pneumococcal infection.
Invasive Streptococcus pneumoniae (Pneumococcus) infection is a particularly dangerous
co-morbidity in CD patients. Streptococcus pneumoniae is a causative agent of pneumonia,
bacterial meningitis, and sepsis. One of the first comprehensive studies concerning pneu-
mococcal infection was performed in England. The objective of the study was to determine
the risk (rate ratio) of pneumococcal infection in patients with CD in a population in: (1)
the Oxford region (1963–1999); and (2) the whole of England (1998–2003). The high rate
of pneumococcal infections in CD patients persisted beyond the first year after the CD
diagnosis. It should be noted that the pneumococcal vaccination was available at the time
of the all-England study but not at the time of the Oxford study, which influenced study
conditions [42]. A Swedish study by Röckert Tjernberg et al. [41] showed an increased
risk (although statistically insignificant) of invasive pneumococcal disease in CD. The risk
estimate was similar after considering comorbidities, socioeconomic status, and education
level [41]. An increased risk of bacterial pneumonia, especially in children and young
people with CD, was found by Simons et al. [40] and Canova et al. [53]. Interestingly, the
risk of bacterial pneumonia was significantly increased before the CD diagnosis [40,53]. For
this reason, pneumococcal vaccination in individuals at risk of developing CD is the most
effective way to prevent streptococcal pneumonia. Preventive pneumococcal vaccination
should be considered for CD patients between 15 and 64 years who have not received the
pneumococcal vaccination series in childhood [40]. The beneficial effect of the vaccination
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in CD, however, depends on splenic function [54]. Studies have reported a high prevalence
of respiratory tract infections in CD patients with hyposplenism. Hyposplenism, along
with malnutrition and vitamin deficiency, is the leading cause of susceptibility to respira-
tory infections such as streptococcal pneumonia. Interestingly, hyposplenism in adult CD
patients ranges 19–80% [40]. Hyposplenism is associated with a fourfold increase in the risk
of fulminant and fatal septicemia from encapsulated organisms in patients with CD [55].
The British Society of Gastroenterology recommends routine pneumococcal vaccination
(pneumococcal 13-valent conjugate vaccine, PCV13 followed, at least eight weeks later, by
the 23-valent pneumococcal polysaccharide (PPSV23)) for all adult patients diagnosed with
CD [50,52]. Defense against pneumococcal infection in CD patients is probably based on
cellular mechanisms because complement changes after Streptococcus pneumoniae infection
seem similar in children with and without CD. It is unlikely that complement contributes
to increased sensitivity to invasive pneumococcal infection in these individuals [56].

Moreover, vulnerability to respiratory infections in CD patients may also be caused by
impaired airway epithelium function, e.g., a defect in nasal mucociliary clearance, which
has been found in CD patients. A defect in nasal mucociliary clearance increases the risk of
lung infections. Nasal mucociliary clearance time was significantly prolonged in pediatric
CD patients compared to healthy children. Interestingly, no relation was found between
the age at diagnosis, histopathological stage, or compliance with a GFD relative to the nasal
mucociliary clearance time in CD patients [57].

Adult CD patients were shown to be at significantly increased risk of sepsis (hazard
ratio = 2.6), especially pneumococcal sepsis (3.9). A similar situation exists in CD children
(1.8) [43]. Moreover, respiratory infections are closely related to the increased mortality
associated with CD. The cause-specific mortality risks in the periods before and after
introducing accurate and specific serological tests for the diagnosis of CD were studied
by Grainge et al. [58]. CD mortality did not change significantly after introducing routine
serological testing as part of the CD diagnosis [58]. The Swedish national mortality register,
which includes approximately ten thousand CD patients, was analyzed to determine
the cause of death in these patients. The cumulative mortality risk for cancer, digestive
disease, and respiratory diseases (including pneumonia, allergic disorders, and asthma)
was significantly elevated in CD patients [59].

3. Viral Infections Associated with Celiac Disease

Patients with CD were described to have elevated antibody levels to human aden-
ovirus serotype 2, which indicates infection by this virus [60–62]. Kagnoff et al. suggested
that molecular mimicry may play a pathogenic role, i.e., immunological cross-reactivity
between antigenic epitopes of viral proteins and gliadins via shared antigenic determi-
nants. These authors characterized a sequence homology between the E1b region of human
adenovirus serotype 12, isolated from the human intestinal tract, and an A-gliadin (an
alpha-gliadin component known to be harmful to the small intestine of CD patients) [60,61].

Generally, it was assumed that the Reoviridae family (mainly reoviruses and ro-
taviruses), adenoviruses, the respiratory syncytial virus, herpes simplex type 1, hepatitis
C and B viruses, enteroviruses, the influenza virus, cytomegalovirus, and Epstein-Barr
virus might play a role in CD development [19,63]. Reoviridae infections are common and
usually nonpathogenic, although some viruses in this family, namely the rotaviruses, can
cause severe diarrhea and abdominal discomfort in children [64]. High rates of rotavirus
gastroenteritis in children with CD were found [16], and vaccination against rotavirus
prevents the onset of CD [65].

Rotavirus infections have been proposed to trigger CD and type 1 diabetes mellitus in
genetically susceptible children via molecular mimicry. When measuring the prevalence
of diseases in a group of children vaccinated with RotaTeq (Kenilworth, NJ), a Finnish
study showed that the prevalence of CD was significantly lower in vaccinated children
than in those receiving a placebo [66]. However, the introduction of the rotavirus vac-
cination in Italy did not affect CD prevalence in Italian children [67]. Moreover, several
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viruses, namely rotaviruses and astroviruses, directly increase gut mucosal permeabil-
ity [68]. Reoviruses promote enterocyte apoptosis and may trigger a pro-inflammatory
response against ingested food antigens [69].

An essential role for reovirus infections in the pathogenetic mechanism of CD was
recently suggested [69,70]. Using an animal model of human disease, reovirus was shown
to disrupt intestinal immune homeostasis, promote immunopathology by suppressing
peripheral regulatory T cells, and activate the pathogenic Th1 response, which led to the
loss of immune tolerance to gliadin. The central role of IRF1 (interferon regulatory factor 1)
in the reovirus-mediated Th1 response against dietary antigen was also demonstrated [69].
Anti-reovirus antibody titers were shown to be higher in a cohort of celiac patients con-
sisting of patients with active CD and those on a GFD in contrast to control individuals.
CD patients on a GFD with high anti-reovirus antibody titers possess significantly higher
interferon regulatory factor 1 expression in the small intestinal mucosa compared to those
patients with low-reovirus antibody titers. Nevertheless, there was no direct relationship
between anti-reovirus antibody levels and the level of IRF1 expression. These results
support the opinion that viruses may influence the transcriptional program of the host for
long periods of time [70].

The association between CD and prior respiratory syncytial virus infection or viral
bronchiolitis has been studied [39]. Approximately four thousand children suffering from
CD (March III stage of villous atrophy) were statistically analyzed for respiratory syncytial
virus infections or viral bronchiolitis before their CD diagnosis. Prior to the CD diagnosis,
0.9% of CD patients, in contrast to 0.6% of matched controls, were infected by the respiratory
syncytial virus. The odds ratios were similar for girls and boys. Interestingly, the highest
odds ratios were found in patients developing CD before one year of age. In this study,
3.4% of CD patients and 2% of matched controls had viral bronchiolitis, regardless of the
viral agent [39].

Enteroviruses have been found in the small gut mucosa of CD patients [71]. Recently,
early childhood exposures to enteroviruses, between the age of one and two years, was
associated with an increased risk of CD [72].

The CD-associated DQA1*0501/DQB1*0201 haplotype causes susceptibility to herpes
infection due to delayed maturation of the gastrointestinal immune system and mucosal
overexpression of the epidermal growth factor receptor and IL-33 [73]. CD is an immune-
mediated disease associated with a high rate of non-response to the viral hepatitis B
vaccination. Proper CD treatment might lead to a positive response to the hepatitis B
vaccination [74]. Interestingly, a significantly increased risk for the development of CD
after vaccination with the quadrivalent human papillomavirus vaccine was found in a
Danish and Swedish population study [75].

Influenza has also been linked to autoimmune conditions. Mårild et al. found that
children with active CD were at increased risk for influenza (hazard ratio of 2.5) [38].
Analysis of the risk of CD after influenza in Norwegians revealed a significantly increased
hazard ratio for CD after seasonal and pandemic influenza. The hazard ratio remained
significantly increased one year after influenza, while the hazard ratio for influenza after
CD diagnosis was not significant, although individuals with CD were at increased risk of
hospital admission for influenza (2.1) [38,76].

A number of autoantibodies and antibodies against food antigens develop in pa-
tients with active CD in contrast to healthy individuals. Conversely, serum levels of
IgG antibodies to cytomegalovirus and Epstein-Barr virus were lower in CD patients
than healthy controls [19]. More recently, an inverse correlation was described among
anti-cytomegalovirus, anti-Epstein-Barr virus, and anti-herpes simplex type 1 virus IgG
antibody levels and levels of autoantibodies against tissue transglutaminase [77].

4. Candida albicans and Parasitic Protozoa in Celiac Disease

Candida albicans is a commensal of the human gastrointestinal tract that can convert
into a pathogen. There are sequence similarities between Candida albicans hyphal-wall
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proteins (namely, hyphal wall protein 1, HWP1) and T-cell alpha-gliadin and gamma-
gliadin epitopes in CD patients. Moreover, HWP1 is also a substrate for mammalian
transglutaminases. Mammalian transglutaminases mediate adherence of Candida albicans
to enterocytes via covalent bonding of its proteins to the host tissue [78]. Analysis of serum
IgG antibodies against recombinant Hwp1 showed significantly elevated levels of these
antibodies in patients with CD and patients with Candida albicans infections. There are no
statistical differences in antibody levels in CD patients and patients with Candida albicans
infections. Interestingly, elevated antibodies against Hwp1 paralleled elevated levels of
IgA anti-gliadin antibodies in the course of infection with Candida albicans. These findings
led the authors to hypothesize that Candida albicans infection may trigger CD onset in
genetically susceptible individuals [79].

CD patients seem to be susceptible to invasion by the unicellular eukaryotic parasites
(parasitic protozoa) Toxoplasma gondii and Giardia lamblia. An approximately four-fold
higher risk for Toxoplasma gondii is seen in individuals positive for CD autoantibodies
(autoantibodies against tissue transglutaminase), indicating faster development of Toxo-
plasma gondii oocyst in the gut of these patients [80]. Elevated autoantibodies against tissue
transglutaminase and endomysium and pathological duodenal histology, during or shortly
after a Giardia infection, have also been found [81].

5. Involvement of Microbiota in the Pathogenesis of Celiac Disease
5.1. Gut Microbiota in Celiac Patients

The maturation of the immune system’s innate and adaptive components provides
a mechanism for distinguishing harmful from harmless substances on mucosal surfaces.
A critical function of the mucosal immune system is connected with the establishment of
mucosal (oral) tolerance to food and microbiota antigens. Microbiota seems to be a key
player in the development of a functional immune system. On the other hand, microbiota
components may contribute to the development of immunopathological events [82–84].
Changes in both the composition and characteristics of the gut microbiome may lead
to chronic intestinal and extraintestinal diseases, including autoimmune CD. Dysbiosis
probably accompanies the prodromal phase of CD as well as the disease course and mani-
festation. In CD, dysbiosis may impair mucosal components of immune cells, including
epithelial cells, making them more vulnerable to infection and autoimmune responses.
CD-associated dysbiosis is observable in feces specimens, duodenal biopsies, saliva, and
oropharyngeal swabs [85–91]. Neisseria flavescens, Proteobacteria, Staphylococcus epidermis,
Staphylococcus haemolyticus, Staphylococcus aureus, and Escherichia coli are abundant in the
stools of CD patients [25,88,90,92–94]. Proteobacteria were more abundant in the duodenal
biopsies of adult CD patients and those suffering from dermatitis herpetiformis (dermal
manifestation of CD) than in healthy individuals. Intriguingly, the duodenum and orophar-
ynx shared similar microbiome profiles in CD patients, characterized by an abundance of
the Proteobacteria phylum and Neisseria species. Thus, there is probably a microbiome con-
tinuum in active CD. The increased numbers of Actinobacteria and the reduced presence of
the Bacteroidetes and Fusobacteria phyla were also found in the oral microbiota of refractory
CD patients [95].

The mucosa-associated microbiota in the proximal gut of children with CD is abun-
dant in Clostridium, Prevotella, and Actinomyces, which contrasts with healthy individuals.
Moreover, decreased numbers of Lactobacillus and Bifidobacteria (except Bifidobacterium
bifidum) and increasing numbers of Gram-negative bacteria, mainly proteobacteria, were
found in pediatric CD patients [96,97]. Clostridium leptum, Bacteroides, Staphylococcus, and
Escherichia coli were significantly more abundant in both stool and duodenal biopsy sam-
ples of pediatric CD patients. In contrast, numbers of Clostridium histolyticum, Clostridium
lituseburense, and Faecalibacterium prausnitzii, as well as Bacteroides fragilis, were higher in
healthy individuals than in CD patients [87,88,90,93,95].

Based on in vitro experiments and the use of animal gnotobiotic models, it was shown
that Escherichia coli could activate innate immune cells in the presence of gliadin, while
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Bifidobacteria, in contrast, possessed an inhibitory effect on these cells [87,88,93]. Beneficial
commensal bacteria (such as Bifidobacterium) were shown to produce molecules preventing
mucosal colonization by enterohemorrhagic Escherichia coli O157:H7 [98,99]. Beneficial
gut microbiota, such as Lactobacillus sp. and Akkermansia muciniphila, contribute to the
maintenance of the mucous layer (barrier) [100,101] and favor colonization resistance
by competing for nutrients with pathogens, stimulating enterocytes to secrete antimi-
crobial molecules into the mucus, thereby supporting more effective protection against
pathogens [102]. Intestinal commensal bacteria generally protect from infections caused
by pathobionts via colonization resistance and interaction with the immune system. Col-
onization resistance is a complex set of events in which the indigenous microbiota (after
microbial colonization of newborns) protects the host from invading pathogenic microbes
with the potential to compromise the function of the mucosal barrier. Analyses of bacterial-
derived small RNA could help elucidate the complicated relationship between microbiota
and host relative to the pathogenesis of CD [103].

5.2. Metabolomics

Commensal bacteria harvest energy from food and produce metabolites of crucial
importance to the host’s physiology, including development, polarization, and responsive-
ness of the immune system to invading microorganisms, as well as mediating protection
against gastrointestinal infectious diseases. Furthermore, gut bacteria facilitate the di-
gestion of insoluble fiber, produce vitamins such as vitamin K, and produce trophic and
immunomodulatory compounds (e.g., short-chain fatty acids (SCFA)). There are several
mechanisms by which primary or opportunistic pathogenic microbiota negatively affect
the host immune system, leading to a breakdown of mucosal tolerance to gluten in individ-
uals predisposed to CD. The declining numbers of Lactobacillus spp. are associated with
decreased production of SCFA. SCFA possess a wide range of biological activities. They are
necessary for correct maturation of the mucosal immune system [104]. SCFA can inhibit
histone deacetylases, which prevents hyperacetylation of histones and can epigenetically
modify the function of both innate and adaptive immune cells relative to the suppression
of the inflammatory immune response [105,106]. SCFA, especially butyrate, promote the
development, persistence, and activation of regulatory T-cells (Treg cells) [107,108].

In terms of the metabolome analysis, only children who developed CD displayed
elevated lactate production between 6–12 months of age, which correlated with high levels
of Lactobacillus spp. in the gastrointestinal tract. Conversely, a decrease in Lactobacillus
spp. was linked with a subsequent decrease in lactate production. Remarkably, decreasing
lactate production occurred during the period crucial for the maturation of the mucosal
immune system and establishment of immunological tolerance to food antigens (e.g.,
gliadin) and autoantigens. In infants genetically at risk for CD, early exposure (6–9 months)
to gluten led to CD autoimmunity more frequently than those in which gluten exposure
was delayed until 12 months of age [89,104]

5.3. Dysbiosis, Perturbation of Gut Mucosa Barrier, and Antigenic Load

Loss of integrity of the gut mucosa barrier can lead to an aberrant immune reaction
against commensal microbiota, food antigens, and tissue antigens due to immune cross-
reactivity, which may manifest as a failure of mucosal (oral) tolerance [109]. A disbalance
in the microbiota can be a risk factor for CD since it negatively affects the integrity of the in-
testinal mucosa, which can lead to increased intestinal permeability, i.e., leaky gut [110,111].
Dysbiosis in CD is also associated with abnormal tight junctions and impaired barrier
function, which leads to augmented translocation of gliadin peptides into the lamina pro-
pria and their exposure to the immune system. A “leaky gut” may assist with a harmful
immune response to luminal (food) antigens. Indeed, broad immunological reactivity
against food antigens and autoantigens is characteristics of active CD [112–118]. Certain
bacteria can produce toxins that disrupt tight junction proteins and increase intestinal
permeability, a condition linked to disruption of gluten tolerance. Increased intestinal



Microorganisms 2021, 9, 547 8 of 21

permeability, both paracellular and transcellular, present in CD patients, contributes to the
activation of adaptive immunity against gluten. Undeniably, Bacteroides fragilis expresses
metalloproteases, which could participate in CD pathogenesis by this mechanism [119–123].
In general, the transit of food and microbiota antigens into the mucosa and submucosa
can lead to hyperstimulation of the mucosal immune system, which may contribute to the
impairment of gliadin tolerance. IgA antibodies, secreted by plasmacytes of gut-associated
lymphoid tissue (GALT), represent an essential component of the gut mucosal barrier.
They are part of the first line of defense against pathogens and participate in mucosal
tolerance of harmless food and commensal microbiota components [82,124]. A reduction
in the IgA-coated fecal bacteria in CD patients indicates the tendency to lose tolerance and
decrease gut mucosa resistance [93]. Indeed, a reduction of IgA in the feces was shown to
precede the onset of CD in infants [125].

Interestingly, the intestinal microbiota secrets transglutaminases, which catalyze the
generation of neo-antigens/neo-epitopes on food, bacterial, and host proteins via their post-
translational modifications, i.e., (de)amination, (de)amidation, and covalent cross-linking.
Tissue transglutaminase (the principal autoantigen in CD) and its family members, the ex-
ogenous microbial transglutaminases, form multiple neo-epitopes on the transglutaminase-
gliadin complex during their enzymatic activity (i.e., covalent cross-linking, deamidation,
transamidation, GTP-binding/hydrolysis, and isopeptidase activities). The transglutam-
inases catalyze isopeptide bonds and cross-linking of amine groups containing the acyl
acceptor lysine and acyl groups containing the acyl donor glutamine. The covalent cross-
linking of gliadin and transglutaminase also seems to be a significant disruptor of intestinal
permeability [126]. Moreover, the neo-epitopes formed in the transglutaminase-gliadin
complex elicit both antibodies against this complex, by specific activation of B-cells, as well
as increased numbers of harmful (autoreactive) T cells in CD patients [73,127,128].

The precise role of microbiota in the pathogenesis of CD is still unknown. It has been
postulated (the “hygiene hypothesis”) that the increase in the incidence of CD could be
linked to a decreasing number of infectious stimuli during early postnatal life [127–129].
There are several technical, methodical, conceptual, and interpretational problems and
biases regarding microbiota analysis up to the present time. Moreover, a definition of
a healthy microbiome is still missing [130]. Inconsistencies in the results of microbiota
analyses in CD patients may be partly due to the heterogeneity of CD patients and controls
used in studies and the techniques and specimens (duodenal or fecal samples) used in
analyses [87,131]. Individuals employed as healthy controls were subjected to upper gas-
trointestinal biopsies to check for signs of gastrointestinal disease. An unusual or atypical
microbiota may have colonized these individuals. On the other hand, it is a matter of
contention if the microbes isolated from untreated CD patients induced the pathological
mucosal changes seen in these patients or the inflammatory conditions specifically se-
lected particular microbiota members for colonization [30]. Thus, crucial questions remain
open, and a causal relationship between microorganisms and CD development needs to
be demonstrated.

6. Influence of Genetic Background, Delivery Mode, and Newborn Feeding on the
Microbiota of Celiac Patients

The dominance of the two major bacterial phyla, Firmicutes and Bacteroides, is estab-
lished in childhood; in addition, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomi-
crobia are also frequently detected bacteria [132]. Generally, children with a genetic risk
of CD showed a lack of bacteria from the phyla Bacteroidetes and Actinobacteria, alongside
an abundance of Firmicutes, Proteobacteria, Staphylococcus spp. and Bacteroides fragilis [104].
The HLA genotype influences the early intestinal microbiota composition. An association
has also been postulated between the HLA-DQ2/HLA-DQ8 genotype and the gut micro-
biota’s composition, suggesting that the microbiota can also be a predisposing factor for
developing CD [133,134]. Prospective cohort studies on the microbiome in CD showed
that the HLA genotype per se affects the gut microbiota of infants at genetic risk of CD.
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An abundance of Bifidobacterium spp. and Bifidobacterium longum were present in the gut
microbiota of infants with the lowest HLA-DQ genetic risk of CD [89].

Individuals with a genetic predisposition for CD, i.e., those having HLA-DQ-2 or
DQ-8, may be prone to intestinal dysbiosis. The feces of infants genetically predisposed to
CD had increased numbers of Firmicutes (Clostridium) and Proteobacteria (Escherichia and
Shigella) and decreased representation of Actinobacteria (Bifidobacterium) and Bacteroidetes
compared to low-risk infants [104,134]. Stool samples from infants at genetic risk for
CD at four and six months of age, who did not develop CD, showed increased bacterial
diversity over time. An increasing abundance of Bifidobacterium longum was found in
control children, while higher levels of Bifidobacterium breve and Enterococcus spp. were
found in those children who developed CD [124].

The tendency to develop dysbiosis may start in early life and depends on the type of
childbirth. Vaginal delivery is linked with colonization by Lactobacilli, Prevotella, Bacteroides,
and Bifidobacteria. Cesarean section, which is considered a risk factor for developing CD
in predisposed individuals, leads to colonization mainly by environmental and maternal
skin bacteria and less by Bacteroidetes [135–141]. Interestingly, it seems that the specific
microbiota that colonizes the placenta can occur in the meconium [142–144].

Breast-feeding exerts a protective effect against infections and reduces the risk of
CD development [145]. Breast vs. formula feeding also seems to be an essential factor
in determining the possible development of dysbiosis in children, especially in children
at risk for CD. Human milk oligosaccharides (HMOs) promote the growth of beneficial
commensals (e.g., Bifidobacteria), prevent the growth of pathobionts (Clostridium difficile),
and protect cell components of the mucosal barrier against harmful reactivity [146,147].
The pathogenic bacteria Clostridium perfringens and Clostridium difficile were found in the
feces of children on formula feeding in contrast to breastfed infants [89,125]. Clostridium
perfringens and Clostridium difficile (and Clostridium spp. generally) have been associated
with formula feeding, while the presence of enterotoxic Escherichia coli has been associated
with the HLA-DQ2 genotype [133].

Nevertheless, a higher prevalence of enterotoxigenic Escherichia coli was seen in chil-
dren at high genetic risk for CD compared to infants with an intermediate genetic risk
irrespective of whether they were breast-fed or formula-fed. The PROFICEL project showed
that breast-feeding promotes colonization with the Clostridium leptum group and Bifidobac-
terium species (mainly Bifidobacterium longum and Bifidobacterium breve), whereas formula-
feeding promoted colonization with the Clostridium coccoides–Eubacterium rectale group [133].
Enterotoxigenic Escherichia coli were found more often in the stool of breast-fed infants at
genetic risk for CD within the first week of life and four and six months of age in contrast
to breast-fed infants with a low or intermediate risk [89,125]. Breast-fed infants at high
genetic risk for the development of CD showed a reduction in Bifidobacterium spp. and had
a higher relative abundance of Proteobacteria and unclassified Enterobacteriaceae [133,134].
Interestingly, at four months of age, infants with the highest risk of CD development
showed a higher prevalence of enterotoxigenic Escherichia coli, irrespective of milk feed-
ing practices [89,125]. The duration of breastfeeding correlated with the occurrence of
several bacterial genera in the gastrointestinal tract, of which especially Lactobacillus and
Bifidobacterium were previously linked with positive health outcomes [148].

7. Microbiota and Gluten-Free Diet in Celiac Patients

Compliance with a GFD only leads to a partial restoration of the gut microbiota.
Though recolonization by Enterobacteria or Staphylococci has been observed, fewer Bifidobac-
teria and Lactobacilli and increased numbers of Bacteroides, Enterobacteriaceae, and virulent
Escherichia coli persisted in CD patients on a GFD [149]. Escherichia coli clones isolated
from active and non-active CD patients carry more virulent genes than the species isolated
from healthy controls [90,94]. Indeed, full microbiota restoration is not reached in CD
patients on a GFD due to reduction in prebiotics [150] and intestinal dysbiosis exists both
in patients with active CD and those with long-lasting adherence to a GFD; a GFD leads
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to a reduction in both potentially pathogenic microorganisms and beneficial Bifidobacteria.
Nevertheless, besides a genetic background (i.e., mainly HLA-haplotypes), a GFD may
contribute to dysbiosis in CD patients [151,152]. No significant differences in nutritional
intake, either before or after the introduction of a GFD, were observed in CD patients; there
was a reduction in saccharide (e.g., fructans) intake in CD patients on a GFD. Fructans
possess prebiotic properties and are an energy source for gut commensal microbiota [153].
Generally, a reduced intake of polysaccharides and oligosaccharides with prebiotic proper-
ties, which act as an energy source for commensals in the gut microbiota, may aggravate
gut dysbiosis in CD patients on a GFD. Reduced fructans intake could explain the decrease
in beneficial gut bacteria seen in these patients [154]. Interestingly, patients who underwent
GFD complaining persistent CD symptoms have a microbiota which resembles that of
patients with irritable bowel syndrome [150,155].

8. Anti-Infectious Responses in Celiac Patients

Autoimmune and immunologically-mediated diseases are characterized by chronic
tissue damage and functional impairment, which is caused by the reactivity of the host
immune system. Loss of self-tolerance (tolerance to autologous antigens) is a necessary
condition for developing such diseases. It has been described that pathogenic autoim-
mune reactions might be provoked by any number of microorganisms and their compo-
nents [83,156–161]. Infectious stimuli, including viral and bacterial superantigens, stress
proteins, and chaperones, may evoke an abnormal antigen presentation, activation of
immune cells, overexpression of genes in MHC locus, i.e., classical and non-classical
human leukocyte antigens (HLA-A-C, HLA-E, CD1b, CD1d, and MIC-A/MIC-B), and
cross-presentation of antigens on antigen-presenting cells or ectopic presentation of tissue
antigens [83,162–168]. The abnormal presentation of antigens (including autoantigens) and
cell hyperstimulation may lead to inadequate as well as adverse reactions of the immune
system. A vigorous immune response against microbial antigens boosted by their adju-
vant effect may elicit activation of potentially autoreactive or cross-reactive juxtaposed
immune cells (i.e., “bystander activation”) and recognizing autoantigens via “molecular
mimicry” [169–175]. An aberrant intestinal immune response against pathogenic and com-
mensal microbiota may trigger the development of immunologically-mediated diseases
via this mechanism. The crucial role of the microbiota in the induction of immunologically-
mediated diseases was confirmed by findings in experimental animal models of human
diseases in our laboratory (inflammatory bowel disease, rheumatoid disease, psoriasis,
uveoretinitis, inflammatory bowel disease, allergies), i.e., these diseases do not develop in
germ-free conditions [84,176–182].

Immunocytes recognize the common structure of microbes (microbe-associated molec-
ular patterns, MAMPs) via germline-encoded, phylogenetically old, pattern recognition
receptors (PRRs). Toll-like receptors (TLRs), retinoic acid-inducible gene-I-like (RIG-I)
receptors (RLRs), and nucleotide-binding oligomerization domain-like (NOD) receptors
(NLRs) are among the most important members of the PRR family. Increased sensitivity to
MAMPs suggests increased expression of TLR2, TLR4, and TLR9 in untreated and treated
CD patients in contrast to controls [183]. Independently of HLA-DQ2 and DQ8, genes
associated with protection against infection, such as SH2B3, have also been linked to CD.
The SH2B3 genotype-determined response to lipopolysaccharide and muramyl dipeptide
reveals components of bacterial cells. The SH2B3 rs3184504*A allele determines a stronger
activation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2,
an intracellular pattern recognition receptor, which upon activation trigger innate inflam-
matory responses) during defense against pathogenic bacteria [184]. Moreover, increased
expression of TLR-9 mRNA and IL-8 mRNA (a pro-inflammatory cytokine) was observed
in untreated CD patients compared to controls. TLR-9 is in the endoplasmic reticulum
of plasmacytoid dendritic cells and early endosomes or late endosomes/lysosomes of
the majority of innate immunity cells as well as T and B lymphocytes. TLR-9 recognizes
non-methylated CG motifs (CpG oligodeoxynucleotides). Non-methylated CG motifs are
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common in bacterial and viral genomes but infrequently occur in mammalian DNA, except
for mitochondrial DNA. Nevertheless, TLR-9 also recognizes Danger-associated molecular
patterns (DAMPs). Thus, activation of the innate immune response, via TLR-9, might
participate in the defense against infection, but also in the autoreactive response [185].

On the other hand, the expression of TLR-2 mRNA was significantly decreased in
both untreated CD and CD-GFD patients compared to controls. Probably, the compen-
satory expression of inhibitory TOLLIP (Toll interacting protein; a negative regulator of
TLRs) mRNA was also decreased in untreated CD patients compared to controls [186,187].
TLR-2 is localized predominantly on monocytes/macrophages, polymorphonuclear cells,
dendritic cells, endothelial cells, hepatocytes, and activated B cells in the germinal centers
of the tonsils, lymph nodes, and appendix. TLR-2 recognizes various bacterial, fungal,
viral, and parasitological PAMPs (such as bacterial peptidoglycan, lipoproteins, lipotei-
choic acids, lipoarabinomannan, porins, viral hemagglutinin, and glycoproteins) as well as
several DAMPs [188–190]. Nevertheless, a reduction in TOLLIP expression may disrupt
“lipopolysaccharide tolerance” in CD patients (along with an increased expression of TLR4),
which prevents superfluous activation of immunocytes by microbial products, including
lipopolysaccharide or lipoteichoic acid [187,191].

Cytokine IL-17A is produced by both CD8+T cells (Tc17 cells) and Th cells during
inflammation and in anti-bacterial immune responses, as well as in active CD. Prevotella
species, Lachnoanaerobaculum umeaense, and Actinomyces graevenitzii, have been isolated
from CD jejunal biopsies. These species can trigger an IL-17A mediated immune response
to gliadin peptides in some patients with active CD, as seen in experiments with intestinal
biopsies from these patients [192,193].

The proinflammatory status of the intestinal mucosa of patients with active CD may
be promoted by the presence of virulence genes encoding proteases in Neisseria flavescens
and Staphylococcus epidermis. The expression of these genes may contribute to increasing the
cleavage of gluten and, thus, the production of its immunogenic peptides in the duodenal
mucosa of CD patients [24,25,88,90,92–94]. An abundance of virulence genes was also
found in Staphylococcus spp., Escherichia coli, Bacteroides fragilis [90,94], and Neisseria flaves-
cent [92] isolated from CD patients compared to controls. Moreover, the gene system for
iron acquisition (genes for hemoglobin receptor, haptoglobin-hemoglobin A/B and trans-
ferrin A/B binding protein) differed between CD and control-associated Neisseria flavescent.
Neisseria flavescent isolated from active CD patients possesses the gene for a hemoglobin
receptor, usually present in pathogenic Neisseria meningitidis. Interestingly, Neisseria species
isolated from active CD patients lacked the genes for haptoglobin-hemoglobin A/B and
transferrin A/B binding protein, which are usually present in Neisseria flavescent strains [92].

A pivotal event in developing an immune response, both pro-inflammatory and
tolerogenic, involves antigen-presenting cells, mainly dendritic cells. Five different strains
of Neisseria flavescens, which were isolated from adult patients with untreated CD, were
able to activate human dendritic cells and create an inflammatory phenotype [92]. The
capacity of Neisseria flavescens to stimulate the host immune system could be related to the
presence of virulence genes (e.g., bifunctional autolysin (atlE) and the methicillin-resistant
gene (mecA)). These virulence genes are also found in Proteobacteria such as Pseudomonas
and opportunistic pathogens such as Staphylococcus epidermis, which has been found in
stools of CD patients [24,25,88,90,92–94].

Involvement of infections and dysbiosis in pathogenesis of celiac disease is schemati-
cally depicted in Figure 2.
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9. Microbiota Modulation in Celiac Disease

Genetic background, type of delivery, maternal and infant nourishment, and antibi-
otic exposure can influence microbiota composition [136,194]. The symbiotic relationship
between the host and colonizing microbiota establishes a selective immune tolerance to
beneficial microbiota [195]. Dietary changes, antibiotics, and infections can disrupt in-
testinal microbial homeostasis and lead to increased intestinal permeability, i.e., leaky gut
and gut dysbiosis [196]. Gut dysbiosis may contribute to the pathogenesis of CD and the
persistence of CD symptoms in some CD patients on a GFD. These facts indicate the need
to use probiotics as part of the treatment of CD in conjunction with a GFD [197]. The
protective effects on the gut barrier function of probiotic strains such as Lactobacillus casei
DN-114001 and Escherichia coli Nissle 1917 have been described [198]. In vitro experiments
with Caco-2 cells found that the probiotic bacteria Bifidobacterium lactis protected epithelial
integrity [199]. As already mentioned, several viruses, namely astroviruses and rotaviruses,
increase gut mucosal permeability [68]. Despite the imperfect understanding of the precise
mechanism regarding how the gut microbiota suppresses viral infections, oral administra-
tion of Lactobacilli spp. (reuteri, acidophilus, delbrueckii, bulgaricus, casei) and Saccharomyces
boulardii have been shown to reduce the duration of rotavirus-associated diarrhea and
substantially reduced viral shedding [200,201].

Thus, the utilization of probiotics could benefit CD patients. Generally, probiotics exert
positive effects through prophylaxis against dysbiosis, e.g., caused by antibiotics. A study
on Danish and Norwegian children showed that exposure to systemic antibiotics in the
first year of life was associated with a later diagnosis of CD, which means antibiotics could
be a risk factor for CD. The risk of antibiotic consumption relative to the development of
CD was shown to be dose-dependent, i.e., the risk increases with the quantity of dispensed
antibiotics. However, no specific type of antibiotics or age period (within the first year)
was found to be crucial relative to the risk of developing CD [17,20,22,202,203].

Several studies analyzed the possible influence of various probiotics in CD patients.
Bifidobacterium infantis in the form of Natren Life Start (NLS-SS) was administered to active
CD patients. Administration of probiotics was found to lead to a significant improvement in
gastrointestinal symptoms [204]. In contrast to the positive effects of probiotics mentioned,
Bifidobacterium infantis, when administered to active CD patients, decreased the number of
Paneth cells and the expression of alpha-defensin-5, as seen in duodenal biopsies [204,205].
Paneth cells are crucial in gut homeostasis and the regulation of innate immunity. These
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cells play an essential role in defense against pathogens by secreting defensins, lysozyme,
and phospholipases [206].

Finally, drugs derived from microbial enzymes capable of degrading toxic gliadin
peptides or probiotics bearing these enzymes are needed for complementary therapy of
CD because absolute avoidance of gluten within a GFD is challenging to achieve [207,208].
In vitro (e.g., during gluten-free food preparation), degradation of gliadin pathogenic
(proinflammatory/toxic) peptides is possible using proteases produced by Bifidobacte-
ria, Rothia spp., Actinomyces odontolyticus, Neisseria mucosa, and Capnocytophaga sputi-
gena [209,210]. Gluten-degrading microorganisms naturally occurred in the oral cavity, e.g.,
Rothia mucilaginosa and Rothia aeria [210,211], and Lactobacilli spp. [86].

In conclusion, many studies examining the role of microbiota in CD pathogenesis
have been published. Studies suggesting the involvement of infections and microbiota in
pathogenesis of celiac disease were focused on: (1) susceptibility of CD patients to infec-
tions [16,38,47–49,53,58,59,76]; (2) immunomodulatory effects of infections in CD patients and
CD-susceptible individuals [37,44,45,60–62,68–70,72,76,80,84,120,158,160,161,168,171–175,191];
(3) dysbiosis in pathogenesis of CD [35,36,89,133,134,150,155]; (4) GFD and its influence on
microbiota composition [26,149,151–153]; and (5) possible microbiota modulation in CD
patients [98,100,137,148,154,197–200,204,205,209,210]. Nevertheless, further research is still
needed. It is necessary to note that the exact role of the microbiota in the pathogenesis of
CD is still not entirely unclear. Moreover, technical, methodical, conceptual, and interpreta-
tional problems and prejudices continue to influence microbiota research related to CD. At
the same time, the definition of a healthy microbiome is still absent. Lastly, there is still
an urgent need to identify new probiotic strains and bacterial proteases, which can cleave
gliadin, that can be used in clinical praxis to improve the treatment of CD.
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15. Hoffmanová, I.; Sánchez, D.; Tučková, L.; Tlaskalová-Hogenová, H. Celiac disease and liver disorders: From putative pathogenesis

to clinical implications. Nutrients 2018, 10, 892. [CrossRef]
16. Stene, L.C.; Honeyman, M.C.; Hoffenberg, E.J.; Haas, J.E.; Sokol, R.J.; Emery, L.; Taki, I.; Norris, J.M.; Erlich, H.A.; Eisenbarth,

G.S.; et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: A longitudinal study. Am. J.
Gastroenterol. 2006, 101, 2333–2340. [CrossRef]

17. Myléus, A.; Stenlung, H.; Hernell, O.; Gothefors, L.; Hammarström, M.L.; Persson, L.Å.; Ivarsson, A. Early vaccinations are not
risk factors for celiac disease. Pediatrics 2012, 130, e63–e70. [CrossRef]

18. Fasano, A.; Shea-Donohue, T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal
autoimmune diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2005, 2, 416–422. [CrossRef] [PubMed]

19. Plot, L.; Amital, H.; Barzilai, O.; Ram, M.; Bizzaro, N.; Shoenfeld, Y. Infections may have a protective role in the etiopathogenesis
of celiac disease. Ann. N. Y. Acad. Sci. 2009, 1173, 670–674. [CrossRef]

20. Canova, C.; Zabeo, V.; Pitter, G.; Romor, P.; Baldovin, T.; Zanotti, R.; Simonato, L. Association of maternal education, early
infections, and antibiotic use with celiac disease: A population-based birth cohort study in northeastern Italy. Am. J. Epidemiol.
2014, 180, 76–85. [CrossRef] [PubMed]

21. Beyerlein, A.; Donnachie, E.; Ziegler, A.G. Infections in early life and development of celiac disease. Am. J. Epidemiol. 2017,
186, 1277–1280. [CrossRef]

22. Kemppainen, K.M.; Vehik, K.; Lynch, K.F.; Larsson, H.E.; Canepa, R.J.; Simell, V.; Koletzko, S.; Liu, E.; Simell, O.G.; Toppari,
J.; et al. Environmental Dermatitis of Diabetes in Young (TEDDY) Study Group. Association between early-life antibiotic use and
the risk of islet or celiac disease autoimmunity. JAMA Pediatr. 2017, 171, 1217–1225. [CrossRef]

23. Bascuñán, K.A.; Araya, M.; Roncoroni, M.; Doneda, L.; Elli, L. Dietary gluten as a conditioning factor of the gut microbiota in
celiac disease. Adv. Nutr. 2020, 11, 160–174. [CrossRef]

24. Caminero, A.; McCarville, J.L.; Galipeau, H.J.; Deraison, C.; Bernier, S.P.; Constante, M.; Rolland, C.; Meisel, M.; Murray, J.A.; Yu,
X.B.; et al. Duodenal bacterial proteolytic activity determines sensitivity to dietary antigen through protease-activated receptor-2.
Nat. Commun. 2019, 10, 1198. [CrossRef] [PubMed]

25. Caminero, A.; Verdu, E.F. Celiac disease: Should we care about microbes? Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317,
G161–G170. [CrossRef]

26. Bonder, M.J.; Tigchelaar, E.F.; Cai, X.; Trynka, G.; Cenit, M.C.; Hrdlickova, B.; Zhong, H.; Vatanen, T.; Gevers, D.; Wijmenga,
C.; et al. The influence of short-term gluten-free diet on the human gut microbiome. Genome Med. 2016, 8, 45. [CrossRef]
[PubMed]

27. Catassi, C.; Kryszak, D.; Bhatti, B.; Sturgeon, C.; Helzlsouer, K.; Clipp, S.L.; Gelfond, D.; Puppa, E.; Sferruzza, A.; Fasano, A.
Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med. 2010, 42, 530–538. [CrossRef]
[PubMed]

28. Serena, G.; Lima, R.; Fasano, A. Genetic and environmental contributors for for celiac disease. Curr. Allergy Asthma Rep. 2019,
19, 40. [CrossRef] [PubMed]

29. Greco, L.; Romino, R.; Coto, I.; Di Cosmo, N.; Percopo, S.; Maglio, M.; Paparo, F.; Gasperi, V.; Limongelli, M.G.; Cotichini, R.; et al.
The first large population based twin study of coeliac disease. Gut 2002, 50, 624–628. [CrossRef]

30. Valitutti, F.; Cucchiara, S.; Fasano, A. Celiac disease and the microbiome. Nutrients 2019, 11, 2403. [CrossRef] [PubMed]
31. Cenit, M.C.; Olivares, M.; Codoñer-Franch, P.; Sanz, Y. Intestinal microbiota and celiac disease: Cause, consequence or co-

evolution? Nutrients 2015, 7, 6900–6923. [CrossRef] [PubMed]
32. Verdu, E.F.; Galipeau, H.J.; Jabri, B. Novel players in coeliac disease pathogenesis: Role of the gut microbiota. Nat. Rev.

Gastroenterol. Hepatol. 2015, 12, 497–506. [CrossRef] [PubMed]
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