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C-reactive protein (CRP) is a pentameric molecule made up of identical monomers. CRP

can be seen in three different forms: native pentameric CRP (native CRP), non-native

pentameric CRP (non-native CRP), and monomeric CRP (mCRP). Both native and

non-native CRP execute ligand-recognition functions for host defense. The fate of any

pentameric CRP after binding to a ligand is dissociation into ligand-bound mCRP. If

ligand-bound mCRP is proinflammatory, like free mCRP has been shown to be in vitro,

then mCRP along with the bound ligand must be cleared from the site of inflammation.

Once pentameric CRP is bound to atherogenic low-density lipoprotein (LDL), it reduces

both formation of foam cells and proinflammatory effects of atherogenic LDL. A CRP

mutant, that is non-native CRP, which readily binds to atherogenic LDL, has been found

to be atheroprotective in a murine model of atherosclerosis. Thus, unlike statins, a

drug that can lower only cholesterol levels but not CRP levels should be developed.

Since non-native CRP has been shown to bind to all kinds of malformed proteins in

general, it is possible that non-native CRP would be protective against all inflammatory

states in which host proteins become pathogenic. If it is proven through experimentation

employing transgenic mice that non-native CRP is beneficial for the host, then using a

small-molecule compound to target CRP with the goal of changing the conformation of

endogenous native CRP would be preferred over using recombinant non-native CRP as

a biologic to treat diseases caused by pathogenic proteins such as oxidized LDL.
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INTRODUCTION

C-reactive protein (CRP) is a pentamer of identical subunits which functions in two different
structural states, as native pentameric CRP (native CRP) in normal physiological environment
and as non-native pentameric CRP (non-native CRP) in localized pathological and inflammatory
environments (1–7). During making of CRP in the liver, first, the five subunits fold to almost a
native core and the single C-terminal helix is correctly positioned. Then, the intrachain disulfide
bond between Cys36 and Cys97 is formed. Further folding of the subunit is driven by the newly
formed disulfide bond and Ca2+-binding. Finally, CRP is assembled as pentamers and secreted into
the circulation (8). It has been shown that recombinant CRP is not assembled and not secreted from
the transfected cells if there is a mutation in the region coding for its Ca2+-binding site (9). When
CRP enters an inflammatory microenvironment and is exposed to pathological conditions, the data
obtained from in vitro experiments suggest that the pentameric structure of CRP is converted from
its native conformation to a non-native conformation (2, 10, 11). Whether it is native CRP or
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non-native CRP, binding of CRP to a ligand causes dissociation
of pentameric CRP and generation of monomeric CRP (mCRP)
on the surface of the ligand (10).

Atherosclerosis is an inflammatory disease caused by
the deposition and subsequent modification of low-density
lipoprotein (LDL) in artery walls (12–14). Modified LDL is
atherogenic: it is recognized and engulfed by macrophages to
form LDL-loaded foam cells that contribute to the development
of atherosclerotic lesions (14–16). It has been suggested that
in areas in which inflammation takes place, including in
atherosclerosis, the pH may be acidic due to hypoxia, lactate
generation, activated macrophages and proton generation (17–
21). Since CRP has been found to localize with LDL and
macrophages in atherosclerotic lesions in both humans and
experimental animals, CRP has been implicated in modulating
the pathogenesis of atherosclerosis (22–26). Here, we review
the literature on the structure-function relationships of CRP
in vitro and in vivo as applied to atherosclerosis and conclude
that CRP plays a defensive role in the pathogenesis of
atherosclerosis (27, 28).

FUNCTIONS OF CRP (NATIVE CRP)

IN ATHEROSCLEROSIS

CRP, in its native pentameric conformation and in the presence
of Ca2+, binds to cells and molecules with uncovered
phosphocholine (PCh) groups, such as the membrane
of damaged cells and platelet-activating factor (29–31).
Each subunit in the pentamer has a PCh-binding site.
The three-dimensional structure and mutagenesis of the
PCh-binding site revealed that Glu81, Phe66 and Thr76

are critical for creating the pocket on CRP to bind and
accommodate PCh (32–35). Once CRP is bound to a PCh-
containing ligand, it activates the classical complement
pathway (36).

Many kinds of modifications can occur to deposited LDL in
arteries; however, two types of modified LDL prepared in vitro,
oxidized LDL (ox-LDL) and enzymatically-modified LDL (E-
LDL), are mostly used in experiments to define the role of
CRP in atherosclerosis (37–39). Since the PCh groups present
in LDL are exposed in E-LDL, CRP is able to bind to E-
LDL in a Ca2+-dependent manner (40, 41). CRP does not
bind to ox-LDL; however, CRP can bind to ox-LDL if LDL
is oxidized enough to expose its PCh moiety (42–45). If CRP
binds to ox-LDL independent of the exposure of PCh on ox-
LDL, it would be possible only in a pathological milieu that
can affect CRP structurally (10, 11). CRP has also been shown
to bind to complexes consisting of ox-LDL and β2-glycoprotein
I (46, 47). CRP also binds to cholesterol crystals and it has
been shown that CRP is located mainly in the cholesterol-
rich necrotic core in atherosclerotic lesions (48). It has been

Abbreviations: CRP, C-reactive protein; CRP or native CRP, native pentameric
CRP; non-native CRP, non-native pentameric CRP; mCRP, monomeric CRP; LDL,
low-density lipoprotein; ox-LDL, oxidized LDL; E-LDL, enzymatically-modified
LDL; PCh, phosphocholine.

shown that CRP also binds to LOX-1 which is a receptor for
ox-LDL (49, 50).

CRP, ox-LDL and E-LDL all are known to be involved
in interrelated pathophysiological pathways including in the
formation of LDL-loaded macrophage foam cells (16, 51).
However, the literature on the effects of CRP on the formation
of foam cells has been controversial. Since CRP was found
to be located intracellularly in foam cells, it was hypothesized
that CRP complexes with LDL, enhances the binding of LDL
to macrophages, and thus facilitates the cellular uptake of
LDL along with CRP (52–57). When pure complexes of CRP
and E-LDL were used for treatment of macrophages, it was
found that CRP-bound E-LDL was unable to form foam cells,
clearly suggesting for the first time that CRP possesses the
ability to prevent the formation of foam cells (58). Indeed, in
another study, the complexes of CRP and LDL were found
to be unable to enter macrophages (59). In addition, when
endothelial cells and a third type of modified LDL, acetylated
LDL, were used in foam cell experiments, mCRP was found
to decrease the uptake of acetylated LDL by endothelial cells
(60). In another study employing endothelial cells as a model
for foam cell formation, CRP was found to increase LDL
transcytosis across endothelial cells (61). mCRP has also been
shown to decrease uptake of ox-LDL by macrophages and it
has been proposed that the interaction of mCRP with ox-
LDL may contribute to retardation of the foam cell formation
by reducing the aggressive macrophage response to ox-LDL
(43, 62). Additionally, it has been proposed that mCRP may
exert a protective role by facilitating the clearance of retained
native LDL from extracellular space, and thus lower the risk
of LDL modifications (43). But, since foam cell formation
is inhibited whenever CRP is complexed with modified LDL
such as CRP-E-LDL and mCRP-acetylated LDL, it has been
proposed that if each LDL molecule retained in the arterial wall
becomes CRP-bound, the development of atherosclerosis should
be retarded (58).

Besides the effects of CRP on the formation of foam cells, other
consequences of the interactions between CRP andmodified LDL
have been reported, although it is unclear whether it was ensured
that CRP was free of spontaneously generated mCRP. CRP,
after binding to LDL, causes charge modification of LDL (59).
The production of proinflammatory cytokines by macrophages
decreases when the cells are treated with a combination of CRP
and ox-LDL (62). CRP inhibits the susceptibility of copper-
induced oxidation of LDL, that is, once CRP is bound to
ox-LDL, further oxidation is prevented, and CRP does so by
prolonging the time it takes for copper ions to oxidize LDL
(63, 64). By sequestering minimally modified LDL (mmLDL),
CRP can prevent binding of mmLDL to monocytes and attenuate
mmLDL-induced monocyte adhesion and activation (65). CRP
was also found to suppress the proatherogenic effects of
macrophages when bound to lysophosphatidylcholine present in
ox-LDL and inhibit the association of ox-LDL to macrophages;
this effect may in part retard the progression of atherosclerosis
(66). These findings suggest that not only does CRP prevent foam
cell formation but also reduce the proinflammatory effects of
modified LDL and foam cells.
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Human CRP, mouse CRP and rabbit CRP have all been
used to determine the effects of CRP on the development
of atherosclerosis. For human CRP, three different murine
models of atherosclerosis, ApoE−/− mice, LDLr−/− mice and
ApoB100/100LDLr−/− mice, and a rabbit model of atherosclerosis
have been employed. CRP was either transgenic or passively
administered. In most studies employing ApoE−/− mice, CRP
was found to be neither proatherogenic nor atheroprotective:
both passively administered human CRP and transgenically
expressed human CRP had no effect on the development,
progression, or severity of atherosclerosis (67–71). In two studies
employing ApoE−/− mice, CRP slightly worsened the disease
(72, 73). In another study employing ApoE−/− mice, CRP
promoted early changes of atherosclerosis by directly increasing
the transcytosis of LDL across endothelial cells and increasing
LDL retention in vascular walls (61). In LDLr−/− mice also,
there was no effect of CRP on the development of atherosclerosis
(74). When ApoB100/100LDLr−/− mice were employed, which
are rich in LDL and develop human-like hypercholesterolemia,
CRP slowed the development of atherosclerosis, suggesting an
atheroprotective role of CRP (75). In the rabbit model of
atherosclerosis also, there was no effect of transgenic human
CRP on either aortic or coronary atherosclerotic lesion formation
(76). CRP-deficient mice were employed to observe any possible
role of endogenous murine CRP in atherosclerosis (77). In
both ApoE−/−CRP−/− and LDLr−/−CRP−/− mice, the size of
atherosclerotic lesions was either equivalent or increased when
compared to that of ApoE−/− and LDLr−/− mice, suggesting
that murine CRP had the ability to mediate atheroprotective
effects (77). Besides human and murine CRP, the effect of rabbit
CRP on the development of atherosclerosis in rabbits has also
been investigated by using CRP antisense oligonucleotides (78).
CRP antisense oligonucleotide treatment led to a significant
reduction of CRP levels in rabbits; however, both aortic
and coronary atherosclerotic lesions were not significantly
changed, suggesting that inhibition of plasma CRP does not
affect the development of atherosclerosis in rabbits (78). The
combined data suggest that native CRP was either incapable
or only partly capable for protecting against atherosclerosis in
animal models.

FUNCTIONS OF NON-NATIVE

PENTAMERIC CRP (NON-NATIVE CRP)

IN ATHEROSCLEROSIS

In the presence of a biological protein modifier, the structure
of CRP is altered leading to the production of non-native CRP
which ultimately generates mCRP (1–5, 79). Dissociation of
CRP to mCRP thus involves an intermediate stage of non-
native CRP, and it has been shown that antibodies specific for
mCRP react with non-native CRP also (1). There are several
modifiers of CRP structure. CRP is modified in the presence
of abundant damaged cell membranes (1). The binding of CRP
to activated platelets and apoptotic cells has also been shown
to change the structure of CRP to generate mCRP (80, 81).
CRP, by binding to cell-derived microvesicles, undergoes a

structural change without disrupting the pentameric symmetry
and constitutes the major CRP species deposited in inflamed
tissue (4). mCRP has also been seen deposited at burn wounds
having necrotic and inflamed tissue (82). Acidic pH condition
modifies CRP (10, 83). CRP is also modified by hydrogen
peroxide and hypochlorous acid (11, 84). Hypochlorous acid
modifies CRP by oxidation and chlorination of amino acids,
leading to protein unfolding, greater surface hydrophobicity
and the formation of aggregates (84). These findings suggest
that when CRP enters an inflammatory microenvironment
and is exposed to pathological conditions, the structure of
CRP is changed first to a non-native pentameric conformation
leading to complete dissociation of CRP and generation
of mCRP.

Except for binding to PCh, the recognition functions of non-
native CRP are different from those of CRP (2, 7). One function
of CRP in its non-native pentameric conformation is to bind
to modified LDL irrespective of the presence of PCh and Ca2+.
Unlike CRP, non-native CRP readily binds to ox-LDL regardless
of the extent and nature of the oxidation status (10, 11). To E-
LDL, non-native CRP binds more avidly than CRP does (83).
It has also been shown that, in the absence of Ca2+, a new
lysophosphatidylcholine-binding site located on the opposite side
of the known PCh-binding site becomes functional (85, 86).
The binding to and actions of CRP on endothelial cells also
requires a conformational rearrangement in CRP (87). Taken
together, the deposition of CRP and its co-localization with
LDL in atherosclerotic lesions indicate the presence of non-
native CRP at the lesions. Besides PCh, the other moieties on
LDL molecules that interact with CRP include apolipoprotein
B and cholesterol. However, the moiety on modified LDL
with which non-native CRP interacts is unknown (88–90). The
binding site on non-native CRP for modified LDL has not been
elucidated as yet either. It has been proposed though that the
binding site may involve amino acid residues participating in
the formation of intersubunit contact region since this region
is buried in CRP and accessible in non-native CRP (2, 10). In
addition, a single sequence motif called the cholesterol binding
sequence, from amino acid residue 35 to 47, has been found
to be responsible for mediating the interactions of mCRP
with diverse ligands. The versatility of the cholesterol binding
sequence appears to originate from its intrinsically disordered
conformation (91).

Although the investigations to determine the effects of
CRP on the development of atherosclerosis in animals provide
conflicting results, a study employing mCRP in ApoE−/− mice
indicated that mCRP was atheroprotective (73). Additionally,
the data obtained from in vitro experiments raised hopes
that non-native CRP may be more atheroprotective than CRP,
considering the difference between the LDL-binding recognition
functions of CRP and non-native CRP. Employing site-directed
mutagenesis, it was possible to create CRP mutants capable
of binding to ox-LDL without the requirement of any further
structural change, and one such mutant has been reported
earlier (92). Recently, the impact of such a CRP mutant on
the development of atherosclerosis was evaluated employing the
LDLr−/− mouse model of atherosclerosis (93). The development
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of atherosclerotic lesions in the whole aorta was reduced in
mice receiving mutant CRP that had a non-native pentameric
structure. Considering the findings made on all forms of
CRP structure, it seems clear that CRP is an atheroprotective
molecule (93).

PROINFLAMMATORY FUNCTIONS OF

LIGAND-BOUND mCRP

Once CRP, either native or non-native, is bound to certain types
of ligands, mCRP is generated on the surface of the ligand,
due to complete dissociation of the five subunits of CRP. It has
been shown that the binding of non-native CRP to immobilized
protein ligands results in expression of mCRP epitopes and that
mCRP cannot be detached from the ligand (10). Thus, mCRP
is not a free molecule; instead, mCRP is always ligand-bound
and found in CRP-derived debris. The presence of mCRP can be
detected at the sites where CRP-ligands are present. The detection
of autoantibodies against mCRP provided further evidence for
the in vivo existence of non-native CRP and mCRP, probably
ligand-bound (94–96). The mCRP form is the predominant form
of CRP existing in atherosclerotic lesions (80, 97–100). It has also
been shown that the expression of proinflammatory properties
of CRP requires sequential conformational changes beginning
with the loss of pentameric symmetry, followed by reduction
of the intrasubunit disulfide bond, generating mCRP (87, 101).
Since free mCRP is proinflammatory in in vitro experiments,
it can only be assumed that ligand-bound mCRP may also be
proinflammatory. Ligand-associated mCRP must be removed
along with the ligand.

CRP, STATINS, AND ATHEROSCLEROSIS

Statins, the inhibitors of a key enzyme in the cholesterol
biosynthesis pathway, are used in humans as cholesterol-
lowering drugs (102). However, statins also lower CRP levels
in humans and human CRP-transgenic mice (103–108). Statins
lower CRP levels independently of their cholesterol-lowering
activity (103, 104). Statins lower CRP by inhibiting the
biosynthesis of CRP by hepatocytes (109, 110). Nitric oxide also
inhibits the biosynthesis of CRP (109). It is possible that nitric
oxide acts as the mediator of the CRP-lowering effect of statins,
since statins are known to generate nitric oxide production (109–
112). Because CRP is beneficial, to get rid of CRP from the
circulation is not a good idea; a drug that can lower cholesterol
levels, but not the CRP levels, should be of choice over statins
which lower both (113, 114).

CONCLUSIONS

CRP appears in the body in response to inflammation and
CRP requires exposure to an inflammatory milieu to change its
structure and execute functions (2, 115). We have hypothesized
earlier that one of the functions of CRP at sites of inflammation
is to sense the inflammatory microenvironment, change its
own structure in response but remain pentameric, and then

bind to pathogenic proteins deposited at those sites (11). CRP
does not show an effect on the development of atherosclerosis
likely because the inflammatory microenvironment in the
arterial wall in animal models of atherosclerosis may not
be appropriate in terms of pH and redox conditions and,
therefore, the structure of CRP remains unchanged. Consistent
with this hypothesis, a CRP molecule which was modified
in vitro and was capable of binding to atherogenic LDL, did
reduce the development of atherosclerosis in mice (93). Thus,
CRP has atheroprotective functions displayed by its non-native
pentameric form. It has also been proposed that CRP-mediated
lipoprotein removal likely underlies the regression of early lesions
and perhaps CRP should be considered as an antiatherogenic
agent (39).

Non-native CRP binds not only to atherogenic LDL but
to all immobilized proteins, including proteins that might
be deposited in the host body or recruited on pathogenic
surfaces (10, 116). We have suggested previously that deposited,
aggregated and conformationally denatured proteins expose a
CRP-ligand, regardless of the protein’s identity (10). Accordingly,
non-native CRP has also been found to be protective against
pneumococcal infection (117–119). Although it is not clear
what structure on immobilized proteins is recognized by
non-native CRP, it has been proposed that an amyloid-like
structure is formed on all such proteins and that is what
is being recognized by non-native CRP, consistent with the
hypothesis that CRP is a pattern recognition molecule of
the innate immune system (10). Indeed, an amyloid-like
structure appears on LDL by oxidation (120, 121). Non-native
CRP may serve as a tool to investigate the functions of
CRP in every inflammatory disease involving deposition and
aggregation of proteins, such as amyloidosis and autoimmune
diseases (122). CRP may have been conserved throughout
evolution for protection against disease and toxicity caused
by protein misfolding and conformationally altered pathogenic
proteins (123, 124).

Considering all the properties of all forms of CRP, it can
be said that CRP possesses the functionality of a host defense
molecule against not only atherosclerosis but against all diseases
caused by proteins when proteins behave like a pathogen or
a toxic molecule, in a life cycle that begins as free CRP
in circulation and ends in ligand-bound mCRP at sites of
inflammation via an intermediate stage of non-native pentamers.
If it is validated through further experimentation employing
mice transgenic for non-native CRP that non-native CRP is
beneficial, the focus should be on the designing and synthesis
of a small-molecule compound to target CRP with the goal of
changing the conformation of endogenous CRP, which would
be preferred over using recombinant non-native CRP as a
biologic to treat diseases caused by pathogenic proteins such
as ox-LDL.
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