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ABSTRACT
Objectives  Fluid management is important in ensuring 
haemodynamic stability in critically ill patients, but can 
easily lead to fluid overload (FO). However, the optimal 
fluid balance plot or range for critically ill patients is 
unknown. This study aimed to explore the dose–response 
relationship between FO and in-hospital mortality in 
critically ill patients.
Design  Multicentre, prospective, observational study.
Setting  Eighteen intensive care units (ICUs) of 16 tertiary 
hospitals in China.
Participants  Critically ill patients in the ICU for more than 
3 days.
Primary outcome measures and analyses  FO was 
defined as the ratio of the cumulative fluid balance (L) 
and initial body weight (kg) on ICU admission, expressed 
as a percentage. Maximum FO was defined as the peak 
value of FO during the first 3 days of ICU admission. 
Logistic regression models with restricted cubic splines 
were used to explore the pattern and magnitude of the 
association between maximum FO and risk of in-hospital 
mortality. Age, sex, Acute Physiology and Chronic Health 
Evaluation II score, Sequential Organ Failure Assessment 
score on admission, main diagnosis on admission to 
ICU, comorbidities, time of maximum FO, mechanical 
ventilation, renal replacement therapy, use of vasopressors 
and centres were adjusted in multivariable analysis.
Results  A total of 3850 patients were included in the 
study, 929 (24.1%) of whom died in the hospital. For each 
1% L/kg increase in maximum FO, the risk of in-hospital 
mortality increased by 4% (adjusted HR (aHR) 1.04, 95% 
CI 1.03 to 1.05, p<0.001). A maximum FO greater than 
10% was associated with a 44% increased HR of in-
hospital mortality compared with an FO less than 5% (aHR 
1.44, 95% CI 1.27 to 1.67). Notably, we found a non-linear 
dose–response association between maximum FO and 
in-hospital mortality.
Conclusions  Both higher and negative fluid balance 
levels were associated with an increased risk of in-hospital 
mortality in critically ill patients.
Trial registration number  ChiCTR-ECH-13003934.

BACKGROUND
Similar to mechanical ventilation (MV), 
renal replacement therapy (RRT) and use 

of vasopressors, fluid management is an 
indispensable component of life support for 
critically ill patients. Optimal fluid resuscita-
tion can ensure haemodynamic stability and 
improve tissue and organ perfusion,1 but 
frequently lead to fluid overload (FO).2 3 FO 
is associated with poor prognosis, including 
prolonged length of hospital stay and dura-
tion of MV.4 FO is also related to a higher 
mortality rate in critically ill patients.5–10

A majority of studies have defined FO as 
a cumulative fluid excess of 10% of body 
weight and found that it is an independent 
risk factor for mortality or other adverse 
events.5 11–13 A study on critically ill children 
showed that an FO greater than 5% was 
associated with a significantly increased risk 
of mortality and acute kidney injury (AKI).2 
According to a study performed by the ‘Dose 
Response Multicentre Investigation on Fluid 
Assessment (DoReMIFA)’ group, any positive 
fluid balance is associated with an increased 
probability of death.14 However, all of those 
studies proposed a linear association between 
FO and outcomes, as a higher percentage of 
FO was related to an increased risk of adverse 

Strengths and limitations of this study

►► This large, multicentre, prospective cohort study 
was the first to comprehensively explore the non-
linear association between fluid overload and out-
comes in critically ill patients.

►► Multivariable logistic regression models with re-
stricted cubic splines and propensity score match-
ing method were applied.

►► The observational design of the study does not al-
low the cause-and-effect relationship between fluid 
overload and outcomes to be inferred.

►► Failure to consider fluid management prior to inten-
sive care unit admission or in the operating theatre 
may underestimate the value of fluid overload.
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outcomes. This raised the question of whether there is 
an optimal volume plot or range of fluid balance for crit-
ically ill patients; knowledge on the dose–response asso-
ciation between FO and outcomes in critically ill patients 
remains limited.15

Using data from the China Critical Care Sepsis Trial 
(CCCST) study, we prospectively evaluated the pattern 
and magnitude of associations between maximum FO 
and in-hospital mortality and explored the optimal fluid 
balance for use in critically ill patients.

METHODS
Patient and public involvement
Patients or the general public were not involved in the 
design of the study.

Study protocol and participants
This study used data from the CCCST, a prospective, 
multicentre, observational cohort study where investi-
gators examined the epidemiology of sepsis in critically 
ill patients at 18 intensive care units (ICUs) among 16 
tertiary hospitals covering 7 geographical regions across 
China from 1 January 2014 to 31 August 2015. The study 
subjects included all adults (aged ≥18 years) admitted 
consecutively to the ICU and stayed in the ICU for more 
than 3 days. For patients who had multiple admissions 
to the ICU, only the first ICU admission was consid-
ered. Patients who had missing fluid-related data were 
excluded. The study was registered at the Chinese Clin-
ical Trials Registry (​www.​chictr.​org.​cn).

Data collection
Baseline data on demographic characteristics, diagnosis 
on admission, comorbidities, and clinical and laboratory 
values that were used to calculate illness severity scores, 
such as the Acute Physiology and Chronic Health Evalua-
tion II (APACHE II)16 and the Sequential Organ Failure 
Assessment (SOFA) scores,17 were collected. Data on RRT, 
MV and use of vasopressors were continuously recorded 
for 7 days or until discharge from the ICU, whichever 
occurred earlier. Fluid balance was calculated daily. Dates 
of discharge from the ICU and the hospital were also 
documented. All these data were collected prospectively 
using a standard case report form and were then entered 
into the study’s electronic database.

The primary outcome was in-hospital mortality. The 
secondary outcomes included in-ICU mortality and 
length of stay in the ICU and hospital.

Management and missing data
Less than 10% of clinical and laboratory data used to 
calculate the illness severity scores were missing in the 
whole cohort and were assumed to be of normal values 
and assigned a subscore of 0.18 Weight data were missing 
for 1.3% of patients, and a mean weight of 65 kg was 
inputted; 23 (0.6%) patients had missing fluid-related 
values and were censored in the statistical analysis.

Definition and calculation
FO was defined as the ratio of cumulated fluid balance 
(CFB; in L) to body weight (kg) on initial ICU admission, 
expressed as a percentage. Maximum FO was defined 
as the peak value of FO during the first 3 days of ICU 
admission. Time of maximum FO was represented as the 
days between ICU admission and peak value of FO. Fluid 
intake included oral intake and intravenous fluid admin-
istration, and total fluid output included urine output, 
drained fluid, ultrafiltration fluid and estimated gastro-
intestinal losses. Insensible loss was not included in our 
study because it is difficult to assess. Shock was defined as 
a systolic blood pressure (SBP) <90 mm Hg, mean arterial 
pressure (MAP) <70 mm Hg, SBP decrease ≥40 mm Hg 
or use of vasopressors to maintain tissue perfusion. Sepsis 
was defined as a life-threatening organ failure caused 
by infection within 48 hours on admission to the ICU 
according to the ‘Surviving Sepsis Campaign: 2016’.19

Statistical analysis
Categorical variables are presented as numbers with 
percentages, and continuous variables are presented as 
mean±SD or median with IQR. The baseline characteris-
tics of patients were compared using the χ2 test for cate-
gorical variables and the t-test, one-way analysis of variance 
or Wilcoxon rank-sum test for continuous variables.

The difference in CFB between the surviving and 
deceased groups during the first 3 days of ICU admis-
sion is presented in a box plot. The patients were divided 
into three groups according to the maximum FO value: 
maximum FO <5%, 5% ≤ maximum FO <10%, and 
maximum FO ≥10%. A Kaplan-Meier analysis was used to 
separately predict time to death in the hospital for the 
three maximum FO groups. Differences among the three 
groups were assessed using a log-rank test.

The association of maximum FO with in-hospital 
mortality was assessed using univariate and multivari-
able Cox proportional hazard regression models. The 
proportional hazard assumption for the Cox models 
was examined by including a time-dependent covariate 
with an interaction of maximum FO and a logarithmic 
function of survival time in the model. Separate models 
were performed to estimate maximum FO treated as a 
continuous variable (per 1% L/kg increase) and a cate-
gorical variable (<5% vs <10% and ≥5% vs ≥10%). Anal-
yses were first performed using a crude model (model 1), 
followed by three multivariable regression models. Model 
2 was adjusted for age, sex, APACHE II score and SOFA 
score on admission. In model 3, we additionally adjusted 
for the main diagnosis on admission to ICU and comor-
bidities (respiratory disease, cardiovascular disease, 
hypertension, chronic renal dysfunction, tumour and no 
comorbidity). In model 4, we additionally adjusted for 
time of maximum FO, MV, RRT and use of vasopressors. 
In models 2, 3 and 4, the centre was included as a random 
effect. Additionally, we further evaluated the pattern and 
magnitude of associations between maximum FO and 
in-hospital mortality using logistic regression models 
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with restricted cubic splines (RCS)20 for the continuous 
maximum FO variable adjusting for all covariates (model 
4). A maximum FO of 0 was treated as a reference, and 
four knots for the spline were placed at the 5th, 35th, 65th 
and 95th percentiles of the maximum FO. Likelihood 
ratio test was used to assess whether there was a potential 
non-linear trend. In the sensitivity analysis, we explored 
the potential dose–response association of FO in patients 
with or without shock with risk of in-hospital mortality.

We used a propensity score matching (PSM) method 
to control for potential confounders. The propensity 
score was assigned based on the presence or absence of a 
maximum FO ≥5% L/kg and estimated using a multivari-
able logistic regression model. A 1:1 nearest neighbour 
matching algorithm was applied using a calliper width of 
0.01. The following variables were selected to generate 
the propensity score: age, sex, APACHE II score, SOFA 
score on admission, main diagnosis on admission to ICU, 
comorbidities (respiratory disease, cardiovascular disease, 
hypertension, chronic renal dysfunction, tumour and no 
comorbidity), MV, RRT and use of vasopressors.

A two-sided p value of <0.05 was considered statistically 
significant. All analyses were conducted with IBM SPSS 
Statistics V.25.0 software for Windows and Stata V.15 statis-
tical software.

RESULTS
Clinical characteristics of the subjects
Among the 4910 patients who were admitted consecu-
tively, 3850 patients with their first 3 days of sequential 
fluid data were included in this study (figure  1). The 
mean age was 61.8 (18.1) years, 2501 (65.0%) were male, 
and 929 (24.1%) died in the hospital. Among the 3850 
patients, 1882 (48.9%) presented with a maximum FO 
<5% L/kg, 1030 (26.8%) with a maximum FO ≥5% and 
<10% L/kg, and 938 (24.3%) with a maximum FO ≥10% 
L/kg. Compared with patients with a maximum FO less 
than 5% (L/kg), the other two groups of patients were 
more often male with higher illness severity scores and 
were likely to be diagnosed with sepsis, trauma and 
gastrointestinal conditions on admission to the ICU. 
They also needed more MV (64.3% vs 74.6% vs 84.0%, 
p<0.001), RRT (15.7% vs 18.1% vs 25.1%, p<0.001) 

and vasopressors (42.0% vs 50.2% vs 54.6%, p<0.001) 
during the first 7 days of their ICU stay (42.0% vs 50.2% 
vs 54.6%, p<0.001). These patients also had longer ICU 
and hospital stays (table  1 and online supplemental 
table S1).

Association between FO and in-hospital mortality
A progressive CFB was observed in both surviving and 
deceased patients since their ICU admission, and the 
two groups showed significantly different degrees of CFB 
at all time points (online supplemental figure S1). The 
maximum FO values were 6.5% L/kg and 3.4% L/kg 
in deceased and surviving patients, respectively (online 
supplemental figure S2). With an increase in maximum 
FO, in-hospital mortality increased from 17.5% to 35.5%, 
and in-ICU mortality increased from 15.6% to 31.6% 
(table  1). The Kaplan-Meier analysis including the first 
28 days of hospital stays revealed a significant survival 
benefit for patients with a maximum FO less than 5% 
L/kg (p<0.001); patients with the highest percentage of 
maximum FO had the lowest survival rate (online supple-
mental figure S3).

In the multivariate Cox regression analysis of maximum 
FO, a 1.4-fold increase in the risk of in-hospital mortality 
was observed in the group with a maximum FO >10% L/
kg compared with the group with a maximum FO <5% 
L/kg (HR 1.44, 95% CI 1.25 to 1.67, p<0.001; table 2, 
model 4) after adjusting for potential confounders. 
When maximum FO was included as a continuous vari-
able, maximum FO was significantly associated with 
in-hospital mortality (HR 1.04, 95% CI 1.03 to 1.05, 
p<0.001), regardless of potential confounders (table 2, 
model 4), indicating that for each 1% L/kg increase in 
maximum FO the risk of in-hospital mortality increased 
by 4%.

Dose–response association between maximum FO and in-
hospital mortality
The maximum FO during the first 3 days of ICU admis-
sion exhibited a skewed distribution, with a median of 
3.9% (IQR 1.3–8.2%) L/kg (figure 2). Using a multivar-
iate logistic regression model with RCS, we observed a 
non-linear association between maximum FO and in-hos-
pital mortality, and patients with a maximum FO of 2.4% 
L/kg had the lowest risk of in-hospital mortality. Higher 
maximum FO values were significantly associated with an 
increased risk of in-hospital mortality, and patients with a 
maximum FO less than 0% exhibited a slightly increased 
risk of in-hospital mortality (figure 3A). A similar curve 
was observed when we explored the potential effects 
of maximum FO on the risk of in-hospital mortality in 
patients with or without shock in the sensitivity analysis 
(figure 4). It was found that a maximum FO greater than 
9.6% L/kg was an independent risk factor in patients with 
shock (figure  4A); however, in patients without shock, 
this value was 6.3% L/kg (figure 4B).Figure 1  Flow chart of patients. CCCST, China Critical Care 

Sepsis Trial; ICU, intensive care unit.
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PSM analyses
The PSM method was used to match the patients with 
or without a maximum FO ≥5% L/kg, and 1078 (2156 
patients) matched pairs were produced (online supple-
mental table S2). There was no significant difference in 
baseline characteristics, diagnosis on admission, comor-
bidities, and use of RRT and MV in matched study subjects. 
Every 1% increase in maximum FO was significantly asso-
ciated with a 3% increase in risk of in-hospital mortality. 
Additionally, when maximum FO was entered as a cate-
gorical variable, a maximum FO greater than 10% L/kg 
was associated with a 41% increased risk of in-hospital 
mortality compared with those who had a maximum FO 
lower than 5% (online supplemental table S3).

In the dose–response analysis, we found similar asso-
ciations between maximum FO and risk of in-hospital 
mortality with a nadir of 4.0% L/kg. Higher and lower 
maximum FO values were significantly associated with an 
increased risk of in-hospital mortality (figure 3B).

DISCUSSION
In this multicentre, prospective cohort study, we found 
that a higher level of maximum FO during the first 3 days 
of ICU admission was associated with an increased risk of 
in-hospital mortality in critically ill patients. Notably, we 
further demonstrated that this association was non-linear 
with a nadir of 2.4% L/kg, which indicated that maximum 
FO values greater than 5% or 10% and less than 0% were 
associated with an increased risk of in-hospital mortality. 
This study addressed that there might be an optimal ‘plot’ 
or ‘range’ of fluid balance for critically ill patients, which 
might be different for critically ill patients with different 
characteristics.

Fluid administration is an integral component of 
management of critically ill patients to maintain haemo-
dynamic stability, organ function and tissue perfusion. 
Early fluid resuscitation has been shown to reverse tissue 
hypoperfusion and improve patient outcomes in several 
studies.21–23 However, several studies have supported 
the hypothesis that excessive fluid resuscitation may be 
harmful.4 8 13 24 According to Alobaidi et al,3 a positive 
fluid balance in patients with severe bronchiolitis during 
the first 24 hours after admission to the paediatric inten-
sive care unit (PICU) resulted in longer duration of PICU 
and hospital stays and longer duration of MV. However, 
fluid balance recorded during the second 24 hours8 or 
within 72 hours13 after ICU admission, but not during the 
first 24 hours, is strongly associated with an increased risk 
of mortality. However, the studies described above did not 
explicitly define FO, but rather presented the association 
between positive fluid balance and outcomes.

Several clinical studies have reported that FO increases 
mortality in patients with sepsis,13 25 acute respiratory 
distress syndrome9 and AKI.10 11 24 The Beijing Acute 
Kidney Injury Trial group11 and other researchers12 26 
have considered FO as an accumulation of fluid balance 
greater than 10% of the body weight in kilograms and C
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showed that FO was a risk factor for the incidence of 
AKI. In our study, critically ill patients tended to accumu-
late fluid starting on the day of ICU admission, and the 
deceased patients had accumulated much more fluid. In 
addition, as the volume of FO increased, the in-hospital 
mortality rate increased. Diminishing the effect of a nega-
tive fluid balance, the maximum FO might better explain 
the status of fluid accumulation in critically ill patients in 
the period of study.14 The FO aggrevate the underlying 
status of patients with AKI and maximum FO is an inde-
pendent risk factor for the incidence of AKI and increases 
the severity of AKI.11 14 In our study, maximum FO was 
an independent risk factor for in-hospital mortality (HR 
1.04, 95% CI 1.03 to 1.05), and for every 10 mL/kg 
increase in maximum FO the risk of mortality increased 
by 4%. A higher maximum FO resulted in a lower survival 
probability. Compared with patients presenting the lowest 
percentage of maximum FO (maximum FO <5%), the risk 
of mortality increased 1.3 times in patients with a middle 
percentage of maximum FO (5% ≤ maximum FO <10%) 

(HR 1.27, 95% CI 1.10 to 1.52) and 1.4 times in patients 
with the highest percentage of maximum FO (HR 1.44, 
95% CI 1.25 to 1.67). Therefore, a maximum FO greater 
than 10% and between 5% and 10% both increased the 
risk of in-hospital mortality. This result was similar to that 
of a study on AKI in critically ill children that defined FO 
as CFB greater than 5% of the body weight on admission 
and found that FO was associated with an increased risk 
of AKI and PICU mortality.2

However, a study in the USA identified different FO 
cut-off values associated with in-hospital mortality.24 
Garzotto and colleagues14 postulated that FO should not 
only be considered as a level greater than a fixed value 
but also any levels of positive fluid balance. Furthermore, 
their study showed that both positive and negative fluid 
balance might be associated with adverse outcomes.27 28 
We used logistic regression models with RCS to better 
illustrate this dose–response relationship between FO 
and outcomes and observed a non-linear association 
between maximum FO and in-hospital mortality. Patients 
with a maximum FO of 2.4% L/kg had the lowest risk 
of in-hospital mortality. These associations suggest that 
a higher maximum FO is significantly associated with 
an increased risk of in-hospital mortality. Although the 
sample size of patients with a maximum FO less than 0% 
was small, we still observed a slightly increased risk of 
in-hospital mortality. This finding appears to be logical. 
First, volume depletion causes hypovolaemia and tissue 
or organ hypoperfusion, which are associated with poor 
clinical outcomes. Second, patients who came from the 
emergency department, other wards or ICU, or postoper-
ative patients, may have received fluid resuscitation prior 
to ICU admission and were non-fluid-responsive; these 
patients needed higher dose vasopressor to improve 
MAP and tissue hypoperfusion, which leads to adverse 
effects29 30 and higher mortality in patients with sepsis.31 
However, we failed to consider fluid input and output 
prior to ICU admission or in the operating theatre, which 

Table 2  Results of the Cox proportional hazard regression analysis of the risk of in-hospital mortality

Maximum FO as a continuous 
variable* Maximum FO as a nominal variable

HR (95% CI) P value

Maximum FO <5% 
(n=1475)
Reference

5%≤ maximum FO 
<10% (n=773)
HR (95% CI)

Maximum FO ≥10% 
(n=596)
HR (95% CI)

Model 1 1.06 (1.04 to 1.08) <0.001 1.000 1.38 (1.14 to 1.62) 2.11 (1.86 to 2.42)

Model 2 1.05 (1.03 to 1.07) <0.001 1.000 1.36 (1.15 to 1.61) 1.81 (1.56 to 2.11)

Model 3 1.04 (1.01 to 1.06) <0.001 1.000 1.30 (1.07 to 1.48) 1.63 (1.37 to 1.93)

Model 4 1.04 (1.03 to 1.05) <0.001 1.000 1.27 (1.10 to 1.52) 1.44 (1.25 to 1.67)

Model 1: crude HR.
Model 2: adjusted for age, sex and APACHE II score.
Model 3: additionally adjusted for main diagnosis and comorbidities.
Model 4: additionally adjusted for time of maximum fluid overload, mechanical ventilation, renal replacement therapy and use of 
vasopressors.
*HR was examined per 1% (L/kg) increase in maximum FO.
APACHE II, Acute Physiology and Chronic Health Evaluation II; FO, fluid overload.

Figure 2  Distribution of the maximum fluid overload in all 
patients.
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may affect outcomes, and our findings require future vali-
dation. In the sensitivity analysis, maximum FO was asso-
ciated with an increased risk of in-hospital mortality in 
patients with or without shock, but patients with shock 
who needed more fluid resuscitation seemed to have 
a larger optimal range of fluid balance. When we used 
PSM to control for some potential confounders, the asso-
ciation between maximum FO and in-hospital mortality 
still persisted; that is, a ‘spot’ or ‘range’ for an optimal 
fluid balance may exist. This non-linear association has 
been reported in several studies.15 27 28 Further studies 
are needed to confirm the precise margins of this ‘spot’ 

or ‘range’ of fluid balance in patients with acute critical 
illnesses.

There are several limitations to this study. First, the 
observational study design is not suitable to infer cause 
and effect. Second, although we used PSM to balance 
some important confounders, we may have failed to adjust 
for other potential confounders in our study. Third, we 
did not consider the fluid input and output before ICU 
admission or in the operating theatre, which cannot be 
ignored. Fourth, diuretic use and type of intravenous 
fluids were not documented, which may influence fluid 
output and outcomes.15 32–34 Finally, we used maximum 

Figure 3  Adjusted OR between maximum fluid overload and in-hospital mortality (A) for all and (B) following propensity score 
matching. The black line indicates the adjusted OR, and the red lines indicate the 95% CI bands. The vertical grey dashed lines 
indicate 5% and 10% L/kg of the maximum fluid overload. The reference for the maximum fluid overload is 0%. Data were 
fitted using a multivariable logistic regression model with a restricted cubic spline with four knots (5th, 35th, 65th and 95th 
percentiles) for maximum fluid overload which was adjusted for potential confounders (model 4). Due to the small sample size, 
the lowest 5% and highest 5% of participants are not shown in the figures.

Figure 4  Adjusted OR between maximum fluid overload and in-hospital mortality in patients with (A) or without (B) shock. 
The black line indicates the adjusted OR, and the red lines indicate the 95% CI bands. The vertical grey dashed lines indicate 
5% and 10% L/kg of the maximum fluid overload. The reference for the maximum fluid overload is 0%. Data were fitted using 
a multivariable logistic regression model with a restricted cubic spline with four knots (5th, 35th, 65th and 95th percentiles) for 
maximum fluid overload which was adjusted for potential confounders (model 4). Due to the small sample size, the lowest 5% 
and highest 5% of participants are not shown in the figures.
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FO to assess the degree of FO, but these values may not 
represent trends in fluid balance. We need to perform a 
latent growth model analysis to further explore the rela-
tionship between fluid balance and outcomes.

CONCLUSIONS
Our multicentre study revealed an association between 
FO and an increased risk of in-hospital mortality, and a 
non-linear association suggested that higher and lower 
fluid balance levels were associated with an increased 
risk of in-hospital mortality. However, fluid balance is 
accompanied by diverse risks of mortality in critically ill 
patients with or without shock. Further studies should be 
performed to explore the relationship between FO and 
mortality in patients with various diseases and determine 
optimal fluid management strategies.
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