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Summary

Corynebacterium glutamicum, an established micro-
bial cell factory for the biotechnological production of
amino acids, was recently genetically engineered
for aerobic succinate production from glucose in
minimal medium. In this work, the corresponding
strains were transformed with plasmid pVWEx1-
glpFKD coding for glycerol utilization genes from
Escherichia coli. This plasmid had previously been
shown to allow growth of C. glutamicum with glycerol
as sole carbon source. The resulting strains were
tested in minimal medium for aerobic succinate pro-
duction from glycerol, which is a by-product in biodie-
sel synthesis. The best strain BL-1/pVWEx1-glpFKD
formed 79 mM (9.3 g l-1) succinate from 375 mM glyc-
erol, representing 42% of the maximal theoretical
yield under aerobic conditions. A specific succinate
production rate of 1.55 mmol g-1 (cdw) h-1 and a volu-
metric productivity of 3.59 mM h-1 were obtained, the
latter value representing the highest one currently
described in literature. The results demonstrate that
metabolically engineered strains of C. glutamicum
are well suited for aerobic succinate production from
glycerol.

Introduction

Glycerol is a main by-product of biodiesel and bioethanol
production (Yazdani and Gonzalez, 2007). By utilizing

glycerol for the production of value-added chemicals,
such as 1,3-propanediol, ethanol, amino acids or succi-
nate, the economic efficiency of these biofuel
production processes can be significantly increased
(Wendisch et al., 2011). Succinate is a C4-dicarboxylate
offering interesting prospects for the chemical industry as
feedstock for the production of a large variety of important
bulk chemicals, such as tetrahydrofurane (THF), 1,4-
butanediol, g-butyrolactone or maleic anhydride, with a
total annual production of more than 500 000 tons (Zeikus
et al., 1999; McKinlay et al., 2007).

Bio-based succinate production from glycerol has been
described for a number of natural succinate producers,
such as Basfia succiniciproducens (Scholten and Dagele,
2008) and Anaerobiospirillum succiniciproducens (Lee
et al., 2001), as well as for metabolically engineered
Escherichia coli strains (Blankschien et al., 2010; Zhang
et al., 2010). The described processes are anaerobic
ones (with exception of one microaerobic process) and
allow a maximal succinate yield of 1 mol succinate mol-1

glycerol, whereas aerobic processes can maximally yield
0.5 mol mol-1. The slow anaerobic growth with glycerol,
attributed to a redox imbalance resulting from the use of
intermediates for biosynthesis (Zhang et al., 2010), and
the low energy yield during anaerobic utilization of glyc-
erol (Gonzalez et al., 2008) result in a low volumetric
productivity (0.7–1.7 mM h-1) (Blankschien et al., 2010;
Zhang et al., 2010). This disadvantage of all described
processes hinders their biotechnological implementation
(Zhang et al., 2010). Alternatively, aerobic succinate pro-
duction from glycerol with the yeast Yarrowia lipolytica
was recently examined (Yuzbashev et al., 2010). It accu-
mulated succinate with relatively high volumetric pro-
ductivity (2.29 mM h-1) under optimal conditions (pH 7).
However, complex media additives were necessary for
growth and product formation which can complicate
downstream processing and increase the production
costs. Thus, none of the so far described succinate pro-
duction processes from glycerol is perfectly suitable for
industrial application.

Corynebacterium glutamicum is a Gram-positive soil
bacterium with GRAS status (generally regarded as safe).
It is used industrially for the large-scale production of
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more than 2 million tons of L-glutamate and about 1.4
million tons of L-lysine annually (Ajinomoto Co., 2010;
2011). In addition, C. glutamicum strains were designed
for the production of many other industrially relevant prod-
ucts, such as L-serine (Stolz et al., 2007) and D-serine
(Stäbler et al., 2011), L-valine (Blombach et al., 2008),
2-ketoisovalerate (Krause et al., 2010), putrescine
(Schneider and Wendisch, 2010), isobutanol (Smith et al.,
2010; Blombach et al., 2011), diaminopentane (Mimitsuka
et al., 2007), D-lactate (Okino et al., 2008a) or ethanol
(Inui et al., 2004). The genome of C. glutamicum is known
(Ikeda and Nakagawa, 2003; Kalinowski et al., 2003;
Yukawa et al., 2007) and reliable tools for genetic engi-
neering exist (Kirchner and Tauch, 2003). Moreover,
extensive knowledge on the metabolism of C. glutamicum
is available due to 60 years of research on amino acid
production (Eggeling and Bott, 2005; Burkovski, 2008).
Recently metabolically engineered C. glutamicum strains
have been described which belong to the most efficient
microorganisms for succinate production from glucose
either under anaerobic (Okino et al., 2008b; Litsanov
et al., 2012a) or aerobic conditions (Litsanov et al.,
2012b). Under aerobic conditions C. glutamicum was able
to synthesize succinate in minimal medium with a high
specific productivity [1.6 mmol g (cdw)-1 h-1]. The strain
C. glutamicum DsdhCAB (Litsanov et al., 2012b) devoid
of the operon coding for succinate dehydrogenase
showed relatively high succinate production but also
formed large amounts of acetate as a by-product. When
the genes for all known metabolic routes for acetate syn-
thesis were deleted in the DsdhCAB background, the
resulting strain C. glutamicum BL-1 showed an 82%
reduction in acetate accumulation and a 65% increase
in succinate production. Further improvements were
obtained by increasing C3 carboxylation and by using
growth-decoupled conditions (Litsanov et al., 2012b).

Naturally, C. glutamicum ATCC 13032 is not able to
utilize glycerol as carbon source, but expression of the
E. coli glpFKD operon allows the organism to grow on
glycerol as sole carbon and energy source (Rittmann
et al., 2008). Based on our previous study on aerobic
succinate production from glucose we now explored the
possibility of aerobic succinate production from glycerol
with C. glutamicum (Fig. 1).

Results and discussion

Utilization of glycerol for aerobic succinate production
by C. glutamicum DsdhCAB/pVWEx1-glpFKD

We previously showed that the strains C. glutamicum
DsdhCAB and C. glutamicum BL-1 are capable of aerobic
succinate production from glucose (Litsanov et al.,
2012b). To give these strains the ability to use glycerol as
carbon source, they were transformed with plasmid

pVWEx1-glpFKD, coding for a glycerol facilitator, glycerol
kinase and glycerol-3-phosphate dehydrogenase from
E. coli (Rittmann et al., 2008). The resulting strains were
tested for aerobic succinate production from glycerol
(Fig. 1). Three independent batch cultivations with each
strain in glycerol minimal medium were performed in a
parallel bioreactor system. Since elevated glycerol con-
centrations had been shown to inhibit growth (Rittmann
et al., 2008), the experiments were performed with

Fig. 1. Scheme of the central metabolism of C. glutamicum tailored
for aerobic succinate production from glycerol. Enzymes whose
genes were deleted are indicated by ‘X’. The reactions affected by
these deletions and their products are displayed in grey. Enzymes
whose genes were overexpressed are highlighted in grey boxes
and the arrows for the corresponding reactions are thickened.
Abbreviations: ACN, aconitase; AK, acetate kinase; CoAT,
acetyl-CoA : CoA transferase; CS, citrate synthase; FUM,
fumarase; GF, glycerol facilitator (from E. coli); GK, glycerol kinase
(from E. coli); G-3-P DH, glycerol-3-phosphate dehydrogenase
(from E. coli); ICD, isocitrate dehydrogenase; ICL, isocitrate lyase;
MQO, malate : menaquinone oxidoreductase; MS, malate synthase;
OAA, oxaloacetate; ODHC, 2-oxoglutarate dehydrogenase
complex; PEP, phosphoenolpyruvate; PK, pyruvate kinase; PEPCx,
PEP carboxylase; PCx, pyruvate carboxylase; PDHC, pyruvate
dehydrogenase complex; PTA, phosphotransacetylase; PQO,
pyruvate : menaquinone oxidoreductase; SCS, succinyl-CoA
synthetase; SDH, succinate dehydrogenase.
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400 mM glycerol as sole carbon source. With respect to
carbon (1200 mM), this concentration was slightly lower
than the one (1332 mM carbon) used previously for suc-
cinate production from glucose (222 mM), but in the same
range to allow a comparison. To prevent acidification of
the medium by the organic acid production, the pH was
kept constant at 7.0 by addition of 3 M KOH. Oxygen
limitation was avoided by keeping pO2 at > 30% satura-
tion. During cultivation growth (OD600), glycerol consump-
tion and organic acid production were measured and
compared with data previously published for aerobic
succinate production from glucose by the strains

C. glutamicum DsdhCAB and C. glutamicum BL-1 (Fig. 2,
Table 1). Except for the carbon source, the cultivation
conditions were the same as previously published (Lit-
sanov et al., 2012b).

Corynebacterium glutamicum DsdhCAB/pVWEx1-
glpFKD grew on glycerol with a growth rate of 0.19 h-1 and
completely consumed glycerol (369 mM) within 22 h. The
specific substrate uptake rate for glycerol [23 mmol
carbon g (cdw)-1 h-1] was 28% lower than the specific
glucose uptake rate of strain C. glutamicum DsdhCAB
[32 mmol carbon g (cdw)-1 h-1]. The different uptake
mechanisms may play a role in this context. Whereas

Fig. 2. Biomass formation (A), substrate consumption (B), succinate production (C) and acetate production (D) of C. glutamicum DsdhCAB/
pVWEx1-glpFKD (filled squares, n = 3) and C. glutamicum BL-1/pVWEx1-glpFKD (filled circles, n = 3) on glycerol and of C. glutamicum
DsdhCAB (open squares, n = 4) and C. glutamicum BL-1 (open circles, n = 2) on glucose. The values for strains DsdhCAB and BL-1 on
glucose were taken from Litsanov and colleagues (2012b) The experiments were performed as aerobic batch cultivations in modified CGXII
medium containing 400 mM (1200 mM carbon) glycerol or 222 mM (1332 mM carbon) glucose under constantly controlled conditions of pH 7.0
and pO2 > 30% using a Multifors bioreactor system as described previously (Litsanov et al., 2012b). The results displayed are average data
including standard deviation from at least three experiments except for C. glutamicum BL-1, where only mean values from two independent
experiments are presented. Glucose and organic acids were quantified by HPLC as described previously. Glycerol was also analysed by
HPLC and quantified by an Agilent 1100 Refractive Index Detector.
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glucose is transported actively into the cell by a high-
affinity phosphotransferase system (PTS) (Mori and Shiio,
1987), glycerol enters cells of C. glutamicum carrying
pVWEx1-glpFKD via facilitated diffusion mediated by the
glycerol facilitator GlpF (Rittmann et al., 2008). Remark-
ably, succinate production by strain C. glutamicum
DsdhCAB/pVWEx1-glpFKD on glycerol was significantly
increased compared with that of strain C. glutamicum
DsdhCAB on glucose. A succinate titre of 64 mM (+60%)
was reached with a succinate production rate of
1.3 mmol g (cdw)-1 h-1 (+73%). The final succinate yield
(0.17 mol mol-1 glycerol) represented 35% of the maximal
theoretical yield of 0.5 mol succinate mol-1 glycerol. The
calculation of the maximal yield was based on resting
cells which catabolized glycerol exclusively via glycolysis
and the oxidative branch of the TCA cycle (Fig. 1).
Corynebacterium glutamicum DsdhCAB reached only
18% of the maximal theoretical succinate yield (1 mol-
mol-1 glucose) during growth on glucose (Litsanov et al.,
2012b). This difference in the relative yields could at least
partially be due to the fact that 29% less acetate was
formed on glycerol (Table 1). These results suggest that
the utilization of glycerol favours succinate production and
lowers acetate production.

Glycerol dissimilation is initiated by its ATP-dependent
phosphorylation via glycerol kinase (Durnin et al., 2008;
Rittmann et al., 2008). In contrast, glucose is phosphory-
lated by the glucose-specific PTS to glucose 6-phosphate
with phosphoenolpyruvate (PEP) as phosphoryl donor.
High glucose uptake rates favour high pyruvate and low
PEP concentrations in the cell, a situation which was
shown to be unfavourable for aerobic and anaerobic suc-
cinate production by E. coli, because PEP is the subtrate
for anaplerotic C3 carboxylation via phosphoenolpyruvate
carboxylase (PEPCx) or phosphoenolpyruvate carboxyki-
nase (PEPCk) (Lin et al., 2005; Zhang et al., 2009). In
contrast, pyruvate is the major precursor for by-product
synthesis in the corresponding strains. Inactivation of the
PTS system in the aerobic and anaerobic succinate pro-
ducers of E. coli improved succinate production and
decreased the accumulation of by-products (Lin et al.,
2005; Zhang et al., 2009). Corynebacterium glutamicum
possesses two carboxylation enzymes, phospho-
enolpyruvate carboxylase (Mori and Shiio, 1985; Eik-
manns et al., 1989) and pyruvate carboxylase (Peters-
Wendisch et al., 1998). Although pyruvate carboxylase is
the predominant carboxylation enzyme during aerobic
growth of the wild type, PEP carboxylase also contributes
to the anaplerotic flux (Petersen et al., 2000). In our pre-
vious study we showed that oxaloacetate formation by
PEP carboxylase becomes more important during aerobic
succinate production, since overexpression of the ppc
gene led to an increased succinate yield (Litsanov et al.,
2012b). Based on these observations an improved avail-Ta
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ability of PEP for PEP carboxylation and a reduced level
of pyruvate might be responsible for the better succinate
yield and reduced acetate formation from glycerol com-
pared with glucose. Furthermore, the higher energy
content of glycerol (DGf

0 = -162.84 kJ mol-1 C) compared
with glucose (DGf

0 = -152.87 kJ mol-1 C) (Thauer et al.,
1977) due to its higher reduction status and the resulting
higher ATP yield might positively influence succinate for-
mation. The conversion of glycerol to dihydroxyacetone
phosphate (DHAP) yields reducing equivalents in the form
of menaquinol which can drive ATP synthesis via oxidative
phosphorylation (Bott and Niebisch, 2003). In con-
trast, conversion of glucose to DHAP via the Embden–
Meyerhof pathway is not accompanied by formation of
NADH or menaquinol.

Utilization of glycerol for aerobic succinate production
by C. glutamicum BL-1/pVWEx1-glpFKD

Corynebacterium glutamicum BL-1/pVWEx1-glpFKD, a
derivative of strain DsdhCAB which lacks all known
genes for acetate formation (Litsanov et al., 2012b),
grew on glycerol with a growth rate of 0.22 h-1 and com-
pletely consumed 375 mM glycerol within 22 h. Absence
of the genes pqo, ackA, pta and cat coding for pyruvate :
menaquinone oxidoreductase (PQO), acetate kinase
(AK), phosphotransacetylase (PTA) and acetyl-CoA :
CoA transferase (CoAT), respectively, reduced acetate
formation during growth on glycerol by 61% com-
pared with strain DsdhCAB/pVWEx1-glpFKD (Table 1).
Remarkably, the final acetate concentration in strain
BL-1/pVWEx1-glpFKD on glycerol was higher than that
of strain BL-1 on glucose, a result which cannot be
explained yet. Strain BL-1/pVWEx1-glpFKD achieved a
23% higher succinate titre (79 � 6 mM), a 19% higher
specific succinate productivity [1.55 mmol g (cdw)-1 h-1]
and a 24% higher yield (0.21 mol mol-1) than strain
DsdhCAB/pVWEx1-glpFKD. The production results of
strain BL-1/pVWEx1-glpFKD on glycerol were compa-
rable to that of strain BL-1/pAN6-pycP458Sppc, which rep-
resents the currently best strain of C. glutamicum for
aerobic succinate production from glucose (Litsanov
et al., 2012b). Plasmid pAN6-pycP458Sppc improves PEP/
pyruvate carboxylation by combined overexpression of
the genes for pyruvate carboxylase (with a P458S
exchange) and PEP carboxylase.

Strain BL-1/pVWEx1-glpFKD showed a volumetric suc-
cinate productivity of 3.59 mM h-1, which to our knowl-
edge represents the highest value described in literature
for aerobic succinate producers from glycerol. Additional
improvements of this strain are possible by increasing
anaplerotic C3 carboxylation and applying growth-limiting
conditions, as shown before for aerobic succinate produc-
tion from glucose (Litsanov et al., 2012b). Furthermore,

the genomic integration of the E. coli glpFKD genes under
control of a strong constitutive promoter such as the tuf
promoter (Litsanov et al., 2012a) could have a positive
effect by eliminating the requirements for plasmid main-
tenance and improving strain stability. For industrial appli-
cation, the C. glutamicum strains have to be tested and if
necessary improved with respect to their tolerance to raw
glycerol, which often contains growth-inhibitory impurities
(Moon et al., 2010).

In summary, the present study describes for the first
time the efficient use of glycerol as substrate for aerobic
succinate production with metabolically engineered
C. glutamicum. The described process shows two unique
features: (i) the highest known volumetric productivity of
all currently described microbial strains for aerobic succi-
nate production from glycerol and (ii) the use of minimal
medium. Taken together, these two advantages and the
opportunities for strain and process optimization makes
the current process an interesting alternative to anaerobic
fermentations.
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