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Abstract

Background: Immunotherapy is a crucial therapeutic approach in oncology. However, most patients with head and
neck squamous cell carcinoma (HNSCC) do not derive benefit from immunotherapy. Vascular endothelial growth
factor (VEGF)/VEGF Receptor 2 (VEGFR2) signaling pathway is one of the most important pathways regulating
angiogenesis in tumor. The combination of immunotherapy and anti-angiogenic therapy is considered to improve
efficacy of immunotherapy. The correlation between VEGF signaling pathway and tumor immune microenvironment in
HNSCC patients is unclear.

Methods: We utilized RNA sequencing and clinical data of HNSCC patients from the TCGA database to study the
correlation between VEGF signaling pathway and tumor immune microenvironment, on aspect of immune cell
infiltration, immune-related gene expression profiling and immune-related biological pathways.

Results: We observed that VEGF signaling pathway is positively correlated with immune cell infiltration, immune-
related gene expression profiles, and the prognosis of HNSCC patients. The functional enrichment analysis of
differentially expressed genes between different VEGF score subtypes detected multiple immune-related biological
processes.

Conclusion: Our findings suggested that combining anti-VEGF signaling pathway agents with immunotherapy, such
as immune checkpoint inhibitors (ICI) therapy, may exhibit encouraging benefits in HNSCC.

Keywords: Vascular endothelial growth factor, Immune microenvironment, Head and neck squamous cell carcinoma,
Immunotherapy

Introduction
Head and neck cancer is the eighth most common can-
cer worldwide in 2020, which are largely head and neck
squamous cell carcinoma (HNSCC) [1]. Human papillo-
mavirus (HPV) has emerged as a novel risk factor for
HNSCC. HPV-driven ones, especially oropharyngeal

squamous cell carcinoma, feature distinct clinical and
epidemiological characteristics compared with non-HPV
induced HNSCC. HPV-positive HNSCC generally re-
sponds better to anti-tumor treatment. In contrast with
HPV-negative HNSCC, HPV-positive HNSCC has a
favorable prognosis [2].
Over the last decade, cancer immunotherapy, such as

immune checkpoint inhibitors (ICI) therapy, has brought
significant survival improvements [3]. Although only a
subset of HNSCC patients responded to ICI therapy, the
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overall survival (OS) of responders was significantly im-
proved [4, 5]. Based on these promising outcomes, the im-
mune checkpoint inhibitors nivolumab and pembrolizumab
have both been approved by U.S. Food and Drug Adminis-
tration (FDA) for the treatment of recurrent or metastatic
HNSCC. Recently, Pembrolizumab has been approved as
first line treatment, based on a randomized, multicenter,
open-label study, KEYNOTE-048 (NCT02358031) [6]. Des-
pite the benefit of multimodal therapy, the prognosis of pa-
tients remains poor [7]. Thus, identification of predictive
biomarkers and rational combination therapy are needed to
improve outcomes.
Angiogenesis is crucial for tumor growth, proliferation,

and metastasis. Vascular endothelial growth factor
(VEGF) is the principle regulator of angiogenesis, acti-
vating pro-angiogenic signaling pathways and regulating
new blood vessel formation by binding to its main recep-
tor, VEGFR2 [8]. Targeting angiogenesis signaling path-
ways has been approved as standard therapy for multiple
tumor types [9]. However, anti-angiogenic therapy failed
to demonstrate significant anti-tumor activity or im-
proved clinical efficacy in HNSCC. The interest in
angiogenesis as a therapeutic target remains.
Accumulating evidence showed that VEGF not only

promotes angiogenesis but also mediates immunosup-
pressive microenvironment [10]. This suggested that
anti-VEGF therapy could stimulate the immune re-
sponse and enhance the efficacy of immunotherapy. Pre-
clinical studies showed that anti-VEGF treatment has
the potential to reprogram the tumor immune micro-
environment away from an immunosuppressive profile
[11]. A phase I study combining ipilimumab and bevaci-
zumab indicated that anti-VEGF could stimulate the
immune system, and immunotherapy could inhibit
angiogenesis [12]. It is apparent that combination of
these two types of therapies could enhance both anti-
tumor effects. Combination anti-angiogenic agents with
immunotherapy has established benefit in multiple
tumor types [13]. The advantage of this combination re-
mains unclear in HNSCC.
Therefore, we investigated the correlation between

VEGF signaling pathway and tumor immune micro-
environment, and its association with survival of HNSC
C patients using data obtained from The Cancer Gen-
ome Atlas (TCGA). The goal is to better understand the
correlation between VEGF signaling pathway and tumor
immune microenvironment.

Material and methods
Data sources
RNA sequencing and clinical data of 522 HNSCC pa-
tients were obtained from TCGA data portal (https://
portal.gdc.cancer.gov) and eBioPortal (https://www.
cbioportal.org/). 209 samples were excluded due to

missing follow-up information and HPV status. Finally,
255 HPV-negative samples and 58 HPV-positive samples
were included in this study.

Molecular signatures and single-sample gene set
enrichment analysis (ssGSEA) scores
The enrichment score of the VEGF signaling pathway
and score of apoptosis were calculated using ssGSEA
method. The gene set of Homo sapiens KEGG_VEGF_
SIGNALING_PATHWAY and KEGG_APOPTOSIS was
downloaded from the GSEA Molecular Signatures Data-
base (MSigDB) v7.2 [14, 15]. Data on stromal fraction,
and leukocyte fraction were obtained from a previously
published study from the TCGA group [16]. We calcu-
lated expression profiles of 782 genes from 28 types of
immune cell to quantify the infiltration of immune cells
[17]. The degree of immune cell infiltration was esti-
mated by the ssGSEA method through the Gene Set
Variation Analysis (GSVA) package and visualized by
heatmap package in R software v4.0.5 [18, 19]. The stro-
mal, immune, and estimate scores were downloaded
from ESTIMATE database [20]. Data of metastatic gene-
set and proliferation score was obtained from two previ-
ous studies [16, 21].

Immune-related gene expression profiling
We calculated the gene expressions of 75 immune
markers related to the immune response in the tumor
microenvironment [16].

Differential gene expression analysis and gene ontology
(GO) terms enrichment analysis
To identify differentially expressed genes (DEGs) be-
tween VEGF-high subtype and VEGF-low subtype, RNA
sequencing data was performed using the limma package
with cutoff of |log2FC| ≥ 1.0 and FDR < 0.05 [22]. Gene
Ontology (GO) terms enrichment analysis of DEGs were
analyzed using the Metascape [23] and visualized by
ggplot2 package [24].

Protein-protein interaction (PPI) network of immune-
related DEGs
We extracted immune-related DEGs from the identified
DEGs between VEGF-high subtype and VEGF-low sub-
type. Based on the immunologically relevant list of genes
from the Immunology Database and Analysis Portal
[25], we utilized the STRING database to construct PPI
network among the immune-related DEGs [26], and re-
built the PPI network by Cytoscape [27]. We applied
MCODE algorithm to this network to identify neighbor-
hoods where proteins are densely connected.
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Statistical analysis
Data comparison between the two VEGF pathway sub-
types was performed via two-tailed t test and multiple t
tests with FDR < 0.05 for continuous comparisons. The
correlation between the VEGF pathway scores and the
ssGSEA scores of 28 immune cells was determined by
Pearson correlation test. The correlation between the
VEGF pathway scores and immune signatures scores
was visualized and calculated using the corrplot package
[28]. Positive correlations were displayed in blue and
negative correlations in red color. Heatmap was used to
visualize and compare immune cell infiltration patterns
and immune signatures across different VEGF signaling
pathway subtypes. OS was plotted using Kaplan-Meier
curves and calculated using the Multivariate Cox regres-
sion analysis. In all analyses, a P value of a two-tailed

test less than 0.05 was thought to be statistically signifi-
cant. All statistical analyses were conducted by Graph-
Pad Prism v8.0.2 and R software v4.0.5.

Results
Correlation between immune cell infiltration and VEGF
pathway score subtypes
We calculated and visualized the enrichment score of
the VEGF signaling pathway (Additional file 1), and di-
vided HNSCC patients into two VEGF pathway score
subtypes with median cutoff: the VEGF-low score sub-
type with the bottom half score (n = 127 in HPV-
negative HNSCC and n = 29 in HPV-positive HNSCC)
and the VEGF-high score subtype with the top half score
(n = 128 in HPV-negative HNSCC and n = 29 in HPV-
positive HNSCC). We compared stromal fraction and

Fig. 1 Immune cell infiltration patterns of two VEGF score subtypes in HPV-positive and -negative HNSCC. (a) Stroma fraction and leukocyte
fraction of the two VEGF score subtypes. (b) Immune score, stromal score, and Estimate score of the two VEGF score subtypes. (c) Heatmap of
immune cell infiltration, including both anti-tumor immune cells and pro-tumor immune cells. (d) A positive correlation between these two
categories of immune cells in VEGF cluster. (e) Anti-tumor immunity and pro-tumor immunity of the two VEGF score subtypes. All P values for
significance (< 0.05) represent comparisons via two-tailed t test and multiple t tests with FDR < 0.05 for continuous comparisons. All r values
represent Pearson correlation coefficients
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leukocyte fraction between these two VEGF score sub-
types. The results showed that higher stromal fraction,
and higher leukocyte fraction in the VEGF-high score
subtype in both HPV-positive and HPV-negative HNSC
C (Fig. 1A, P = 0.0002, P < 0.0001; P = 0.0144, P < 0.0001,
respectively). Using ESTIMATE database, we observed
that higher immune score, stromal score, and estimate
score in the VEGF-high score subtype in both HPV-
positive and HPV-negative HNSCC (Fig. 1B). Subse-
quently, we calculated 28 types of immune cell infiltra-
tion using ssGSEA method. The VEGF-high score
subtype showed relatively higher immune cell infiltra-
tion, including cells with anti-tumor activity and im-
munosuppressive activity regardless of HPV status (Fig.
1C). So, we performed Pearson correlation test in all pa-
tient samples, we found that a positive correlation be-
tween these two categories of immune cells in VEGF
clusters (Fig. 1D, r = 0.8725 P < 0.0001; r = 0.8513, P <
0.0001, respectively). We compared these two categories
of immune cells in different VEGF score subtypes and

observed that the VEGF-high score subtype featured
both higher anti-tumor immunity and pro-tumor im-
munity (Fig. 1E, P < 0.0001, P < 0.0001, respectively). 28
immune cells showed significant higher immune cell in-
filtration in the VEGF-high score subtype (Fig. 2). Posi-
tive correlation was found between VEGF pathway score
and the ssGSEA score of 28 immune cells using Pearson
correlation test (Additional file 2).

Correlation between immune-related gene signatures and
VEGF pathway score subtypes
We evaluated expression profile of 75 immune-related
genes in each VEGF pathway score subtype and the
VEGF-high score subtype exhibited relatively higher ex-
pression of immune stimulatory and inhibitory signa-
tures in both HPV-positive and HPV-negative samples
(Fig. 3). We also found positive correlation between the
expression of 75 immune-related genes and VEGF path-
way scores in six groups: all HPV-positive patients,
VEGF-high/HPV-positive subtype, VEGF-low/HPV-

Fig. 2 Infiltration of 28 immune cells in two VEGF score subtypes. All P values for significance (< 0.05) represent comparisons via two-tailed t test
for continuous comparisons
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positive subtype, all HPV-negative patients, VEGF-high/
HPV-negative subtype, VEGF-low/HPV-negative subtype
(Additional file 3-8). When comparing the expression
level of several important immune checkpoint molecules
in VEGF cluster, we found that PD-L1 was expressed
higher in VEGF-high score subtype in HPV-negative
HNSCC, not in HPV-positive HNSCC (Fig. 4A, P =

0.0017; P = 0.1677, respectively). The expression level of
PD-L2, PD-1, TIM3, VISTA, TIGIT was higher in
VEGF-high score subtype independent of HPV status
(Fig. 4B-G). We also found that lower proliferation
score, higher apoptosis score, higher metastasis-
promoting score, and higher metastasis-inhibiting score
in the VEGF-high score subtype (Fig. 4H-K).

Fig. 3 75 immune-related signatures expression profiling in VEGF pathway score subtypes
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Differentially expressed genes between VEGF score
subtypes were enriched in immune-related GO terms
Functional enrichment analysis of DEGs in HPV-positive
and HPV-negative samples were both enriched in
immune-related GO terms (Additional files 9). Subse-
quently, we performed functional enrichment analysis of
DEGs of all patients and revealed the following top im-
mune related GO terms: immunoglobulin complex, T cell
receptor complex and monomeric IgA immunoglobulin
complex in cellular components (Fig. 5A); complement
activation (classical pathway), adaptive immune response,
and inflammatory response in biological process (Fig. 5B);
antigen binding, immune receptor activity and receptor
ligand activity in molecular functions (Fig. 5C). A network
of immune-related GO terms was constructed based on
the top 20 GO summary terms (Fig. 5D).
We extracted 272 immune-related genes from the

identified DEGs and constructed a PPI network which
consists of 94 nodes and 501 edges (Fig. 6A). MCODE
algorithm was applied to this network and two top clus-
ters were found. Cluster 1 with MCODE score of 15 in-
cluding 15 genes (CXCR1, CXCR2, CXCR3, CXCR5,
PNOC, SST, SSTR1, FPR1, FPR2, CCR4, CCR7, CCR8,
CCL19, CCL21, CXCL12) (Fig. 6B). Cluster 2 with
MCODE score of 7.25 including 9 genes (CD18, CD19,
CD22, CD28, CD40LG, PTPRC, TLR8, IL10RA,
VCAM1) (Fig. 6C).

Correlation of VEGF score subtypes, PD-1 and activated
CD8+ T cells with survival of HNSCC patients
When compared to the VEGF-low score subtype, the
VEGF-high score subtype showed a longer OS time
(Fig. 7A, P = 0.027). Patients harboring higher level of
PD-1 expression showed a significantly improved OS
(Fig. 7B, P = 0.032), Based on the prognostic value of ac-
tivated CD8+ T cells, we calculated ssGSEA score of ac-
tivated CD8+ T cells in HNSCC patient samples and
divided them into high activated CD8+ T cells group and
low activated CD8+ T cells group with the median cut-
off. Patients with high activated CD8+ T cells infiltration
showed a trend towards better OS (Fig. 7C, P = 0.140).
We then categorized HNSCC patients into four groups:
VEGFHighCD8High, VEGFHighCD8Low, VEGFLowCD8High

and VEGFLowCD8Low. A better prognosis was observed
in VEGFHighCD8High compared to VEGFLowCD8Low and
a borderline significant was found in VEGFHighCD8High

compared to VEGFLowCD8High (Fig. 7D, P = 0.025, P =
0.065, respectively).

Discussion
Angiogenesis is considered as a crucial process in tumor
development. Among the factors inducing tumor angio-
genesis, the VEGF/VEGFR2 signaling pathway is one of
the most important pathways. Because of a cascade of
different signaling pathways involve in angiogenesis, so

Fig. 4 The expression level of immune checkpoint molecules and scores of proliferation, apoptosis, and metastasis in VEGF pathway score
subtypes. All P values for significance (< 0.05) represent comparisons via multiple t tests with FDR < 0.05 for continuous comparisons
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we considered the whole VEGF/VEGFR2 signaling path-
way to represent angiogenesis status in tumor.
We profiled the immune cell infiltration and immune-

related gene signatures patterns in HPV-positive and
HPV-negative HNSCC tumors. We found that the
VEGF-high score subtype infiltrated higher levels of im-
munosuppressive cells, such as Treg cell, macrophage,
MDSC and immature dendritic cell. Interestingly, we
also found higher anti-tumor immune cells in the
VEGF-high score subtype, including activated CD4+ T
cell, activated CD8+ T cell and nature killer cell. These
findings indicated that both anti-tumor immune cells
and immunosuppressive cells are infiltrated in the tumor
microenvironment when VEGF signaling pathway re-
lated gene expressions are increased independent of
HPV status. Together, these findings suggested that the
VEGF-high score subtype is more immune inflamed,
which might be likely to achieve benefits from
immunotherapy.
We also observed that immune stimulatory factors and

immune inhibitory factors were both higher expressed in

the VEGF-high score subtype, which is consistent with
immune cell infiltration phenotype. Among these im-
mune signatures, the expressions of immune checkpoint
genes, including PD-1, PD-L1, PD-L2, CTLA-4, TIM3,
TIGIT and VISTA, were higher expressed in the VEGF-
high score subtype. CTLA-4 is highly expressed on Treg
cell, and CTLA-4 inhibitors have been shown to pro-
mote antitumor immunity [29]. TIGIT and TIM-3 have
been linked to inhibit nature killer cell function. These
indicated that VEGF-high score subtype might be likely
to achieve the benefits from immune checkpoint inhibi-
tors. Beyond PD-1/PD-L1 axis, targeting Treg cell and
nature killer cell may exhibit beneficial activity in VEGF-
high score subtype. In addition, anti-VEGF could
normalize tumor vessels and improve the treatment effi-
cacy of ICI therapy [11]. These indicated a potential ra-
tional of combining anti-VEGF therapy with ICI therapy.
We found that high VEGF score subtype shows higher

immune cell infiltration, so-called hot tumor, which is
correlated with OS. Similar findings had been observed
by Hanna et al., who identified an inflamed subgroup of

Fig. 5 Functional enrichment analysis of DEGs between the two VEGF subtypes. (a-c) Functional enrichment analysis revealed that immune-
related GO terms ranked top in cellular components, biological process, and biological process molecular functions. (d) The network of the top
20 GO summary terms
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tumors with improved survival [30]. Another group
found that tumor-infiltrating lymphocytes density and
localization could predict the outcomes [31]. CD8+ T
cells and nature killer cells, which were higher expressed
in VEGF-high score subtype, correlated with better sur-
vival in HNSCC [32]. They usually indicated an activated
phenotype despite the presence of multiple immunosup-
pressive cells and immune inhibitory factors. Accumulat-
ing data suggested a negative prognostic significance of
PD-1 expression. By contrast, we found that PD-1 ex-
pression was associated with better survival outcomes, in
agreement with other studies on HNSCCs [33, 34]. In
addition, we found lower proliferation score, higher
apoptosis score, higher metastasis-inhibiting score, and
higher metastasis-promoting score in VEGF-high score
subtype. Coutinho-Camillo et al. defined a pro-apoptotic
cluster and an anti-apoptotic cluster, indicating a correl-
ation between apoptosis and tumor behavior [35]. Genes
in metastasis-promoting signature were mostly related

to the function of Neutrophil cell, Treg cell, and macro-
phage; genes in metastasis-inhibiting signature were
mostly related to interferon regulatory family and the
function of T cell, nature killer cell. These could be the
results of higher immune cell infiltration in VEGF-high
score subtype.
The molecular mechanisms of VEGF pathway regulat-

ing immune response involves multiple signaling path-
ways. Functional enrichment analysis of DEGs revealed
that immune-related GO terms were ranked top in bio-
logical process, cellular components, and molecular
functions. The enrichment network of the top 20 sum-
mary GO terms revealed therapies with the potential to
target immune-related biological pathways. Another PPI
network showed that the immune-related DEGs enrich
in cytokine and chemokine activities and immune cell -
endothelial cell adhesion. This network revealed two im-
portant modules included 26 genes, further investiga-
tion of their role in head and neck cancer may prove

a b

c

Fig. 6 PPI network of immune-related DEGs. (a) PPI network consisted of 94 nodes and 501 edges, (b) cluster 1, MCODE score: 15, c cluster 2,
MCODE score:7.25
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beneficial. These included targeting CXCL12, CXCR1/
CXCR2, and TLR8, which had shown therapeutic
promise [36–38].
Combination of immunotherapy and anti-angiogenic

therapy has established benefit in multiple tumor types
[13]. Single anti-angiogenic therapy failed to demon-
strate significant antitumor activity or improved clinical
efficacy in HNSCC. The interest in combing anti-
angiogenic therapy and immunotherapy remains. A
phase IB/II trial of lenvatinib plus pembrolizumab in pa-
tients with multiple solid tumor types, including HNSC
C, indicated promising preliminary efficiency with ex-
pected toxicities [39]. Several ongoing clinical trials are
evaluating the benefits of combing these two types of
therapies, including ongoing phase II trials of ramuciru-
mab plus pembrolizumab and bevacizumab plus atezoli-
zumab in recurrent/metastatic HNSCC (NCT03650764,
NCT03818061).
One of the biggest limitations of our study is that the

lack of information of histological data about the
location of infiltrated immune cells. The concept of
tumor-immune phenotype: immune-inflamed, immune-
excluded, and immune-desert phenotypes, which is now
widely accepted in solid tumor. Studies had revealed that
immune-inflamed phenotype had a favorable prognosis
[30]. Also, our findings are based on bioinformatics ana-
lysis, further experiments are needed to validate these
findings.

Conclusion
In summary, we investigated the correlation between
VEGF signaling pathway and tumor immune

microenvironment in HNSCC patients. Our findings re-
vealed that combining anti-VEGF signaling pathway
agents with immunotherapy, such as immune check-
point inhibitors, may exhibit promising benefits in
HNSCC.
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(< 0.05).

Additional file 3. Correlation between the 75 immune-related signa-
tures and VEGF pathway scores in HPV-positive patients. Positive correla-
tions were displayed in blue and negative correlations in red color.

Additional file 4. Correlation between the 75 immune-related signa-
tures and the high VEGF score subtype in HPV-positive patients. Positive
correlations were displayed in blue and negative correlations in red color.

Additional file 5. Correlation between the 75 immune-related signa-
tures and the low VEGF score subtypes in HPV-positive patients. Positive
correlations were displayed in blue and negative correlations in red color

Additional file 6. Correlation between the 75 immune-related signa-
tures and VEGF pathway scores in HPV-negative patients. Positive correla-
tions were displayed in blue and negative correlations in red color.

Fig. 7 Survival analysis of HNSCC patients. (a-c) Correlation between VEGF pathway score, PD-1 expression, score of activated CD8+ T cells, and
patient survival adjusted for HPV status. (e) Correlation between combined VEGF pathway score and score of activated CD8+ T cells, and patient
survival adjusted for HPV status. P values for significance (< 0.05) calculated using multivariable Cox regression analysis
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Additional file 7. Correlation between the 75 immune-related signa-
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correlations were displayed in blue and negative correlations in red color.

Additional file 8. Correlation between the 75 immune-related signa-
tures and the low VEGF score subtypes in HPV-negative patients. Positive
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Additional file 9. Functional enrichment analysis of DEGs between two
VEGF subtypes in HPV-positive and -negative HNSCC. (A-C) Functional
enrichment analysis revealed that immune-related GO terms ranked top
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