Synthetic Biology, 2021, 6(1), 1-7

SYNTHETIC
BIOLOGY

paraSBOLv: a foundation for standard-compliant genetic
design visualization tools

DOI: https://doi.org/10.1093/synbio/ysab022
Advance access publication date: 10 August 2021

Software

Charlie J. Clark®t, James Scott-Brown®?21t, and Thomas E. Gorochowski® 13+

School of Biological Sciences, University of Bristol, Bristol, UK

’Nuffield Department of Population Health, University of Oxford, Oxford, Oxfordshire, UK
3BrisSynBio, University of Bristol, Bristol, UK

TThese authors contributed equally to this work.

*Corresponding author: E-mail: thomas.gorochowski@bristol.ac.uk

Abstract

Diagrams constructed from standardized glyphs are central to communicating complex design information in many engineering fields.
For example, circuit diagrams are commonplace in electronics and allow for a suitable abstraction of the physical system that helps
support the design process. With the development of the Synthetic Biology Open Language Visual (SBOLv), bioengineers are now posi-
tioned to better describe and share their biological designs visually. However, the development of computational tools to support the
creation of these diagrams is currently hampered by an excessive burden in maintenance due to the large and expanding number of
glyphs present in the standard. Here, we present a Python package called paraSBOLv that enables access to the full suite of SBOLv
glyphs through the use of machine-readable parametric glyph definitions. These greatly simplify the rendering process while allowing
extensive customization of the resulting diagrams. We demonstrate how the adoption of paraSBOLv can accelerate the development of
highly specialized biodesign visualization tools or even form the basis for more complex software by removing the burden of maintain-
ing glyph-specific rendering code. Looking forward, we suggest that incorporation of machine-readable parametric glyph definitions
into the SBOLv standard could further simplify the development of tools to produce standard-compliant diagrams and the integration

of visual standards across fields.

Key words: SBOL visual; genetic design visualization; synthetic biology; Python

1. Introduction

The Synthetic Biology Open Language Visual (SBOLv) standard
defines a set of glyphs and conventions for visually displaying
the design information of engineered biological systems (1). The
use of SBOLv simplifies the communication of designs and aids
both collaboration and reproducibility by removing much of the
ambiguity in how core biological parts and their interactions are
displayed (2, 3). SBOLv fits into a larger standards ecosystem
across bioengineering (4). For example, the SBOL data standard
(5-7) is used to capture detailed information about both the struc-
ture and function of a design to facilitate data exchange and
enable complex design-build-test-learn workflows (8), and mod-
eling standards like the Systems Biology Markup Language (SBML)
(9) are used to simulate and test the function of possible designs
before they are built.

To support the creation of SBOLv-compliant diagrams, numer-
ous computational tools have emerged. These include program-
ming libraries like DNAplotlib (10, 11) and VisBOL (12, 13), as well
as graphical end-user environments like SBOLDesigner (14) and
SBOLCanvas (15). These tools all rely on a set of SBOL glyphs
that evolve over time and so a key challenge is managing how
glyphs are drawn and kept up to date. The complexity of this chal-
lenge is further increased by the SBOL standard’s permission of

the customization of glyphs in many ways (Figure 1A). For exam-
ple, the length of a particularly long coding sequence (CDS) might
be represented by stretching the body of the CDS arrow, but not its
head, as well as unique fill colors being used to visually distinguish
between many different CDSs displayed in the same diagram. This
required variability in geometry and basic aesthetics of each glyph
makes it common for tools to use separate dedicated functions for
the rendering of each glyph (10-12, 14). This simplifies the struc-
ture of the code but also leads to a significant maintenance burden
as the library of glyphs changes over time and slows the propaga-
tion of updates from the standard to end-user tools. An alternative
approach, which we advocate here, is to encode the glyph library
in a machine-readable format that is flexible enough to capture
all the information needed to tailor the rendering process through
the introduction of glyph specific parameters. Parameters capture
customizable features like color and line width, as well as allow-
able variations in glyph shape like width and height (Figure 1B).
Using this approach, the rendering code of a tool can remain con-
stant even when new glyphs are created or existing glyphs are
updated.

There are many possible formats that could be used as a
starting point to make this transition possible. For example, the
Scalable Vector Graphics (SVG) format (Figure 1C) is one of the

Submitted: 24 June 2021; Received (in revised form): 30 July 2021; Accepted: 9 August 2021

© The Author(s) 2021. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


https://orcid.org/0000-0001-5642-8346
https://orcid.org/0000-0003-1702-786X
mailto:thomas.gorochowski@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/

2 | Synthetic Biology, 2021, Vol. 6, No. 1
A Forward Reverse Valid customizations B Standard CDS glyph Parametric CDS glyph
promoter —L —— B
= <_J a : 3
[ } =
RBS £ — a /\ - oo 7 e
‘} arrowhead_width
N — compress —
Terminator T — T stewon ] >—
1 width=90
C SVG glyph definition file
<svg version="1.1" xmlns="http://www.w3.0rg/2000/svg"> P
<rect class="bounding-box" x="0" y="3" width="19" height="25"/> :%:
<path class="baseline" d="M®,25 L19,25"/> > i
<path class="unfilled-path" id="promoter-body" d="M2,25 L2,10 L17,10"/> 3 paths are drawn i i
<path class="unfilled-path" id="promoter-head" d=" "> (baseline, promoter-body, :. ;
</svg> and )
D Parametric SVG glyph definition file
/]
i [
<svg version="1.1" xmlns="http: //www.w3.org/2000/svg" i %i
xmlns:parametric="https: //parametric-svg.github.io/v0.2" > i !
glyphtype="Promoter" default parameters ! !
terms="S0:0000167" tTWI
parametric:defaults="arrowbody_height=5;arrowhead_width=3;
width=13;height=15"> i""“:
.9.
<path class="unfilled-path" id="promoter-body" d="M2,25 L2,10 L17,10" :i i
parametric:d="M{0}, {0} width=7 ' i
L{0},{-height+arrowbody_height/2} :.ﬁ:
L{width}, {-height+arrowbody_height/2}" /> fmmm
<path class="unfilled-path" id="promoter-head" d="M13,6 L17,10 L13,14" S
parametric:d="M{width-arrowhead_width},{-height} i i
L{width}, {-height+arrowbody_height/2} : f
L{width-arrowhead_width}, {-height+arrowbody_height}"/>| approwhead_width=20 ! i
</svg> arrowbody_height=3 i-—i

Figure 1. Customizable SBOLv glyphs and their representation using the parametric SVG (pSVG) format. (A) Examples of allowable aesthetic and
geometric customizations of SBOLv glyphs. (B) Comparison of a standard CDS glyph and a possible parametric definition to capture the customization
of glyph geometry. As changes to the width are made (e.g. compression or stretching along the x-axis), the standard glyph shape is deformed. In
contrast, the parametric version can maintain key ratios (i.e. height to arrowhead_width) to ensure a similar shape is seen throughout. Parameters are
shown in red and stretched versions are zoomed out. (C) Example SVG file for a promoter glyph. Styling options omitted for improved clarity. Resulting
glyph shown to right and paths and their corresponding parts of the glyph shown in the color-coded version of the glyph above the arrow. The
bounding box (gray dashed line) and baseline (solid horizonal line spanning the bounding box) are included to enable tools to understand how the
glyph should be composed and the space it occupies. In the ‘d’ (data) attributes of the path elements in the SVG file, the ‘M’ and ‘L’ commands
correspond to specifying the start point of a line path and the next point in the line path, respectively. Each of these commands are followed by two
space-separated numbers corresponding to a 2D position on the canvas. (D) Example pSVG file for a promoter glyph. Elements of the file specifically
used by paraSBOLv are shown in red; these supplement standard SVG elements to allow tools to interpret the file in a basic SVG format if necessary.
To the right, it is shown how changes in parameters can customize the rendered glyph shape.

most pervasive for storing vector-based images and can be read by
virtually all web browsers, word-processors and graphics design
software, as well as a wide variety of programming libraries. How-
ever, most formats (including SVG) are designed for capturing a
fixed static image and do not provide any capabilities to describe
ways in which the elements within the image are allowed to be
altered by a user. A rare exception is the parametric SVG (pSVG)
format, which extends the capabilities of the SVG format to allow
for parametric descriptions of the paths (i.e. lines and shapes)
making up the image (Figure 1D). By defining paths parametri-
cally, parameters can be provided when the image is rendered to
affect the output in specific ways—precisely what is required for
describing standardized glyphs where some, but not all, variations

in shape forms are allowed. Furthermore, pSVG files are fully
backward compatible with any software that can work with the
SVG format (although without the ability for images to be cus-
tomized), ensuring existing tools and libraries can make use of
the same files.

In this work, we present paraSBOLv, a lightweight Python pack-
age that is designed to simplify the rendering of SBOLv diagrams
by adopting pSVG files as an underlying data source for glyphs
and their allowable customizations. We provide an overview of
the library, the format of glyph pSVG files, the rendering pipeline
and some examples of how paraSBOLv can use used to accelerate
the development of SBOLv compatible visualization tools. We see
paraSBOLv acting as a foundation for the growing ecosystem of



SBOL compliant tools developed in Python that helps to reduce the
maintenance burden on developers as SBOLv continues to evolve.

2. Results
2.1 Using the pSVG format for SBOL visual glyphs

As mentioned earlier, the pSVG file format is an extension of the
SVG format, allowing for the inclusion of parametric informa-
tion that can affect how paths within an image are drawn. In
the context of SBOLv glyphs, parametric descriptions of geometric
features are useful when glyphs can be resized in specific ways or
to allow for the emphasis of certain features that correspond to
part performance or function (Figure 1C). A typical SVG file is an
XML file that contains elements defining the shapes or paths that
should be drawn. These elements include data defining key points
in these shapes/paths (e.g. the center of a circle or the points mak-
ing up the start and end of line segments that create an arbitrary
shape) plus styling information about how the paths and their
fill should be handled. For a pSVG file, the same core SVG ele-
ments exist, but additional ‘parametric’ attributes can be included
within them to allow for the points defining each shape/path to be
defined in terms of user-defined parameters and basic arithmetic
or trigonometric functions. This allows for changes in parameter
values to affect the geometry of the shape produced. In addition,
default parameters are provided so that a basic shape can always
be produced if no user-defined parameters are provided.

The benefit of this approach is that pSVG files can incorpo-
rate additional information about how the shape of a glyph can
be altered. The SBOLv standard already includes such guidelines
for each glyph in their definitions, but this is currently encoded
as free text that cannot be easily interpreted by a computer. By
encoding this information directly within the files defining the
set of available SBOLv glyphs, developers would be able to create
tools that can immediately understand and use these allowable
customizations.

With this as a goal, we developed a set of pSVG files that encom-
pass the entire SBOLv glyph library (Data availability) (1). During
this process, it became clear that glyphs often grouped into sub-
sets with shared parameters. For example, many of the glyphs
have a stem and head shape (e.g. see DNA/RNA/protein posi-
tions), while others include arrows of different forms. To ensure
that parameters were consistent across the entire library, each
subset of glyphs was given similar parameter names and similar
terminology was adopted for parameters throughout (Figure 2). In
addition, default parameters for all glyphs were chosen such that
their basic (noncustomized) shapes were highly distinguishable
when composed together. All pSVG glyph files are available from
the paraSBOLv development repository (see Data availability).

2.2 The paraSBOLv Python package

Having developed a complete set of pSVG SBOLv glyphs, we next
needed a way to utilize their unique capabilities. The paraSBOLv
Python package was developed to provide a set of lightweight func-
tions to load, customize and render SBOLv glyphs stored in a pSVG
format. It has been designed to use matplotlib as a canvas on
which to draw diagrams allowing for precise vector-based graph-
ics that can be easily incorporated into existing visualizations and
analysis scripts (e.g. by including SBOLv constructs in figures and
plots) and the ability to export these diagrams to a wide range of
vector and rasterized image file formats (e.g. PDF, PNG and JPEG).
Internally, paraSBOLv also makes use of the svgpath2mpl package
to generate matplotlib-compatible paths from an SVG definition.

CJ. Clarketal. | 3

Structurally, the paraSBOLv package consists of two classes
and additional helper functions (Figure 3). The core rendering
functionality is encapsulated in the GlyphRenderer class that can
load an entire library of SBOLv pSVG glyph files and then draw
them using provided customization parameters. Normally, a sin-
gle GlyphRenderer object is created by an application, and this
object is used multiple times to draw all the glyphs present in
a diagram. To simplify this process, after drawing a glyph at a
specified location (where the location is the start point of the
glyph’s baseline), the GlyphRenderer object will return the bounds
of the drawn glyph and the end point of the baseline, ensuring
that the location of the next glyph in a design is known. While
the GlyphRenderer class focuses on drawing individual glyphs,
to simplify the drawing of entire genetic constructs, the Con-
struct class is provided. This takes a GlyphRenderer object used
to perform all drawing functions, a list of parts, interactions and
other parameters and can render an entire construct with a sin-
gle function call. Much of the rendering pipeline can be tailored
based on dictionaries of attribute-value pairs provided on a per
part basis that customize the way the glyph is drawn, includ-
ing parameters affecting glyph shape. Specifically, when drawing
each glyph, two dictionaries can be sent to alter the rendering pro-
cess. The first dictionary termed ‘user_parameters’ has key-value
pairs corresponding to a pSVG parameter name and its values.
These parameters affect the geometry of the glyph (e.g. its width
and height). The second dictionary termed ‘user_style’ has key-
value pairs corresponding to each path name in the glyph with the
value being a dictionary specifying the standard matplotlib styling
options for that path (e.g. edgecolor and linewidth).

A core consideration throughout the development of paraS-
BOLv has been to keep the package small and well documented.
By adopting the pSVG format for glyphs, we were able to provide
a full range of rendering capabilities (including customization)
in the GlyphRenderer class in less than 500 lines of code, with
~40% of those being comments for documentation. In addition,
we have also made use of continuous integration tools to simplify
maintenance and ensure code quality as the package is devel-
oped (16). Specifically, we have integrated GitHub actions into
the developmentrepository to regenerate all documentation using
pdoc and perform automated testing after every code commit.
This approach ensures that we quickly flag introduced errors and
ensure that core functionality is maintained throughout develop-
ment.

2.3 Rapid implementation of specialized tools
using paraSBOLv

When developing computational tools, two different approaches
are often pursued. In one, a comprehensive, all-encompassing
approach is taken where every form of functionality a user might
require is ‘baked in’ by default. Common examples are tools with
complex graphical user interfaces like SBOLDesigner (14), SBOL-
Canvas (15), Benchling and SnapGene. Such software is imme-
diately accessible to a user but can take significant time and
resources to develop to a fully functional state and are gener-
ally rigid in the way they work; it can be difficult to customize
or change specific aspects to a user’s liking as workflows have a
prescribed set of steps that must be followed. Alternatively, tools
can be designed to only provide a small set of highly interoperable
building blocks that must be pieced together by the user them-
self to create a specialized tool each time a new functionality is
required. This approach is sometimes referred to as the ‘UNIX phi-
losophy’ and while placing an emphasis on the user learning how



4 | Synthetic Biology, 2021, Vol. 6, No. 1

Parameters Sequence features Molecular species
width ""X‘Ere o@
width

: — — — (D)
height __&_/,_"_\_[HP__H_H__ “”\;‘\‘;‘1/\0“ = []

- o S =

width
height

Lo

arrowbody_width
arrowbody_height

Figure 2. Groups of glyphs and their parameters. Sequence features and molecular species are separated, and all glyphs shown using default

parameters.

paraSBOLv
Construct GlyphRenderer
- glyph_library
- part_list - glyph_terms_map

- interaction_list

- start_position

1

1

i

1

i

1

|

' | - renderer
1

|

i load_glyph()
1

1

- rotation load_package_glyphs()
O
draw() draw_glyph()

load_glyphs_from_path() .

glyphs \

Aptamer.svg
AssemblyScar.svg
BluntRestrictionSite.svg
.. (other pSVG files)

# svgpath2mpl

yy

update_bounds ()

get_glyph_bounds()
get_baseline_end()

- render_part_list()
- draw_interactions()

! matplotlib .—>_|:’QD1
I, 1

Figure 3. Overview of the paraSBOLv Python package. Dashed boxes represent packages. Solid boxes represent classes. The folder symbol represent
directories. Arrows represent the flow of function calls between classes and packages, and lines ending in a filled circle show usage. Only key
functions and class members/variables shown. Full documentation is available from the development repository (see Data availability).

to program the system, it offers the ability to rapidly create a work-
ing tool tailored to a task at hand and offers significantly greater
flexibility in the final product produced.

ParaSBOLv falls into this second category. This does not pre-
clude paraSBOLv acting as a foundation for building larger and
more comprehensive genetic design visualization tools, but it is
most powerful when used directly to rapidly create highly spe-
cialized visualization software. To demonstrate this capability, we
developed several example tools that allow for a broad range of
visualization tasks to be achieved with little effort (Figure 4). All
tools are available at the public paraSBOLv development reposi-
tory (see Data availability).

Our first tool, called sbolv-cli, demonstrates the drawing of
genetic designs specified by a shorthand notation using a com-
mand line interface, similar to the tool pigeon (17) (Figure 4A). The
user provides a string encoding the parts that should be present,
customization information regarding each of these (e.g. color and
orientation) and the interactions present between the parts using
their indexes in the design (full usage details are available from
the development repository). This information is parsed by sbolv-
cli and a design generated that can then be rendered to file by
paraSBOLv. This tool is particularly useful for users needing to
generate short genetic design ‘snippets’ that can be included in
larger diagrams or as part of presentations or documents.



A sbolv-cli

--string "p black,r white,c 1_blue,t black,s white,p
black,p blue,r white,c 1_orange,t black,s white,p
blue,x 1l_orange,<c green,<r white,<x 1_orange,t black"
--interaction "2,6,in,blue//8,12,co,orange//
8,15,co,orange"

| [ | ]
Copp T~ Tel )@t

Cc

sholv-kaleidoscope

CJ. Clarketal. | 5

B genbank2sbolv

Il enzyme

O factor

H regulator
@ structural
EH membrane
M IS/phage
[ unclassified

a TElenews  lEelmmmey L Y QU X X
@ HEHEIHDOCK KIS lD b D HD D
fa s Sl e milsmmmes Seeierel 2

Figure 4. Examples of specialized visualization tools rapidly built using paraSBOLv. (A) sbolv-cli—an SBOLv Command Line Interface that converts a
genetic design string into an SBOLv diagram (similar to the tool pigeon (17)). The command line arguments (-string and -interaction) used to produce
the visualization are shown. Within these, ‘p’ = promoter, ‘T’ =RBS, ‘c’=CDS, ‘t’ = terminator, ‘X’ =recombination site and a prefix of ‘<’ reverses the
direction of the part. Colors are given as names with the ‘1_’ prefix denoting a lighter colored version. Interactions are given as a ‘//’ separated list
where the start and end index of the part the interaction spans are first given, then the type (‘in’ =inhibition, ‘co’ = control) and finally the color. (B)
genbank?2sbolv—a visualization tool that generates an SBOLv visualization from a GenBank file. Long genetic designs (e.g. genomes) are split across
lines to simplify viewing, and coding regions are shown in correct relative sizes with color corresponding to annotated function. Visualization shown
for part of the Escherichia coli MG1655 genome (GenBank: U00096.3). (C) sbolv-kaleidoscope—a generative art tool where all elements of an image are
customized SBOLv symbols. Code for all examples is available from the development repository (see Data availability).

Our second tool, called genbank2sbolv, shows how basic data
processing and visualization can be combined. Taking a file in the
commonly used GenBank format as input, it parses the content
and produces a graphical representation (Figure 4B). This helps
improve the viewers’ understanding of the overall organization of
a DNA sequence in relation to the genetic parts encoded. A key
feature of this tool is its ability to split the visualization across
lines to improve the readability of very long and complex designs.
Itis also able to use specific attributes associated with each coding
region to tailor the rendering process (e.g. allowing for the color to
be modified in relation to the annotated function).

Our final example, called sbolv-kaleidoscope, is a dynamic gen-
erative art tool that can create unigue moving artworks consisting
solely of customized parametric SBOLv glyphs (Figure 4C). The
user can specify parameters that tune the generative process and
even provide constraints on the colors and geometric features
of the glyphs that should be varied. While this tool has limited
scientific value, it does demonstrate the diversity of ways paraS-
BOLv can be used beyond typical bioengineering use cases and
exemplifies the variation that is possible in SBOLv glyphs while
still being clearly recognizable as biological parts with a defined
functionality.

All the tools presented above are available from the gallery of
examples on the public online paraSBOLv development repository

(see Data availability). Details of their specific use and available
options are provided in tool-specific README files.

3. Conclusion

We have provided an overview of the paraSBOLv Python package
and shown how its use of the pSVG format allows for a richer
machine-readable description of glyphs, removing the need to
write specialized rendering functions for each. This allows the
core paraSBOLv package to remain lean, significantly reduces
maintenance and allows for the package to make immediate use
of new glyphs as they become available. Although the focus here
has been on using this approach to produce SBOLv compliant
visualizations, the concept of a glyph format that can capture
both core geometry and allowable customizations could be easily
applied to other graphical standards, such as the Systems Biology
Graphical Notation (SBGN) (18), and support an opportunity for
greater exchange of symbols and code between related standards.

Looking forward, we are in the process of submitting an SBOL
Enhancement Proposal (1) to advocate for the use of pSVG as
the core representation of each glyph within the SBOLv standard.
This will ensure new glyphs capture customization information
in a machine-readable format and allow tools like paraSBOLV to
immediately access updates to glyphs without any change to their



6 | Synthetic Biology, 2021, Vol. 6, No. 1

codebase. The use of pSVG glyphs by the SBOLv standard devel-
opment process would also have further benefits; for example,
allowing existing online SBOLv ontology tools to serve up pSVG
files as they are needed (19) to ensure visualizations always use
the most up-to-date versions of glyphs, as well as the ability to
broadly automate many tasks currently performed manually by
the SBOLv community (e.g. the generation of glyph tables for the
website and individual sets of stencils for use in graphic design
software where acceptable customization needs to also be shown).
We are also in the process of transitioning our more advanced
genetic design visualization tool called DNAplotlib (10, 11) to use
paraSBOLv for all rendering tasks. This will remove the need to
maintain low-level rendering tasks and allow for the tool to focus
on higher-level functionalities (e.g. the generation of appropriate
visual layouts for large and complex multimodule designs or even
genomes).

Another interesting future direction for this approach is the
incorporation of visualization parameters directly into SBOL data
files containing the raw underlying structural and functional
information about a biological design. This could be achieved by
having conventions for how glyph parameters should be stored as
custom annotations within the SBOL file (6). These would be then
directly linked to their associated element and could be used to
affect the rendering of a design. There are some additional com-
plications with this approach due to the SBOL standard offering
far greater freedom over how a biological design is structured,
some of which are difficult to automatically map to a visualiza-
tion; however, efforts toward this type of goal in regard to the
storing of user-defined layout information has already begun with
SBOLCanvas (15) leading the way.

Here, our focus has been on the development of a Python
library to support the use of pSVG glyphs when rendering SBOLv
diagrams. Python was chosen due to its widespread use across the
sciences and growing position as a key language for computational
data analysis. However, it should be noted that our use of the open
pPSVG format also makes it possible to use our glyph files in other
programming languages. First, because each pSVG file is stored
using XML, standard language-specific XML parsers can be used
to extract the relevant tags (e.g. glyph paths) and their associated
attributes and values. For parametric attributes the parameter-
ized strings must first be evaluated using user-provided values
or default values also stored within the pSVG file (under a ‘para-
metric:defaults’ attribute of the main ‘svg’ tag). Once evaluated,
these strings are valid SVG paths that can then be rendered using
any compatible graphics library. For example, the Cairo graphics
library can render SVG strings to screen or file and is available for
virtually all mainstream programming languages.

As the SBOLv standard grows to support new areas of syn-
thetic biology and bioengineering (20-32), rethinking how we
collect, manage, visualize and distribute data for supporting com-
putational tools will become crucial (8). The paraSBOLv pack-
age and its use of the pSVG format offers a way to address
some of these challenges, taking a burden off tool developers
and opening new avenues for interactions between graphical
standards.

Data availability

All the example code (stored within the ‘gallery’ directory of the
development repository) and the paraSBOLv Python package are
open source, released under an MIT license and publicly available
at: https://github.com/BiocomputeLab/paraSBOLv.

Funding

BrisSynBio, BBSRC/EPSRC Synthetic Biology Research Centre
[BB/L01386X/1 to T.E.G.]; Royal Society University Research Fel-
lowship [UF160357 to TE.G.].

Acknowledgments

We would like to thank the Synthetic Biology Open Language
(SBOL) community for their support during the development of
this library, in particular James McLaughlin, Chris Myers and Jake
Beal.

Author contributions

T.E.G. and J.S.-B. conceived the project. TE.G. and C.J.C. devel-
oped the paraSBOLv software package. J.S.-B. developed the pSVG
utils and setup all continuous integration elements of the project.
T.E.G. and J.S.-B. created the pSVG files of the SBOL Visual glyphs.
All authors developed the example tools and contributed to the
writing and editing of the manuscript.

Conflict of interest statement. None declared.

References

1. BaigH., Fontanarrosa,P.,, Kulkarni,V,, McLaughlin,J., Vaidyanathan,P.,
Bartley,B., Bhatia,S., Bhakta,S., Bissell, M., ClancyK. et al. (2020)
Synthetic biology open language visual (SBOL visual) version 2.2.
J. Integr. Bioinforma., 17, 20200014.

2. Beal]., Nguyen,T., Gorochowski, T.E., Goni-Moreno,A.,
Scott-Brown,J., McLaughlinJ.A., Madsen,C., Aleritsch,B.,,
Bartley,B., Bhakta,S. et al. (2019) Communicating structure
and function in synthetic biology diagrams. ACS Synth. Biol., 8,
1818-1825.

3. Madsen,C., McLaughlin JA., Misirli,G., Pocock,M., FlanaganX.,
Hallinan,]. and Wipat,A. (2016) The SBOL stack: a platform for
storing, publishing, and sharing synthetic biology designs. ACS
Synth. Biol., 5, 487-497.

4. Schreiber,E, Sommer,B., Czauderna,T., Golebiewski,M.,
Gorochowski, T.E., Hucka,M., Keating,S.M., Konig,M., Myers,C,,
Nickerson,D. et al. (2020) Specifications of standards in systems
and synthetic biology: status and developments in 2020. J. Integr.
Bioinforma., 17, 20200022.

5. McLaughlin JA., BealJ), Misirh,G.,, GrinbergR., BartleyBA.,,
Scott-Brown,)., Vaidyanathan,P, Fontanarrosa,P., OberortnerE.,
Wipat,A. et al. (2020) The synthetic biology open language (SBOL)
version 3: simplified data exchange for bioengineering. Front.
Bioeng. Biotechnol., 8, 1009.

6. BaigH,, Fontanarrosa,P, Kulkarni, V., McLaughlin,J.A.,
Vaidyanathan,P, Bartley,B,, Beal), Crowther,M.,
Gorochowski, T.E., GriinbergR. et al. (2020) Synthetic biology
open language (SBOL) version 3.0.0. J. Integr. Bioinforma., 17,
20200017.

7. Madsen,C., Goni Moreno,A., Umesh,P., Palchick,Z., Roehner,N.,
Atallah,C., Bartley,B.,, ChoiK., Cox,R.S., Gorochowski,T.E. et al.
(2019) Synthetic biology open language (SBOL) version 2.3.]. Integr.
Bioinforma., 16, 20190025.

8. Myers,CJ.,, Beal)., Gorochowski,T.E., Kuwahara,H., Madsen,C,,
McLaughlinJ.A., Misirl,G., Nguyen,T., Oberortner,E., Samineni,M.
et al. (2017) A standard-enabled workflow for synthetic biology.
Biochem. Soc. Trans., 45, 793-803.

9. Keating,SM., Waltemath,D.,, KonigM., ZhangF, DrigerA.,
Chaouiya,C., Bergmann,ET, FinneyA., Gillespie,C.S., Helikar,T.


https://github.com/BiocomputeLab/paraSBOLv

et al. (2020) SBML level 3: an extensible format for the
exchange and reuse of biological models. Mol. Syst. Biol., 16,
€9110.

10.Bartoli,V.,, Dixon,D.O.R. and Gorochowski,T.E. (2018) Automated
visualization of genetic designs using DNAplotlib. In: Braman JC
(ed). Synthetic Biology: Methods and Protocols. Springer, New York,
NY, pp. 399-409.

11.Der,B.S.,, Glassey,E., BartleyB.A., Enghuus,C., Goodman,D.3B,
Gordon,D.B., Voigt,C.A. and Gorochowski,T.E. (2017) DNAplotlib:
programmable visualization of genetic designs and associated
data. ACS Synth. Biol., 6, 1115-11109.

12.McLaughlin J.A., Pocock,M., Misirly,G., Madsen,C. and Wipat,A.
(2016) VisBOL: web-based tools for synthetic biology design visu-
alization. ACS Synth. Biol., 5, 874-876.

13.Hatch,B., Meng,L., ManteJ., McLaughlin J.A., Scott-Brown,J. and
Myers,CJ. (2021) VisBOL2 - improving web-based visualization
for synthetic biology designs. ACS Synth. Biol. 10.1021/acssyn-
bio.1c00147.

14.Zhang,M., McLaughlin,J.A., Wipat,A. and Myers,C.J. (2017) SBOLD-
esigner 2: an intuitive tool for structural genetic design. ACS Synth.
Biol., 6, 1150-1160.

15. Terry,L., Earl].,, ThayerS., Bridge,S. and Myers,CJ. (2021) SBOL-
Canvas: a visual editor for genetic designs. ACS Synth. Biol., 10,
1792-1796.

16.Hilton,M., Tunnell T, HuangXK., Marinov,D. and DigD.
(2016) Usage, costs, and benefits of continuous integra-
tion in open-source projects. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engi-
neering. Association for Computing Machinery, Singapore, pp.
426-437.

17.Bhatia,S. and Densmore,D. (2013) Pigeon: a design visualizer for
synthetic biology. ACS Synth. Biol., 2, 348-350.

18.Le Novere,N., Hucka,M., Mi,H., Moodie,S., Schreiber,F., Sorokin,A.,
Demir,E., Wegner,K., Aladjem,M.I., Wimalaratne,S.M. et al. (2009)
The systems biology graphical notation. Nat. Biotechnol., 27,
735-741.

19.Misirh,G., Beal)., Gorochowski,T.E., Stan,G.-B.,, Wipat,A. and
Myers,CJ. (2020) SBOL visual 2 ontology. ACS Synth. Biol., 9,
972-977.

20.Greco,FV,, Tarnowski,M.J. and Gorochowski, T.E. (2019) Living
computers powered by biochemistry. Biochemist, 41, 14-18.

CJ. Clarketal. | 7

21.Nielsen,A.AK., Der,BS., Shin,J., Vaidyanathan,P, Paralanov\V,
Strychalski,E.A., Ross,D., DensmoreD. and Voigt,C.A. (2016)
Genetic circuit design automation. Science, 352, aac7341.

22.Gorochowski, T.E., Borujeni,A.E., Park,Y., Nielsen,A.A K., Zhang].,
Der,B.S., Gordon,D.B. and Voigt,C.A. (2017) Genetic circuit char-
acterization and debugging using RNA-seq. Mol. Syst. Biol,
13, 952.

23.Laochakunakorn,N., Grasemann,L., Lavickova,B., Michielin,G.,
Shahein,A., Swank,Z. and Maerkl,SJ. (2020) Bottom-up construc-
tion of complex biomolecular systems with cell-free synthetic
biology. Front. Bioeng. Biotechnol., 8, 213.

24.Karkaria,B.D.,, Treloar,NJ., Barnes,C.P. and Fedorec,AJH. (2020)
From microbial communities to distributed computing systems.
Front. Bioeng. Biotechnol., 8, 834.

25.Castle,S., Grierson,C.S. and Gorochowski,T.E. (2021) Towards an
engineering theory of evolution. Nat. Commun., 12, 3226.

26.Marucci L., Barberis,M., Karr], RayO. RacePR., de Souza
Andrade M., Grierson,C.S., Hoffmann,S.A., Landon,S., Rech,E.
et al. (2020) Computer-aided whole-cell design: taking a holis-
tic approach by integrating synthetic with systems biology. Front.
Bioeng. Biotechnol., 8, 942.

27.Gorochowski, T.E., Chelysheva,l., Eriksen,M., Nair,P., Pedersen,S.
and Ignatova,Z. et al. (2019) Absolute quantification of trans-
lational regulation and burden using combined sequencing
approaches. Mol. Syst. Biol., 15, e8719.

28.Green,A.A., Kim,J., Ma,D,, Silver,PA., Collins,JJ. and Yin,P. (2017)
Complex cellular logic computation using ribocomputing devices.
Nature, 548, 117-121.

29. Scott-Brown,]. and Papachristodoulou,A. (2017) sbml-diff: a tool
for visually comparing SBML models in synthetic biology. ACS
Synth. Biol., 6, 1225-1229.

30. Grozinger,L., Amos,M., Gorochowski, T.E., Carbonell P,
Oyarzun,D.A., StoofR., Fellermann,H. ZulianiP., TasH. and
Goni-Moreno,A. (2019) Pathways to cellular supremacy in
biocomputing. Nat. Commun., 10, 5250.

31. Gorochowski, T.E. (2016) Agent-based modelling in synthetic biol-
ogy. Essays Biochem., 60, 325-336.

32.Gorochowski, T.E., Hauert,S., Kreft J.-U., Marucci,L., Stillman,N.R.,
Tang,T.-Y.D., Bandiera,L., Bartoli,V,, Dixon,D.O.R., Fedorec,AJH.
et al. (2020) Toward engineering biosystems with emergent col-
lective functions. Front. Bioeng. Biotechnol., 8, 705.


https://doi.org/10.1021/acssynbio.1c00147
https://doi.org/10.1021/acssynbio.1c00147

	1. Introduction
	2. Results
	2.1 Using the pSVG format for SBOL visual glyphs
	2.2 The paraSBOLv Python package
	2.3 Rapid implementation of specialized tools using paraSBOLv

	3. Conclusion
	 Data availability

