
Hot-spot KIF5A mutations cause familial ALS
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Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene

cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo

frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelop-

mental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral

sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of

amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial

amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic

lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 � 10�3), both located in a hot-spot in the C-terminus of the

protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two

canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site muta-

tions revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular

mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in

the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in

respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant

rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon

26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 � 10�7).

Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic

lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis

pathogenesis.
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Introduction
KIF5A is a member of the kinesin family of proteins that is

mainly expressed in neurons (Niclas et al., 1994; Fagerberg

et al., 2014). As part of a multi-subunit complex, it acts as

a microtubule motor in intracellular protein and organelle

transport, including mitochondria (Hirokawa et al. 2009).

Missense mutations in the kinesin family member 5A

(KIF5A) gene at 12q13.3 are the third most frequent

cause of autosomal dominant hereditary spastic paraplegia

(HSP10, SPG10, OMIM#604187) in European popula-

tions, affecting primarily the long pyramidal tracts and

sometimes also the peripheral nervous system (Reid et al.,

2002; Goizet et al., 2009; Morais et al., 2017).

Additionally, the known phenotypic spectrum of KIF5A

mutations comprises also an autosomal dominant axonal

sensorimotor peripheral neuropathy (Charcot-Marie-Tooth

disease type 2; CMT2) (Liu et al., 2014) and a complex

infantile neurological syndrome with leukencephalopathy,

myoclonus, hypotonia, optic nerve abnormalities, dyspha-

gia, apnoea, hearing loss, and early developmental arrest

[neonatal intractable myoclonus (NEIMY; OMIM#

617235); Duis et al., 2016; Rydzanicz et al., 2017].

Some 5% of patients with the motor neuron disease

amyotrophic lateral sclerosis (ALS) self-report a positive

family history (familial ALS), most frequently as a

Mendelian autosomal dominant trait. Since 1993, muta-

tions in over 36 genes have been associated with ALS

pathogenesis, and mutations in several of these have been

predicted to disrupt cytoskeletal function and intracellular

transport (PFN1, NEFH, PRPH, ALSIN, DCTN1;

TUBA4A Figlewicz et al., 1994; Yang et al., 2001; Puls

et al., 2003; Gros-Louis et al., 2004; Wu et al., 2012;

Smith et al., 2014). Datasets of two large studies based

on whole exome sequencing or genome-wide association

testing suggested also an association between variants in

KIF5A and ALS (Kenna et al., 2016; McLaughlin et al.,

2017). In both studies, the association did not achieve

genome-wide statistical significance and the studies also

lacked data on a possible co-segregation of KIF5A variants

with ALS. Furthermore, detailed clinical information

beyond the phenotype ‘ALS’ was not available with

regard to the possibly KIF5A-linked patients. Altogether,

we hypothesized that mutations affecting KIF5A can also

be a cause of ALS. Consequently, we here assessed a pos-

sible association between KIF5A and ALS by first compar-

ing the mutation burden of KIF5A in a cohort of 426

familial ALS patients with 144 769 control individuals (com-

prising 6137 in-house controls and the gnomAD dataset)

followed by co-segregation analysis, detailed clinical descrip-

tion of the patients, as well as RNA expression and splicing

analysis of KIF5A mutations in patient-derived cell lines.
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Material and methods

Patients and ethics statement

All ALS patients were diagnosed according to the EFNS

Consensus criteria (Andersen et al., 2005, 2012). With in-

formed written consent and approval by the national med-

ical ethical review boards in accordance with the

Declaration of Helsinki, EDTA blood samples were

drawn from controls, ALS patients, and their unaffected

relatives. DNA was extracted from EDTA blood samples

according to standard procedures.

Genotyping for SOD1 and C9orf72
mutations

Mutations in SOD1 and C9orf72 were excluded prior to

exome sequencing of familial ALS cases as described before

(Freischmidt et al., 2015).

Whole-exome sequencing

We sequenced exomes of 426 European familial ALS index

patients and 6137 control subjects. Controls comprised

healthy parents of children with various diseases, healthy

tissues of individuals with tumour diseases, and 200 indi-

viduals from the KORA studies (Kooperative

Gesundheitsforschung in der Region Augsburg) (Herder

et al., 2013). Sequencing, read mapping and variant calling

was performed on HiSeq2000/2500 systems (Illumina) as

described previously (Freischmidt et al., 2015).

RNA expression and splicing analysis

RNA was isolated from the immortalized lymphoblast cell

lines derived from the mutation carriers and their unaffected

mutation-negative relatives. To test the effect of the variants

on mRNA level, fragments were amplified using the cDNA

template with primers binding to exon 25 and 28/29. Primer

sequences are available on request. PCR products were

sequenced on ABI 3130xl Genetic Analyzer using BigDye

v3.1 cycle sequencing kit (Life Technologies), according to

the manufacturer’s protocol. Mutation nomenclature is ac-

cording to the transcript NM_004984.

To calculate the relative expression of KIF5A mRNA in

the subjects, quantitative real-time PCR was performed

with SYBR� Green chemistry. Primers spanning exons

2/3 and exon 3/4 were used. TBP (TATA-binding protein)

was used as an internal control for normalization. The

��ct method was used for quantification (Livak and

Schmittgen, 2001).

Statistics

Fisher’s exact test was used to compare sequence variant fre-

quencies between ALS and control groups. A significance level

a5 0.05 was applied in all tests statistical tests (two-tailed).

For linkage analysis of Families A–C, we assumed an

autosomal dominant model. Penetrance was set at 0.8.

The frequency of the deleterious allele was set at 0.0001,

the phenocopy rate at 0.003, and the marker allele fre-

quency to 0.0001. Linkage analysis was performed using

Merlin software (version 1.1.2). We set the phenotype to

unknown if an unaffected individual was either younger

than 60 years or had died before the age of 60 years.

Results

Exome sequencing and association
analysis

To assess a possible association between KIF5A variants and

familial ALS we analysed whole exome sequence data of 426

familial ALS index patients. The frequency of KIF5A variants

was compared to 6137 in-house whole exome datasets from

control individuals with non-neurological diseases and the

138 632 exomes and genomes of the gnomAD dataset

(http://gnomad.broadinstitute.org/, Lek et al., 2016). The fa-

milial ALS index patients were selected for whole exome

sequencing from families with at least two individuals af-

fected by ALS or frontotemporal dementia from the six

European countries: Germany, Denmark, Finland, Sweden,

Switzerland, and Portugal, subsequent to a negative screen

for pathogenic mutations in SOD1 and C9orf72.

We analysed missense variants of KIF5A at a minor allele

frequency (MAF) below the thresholds of 1% and 0.1%,

respectively. We did not observe a significant overall en-

richment of KIF5A rare missense variants in the familial

ALS group when compared to our in-house control group

(n = 6137) or the gnomAD dataset (n = 138 632; Tables 1

and 2).

Although we did not detect a significant enrichment of

rare missense variants in the patient group, the non-syn-

onymous single nucleotide variant (SNV) rs113247976

showed a trend towards enrichment in ALS patients in a

previous GWAS (McLaughlin et al., 2017). We found this

SNV highly enriched in our familial ALS cohort [29/426

patients; allele frequency (AF) = 3.4%] compared to in-

house controls (123/6137 individuals; AF = 1.00%;

P = 1.28 � 10�7) or the gnomAD database (3132/138 632

individuals; AF = 1.13%; P = 3.11 � 10�7). This SNV

predicts an amino acid exchange in KIF5A [hg19:

g.57,975,700C4T; c.2957C4T; p.(Pro986Leu)] (Table 2).

Rs113247976 represents the only non-synonymous variant

with a frequency 40.1% in the normal population (gnomAD

dataset and in-house controls); thus the rest of KIF5A displays

high evolutionary conservation. Remarkably, 11 of 29 pa-

tients carrying rs113247976 also had a heterozygous genetic

variant in one of the following ALS genes (Supplementary

Table 2): HNRNPA1 (p.M137V), VCP (p.R95C), ERBB4

(p.T271I), TARDBP (p.A315T and p.N352S each in one

patient), FUS (p.G405R and p.R514T each in one case),
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FIG4 (p.R699H), SPG11 [c.7152-1G4C (acceptor splice

site) and p.V2426M, each in one case; only bi-allelic muta-

tions regarded to be pathogenic], as well as NEK1

(p.Ser1036Ter) and UBQLN2 (p.P509S) in the same

individual.

Furthermore, we separately analysed loss-of-function vari-

ants, defined as nonsense, canonical splice sites (within two

nucleotides of exon boundary), read-through, and frameshift

variants. We identified a significant enrichment of KIF5A loss-

of-function variants in the patient group (2/426 patients;

AF = 0.23%) compared to the in-house control group (0/

6137 individuals; AF = 0%; P = 4.2 � 10�3) or the gnomAD

dataset (13/138 632 individuals; AF = 4.7 � 10�3; P =

9.6 � 10�4) (Tables 1 and 2). Consistent with the low

abundance of loss-of-function variants in control datasets,

the pLI score of KIF5A is 1 (http://exac.broadinstitute.org/

gene/ENSG00000155980), which indicates a high probability

of KIF5A loss-of-function mutation intolerance. Mutations in

established ALS disease genes were not detected in the patients

with KIF5A loss-of-function mutation.

Segregation analysis

Next, we aimed to further corroborate the observed asso-

ciation of deleterious mutations with ALS by segregation

analysis. We extended the two families with loss-of-func-

tion mutations and reanalysed them using Sanger sequen-

cing. As shown in Fig. 1A and B, both splice site variants

Table 1 KIF5A splice site and rare missense variants (MAF 51%) found in this study (426 index patients) and basic

clinical characteristics of index patients

Varianta Predicted

consequence at

protein level

MAF, % Onset Age at

onset,

Disease

duration,

Phenotype

c: NM_004984.2: Allele count years months

g: NC_000012.11 (gnomAD)

Missense variants

c.1238A4G p.Glu413Gly 4.062 � 10�6 Spinal, right UL both MN 35 28 Classical ALS

g.57968879A4G (1/246 210) LMN4UMN

c.1422A4T p.Gln474His 4,065 � 10�6 Spinal, left LL both MN 68 41 Classical ALS

plus FTDg.57965903A4T (1/246 010)

c.1729A4G p.Ser577Gly 4.062 � 10�6 Bulbar 35 60 ALS

g.57968879A4G (1/246 210)

c.3019A4G p.(Arg1007Gly)b 0 Spinal, LMN right UL 53 45 Classical ALS

g.57976411A4G LMN4UMN

Splice site

c.2993-1G4
Ag.57976384G4A

c 4.061 � 10�6 Spinal, UMN left LL 56 436 (alive) Classical ALS

(1/246 246) UMN = LMN

c.3020+2T4C p.(Asn999Valfs*39) 0 Spinal, LMN left UL 29 34 Classical ALS

g.57976414T4C UMN4 LMN

c.3020+1G4Ad p.(Asn999Valfs*39) 0 n.a. n.a. n.a. n.a.

g.57976413G4A

aGenomic positions according to the GRCh37/hg19.
bPredicted missense mutation, experimentally shown to abrogate function of splice donor site in intron 27 resulting in the predicted change p.Asn999Valfs*39 (see ‘Results’ section).
cSplice acceptor site predicted to be abrogated, resulting protein change unpredictable.
dSplice site variant found in the familial ALS exome data of the ALS Variant Server (AVS) (http://als.umassmed.edu/), no clinical information available.

LL = lower limb; LMN = lower motor neuron; n.a. = not available; UMN = upper motor neuron; UL = upper limb.

Table 2 KIF5A variants with the respective allele frequencies in case and control whole exome datasets

Familial

ALS

In-house

exomes (AF)

P-value (Fisher’s

exact test)

gnomAD

dataset (AF)

P-value (Fisher’s

exact test)

n 426 6137 - 138 632 -

Loss-of-function 2 0 4.2 � 10�3 13 9.6 � 10�4

(0.23%) (0%) (4.7 � 10�3%)

Missense 5 88 n.s. 1596 n.s.

(MAF4 1%) (0.59%) (0.72%) (0.58%)

Missense 4 n.a n.a. 714 n.s.

(MAF4 0.01%) (0.47%) (0.26%)

SNV rs113247976 29 123 1.28 � 10�7 3132 3.11 � 10�7

[p.(Pro986Leu)] (3.40%) (1.00%) (1.13%)

n.a. = not applicable; n.s. = not significant.
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(c.2993-1G4A and c.3020+2T4C) co-segregate with the

disease. Overall, in two families seven patients were either

DNA-proven loss-of-function mutation carriers or could be

deduced to have been obligate loss-of-function mutation

carriers (Fig. 1A and B).

HSP- and CMT-linked KIF5A mutations reside in the N-

terminal KIF5A domains (Fig. 3). In contrast, both the

ALS-linked loss-of-function mutations described above,

the ALS-associated non-synonymous SNV rs113247976 as

well as another splice site mutation (c.3020+1G4A) found

in familial ALS exome data of the ALS Variant Server (AVS)

(http://als.umassmed.edu/), reside in close proximity and are

predicted to affect the C-terminal exons 26 or 27 (Figs 2E

and 3). The same holds true for a rare apparent missense

variant detected in our familial ALS exome dataset

[c.3019A4G; p.(Arg1007Gly)], directly adjacent to the

above-mentioned splice site mutations c.3020+1G4A and

c.3020+2T4C (Fig. 1C and Table 1). The variant was de-

tected in the index patient and was absent in the patient’s

healthy mother. This suggests that the affected father

(deceased; no DNA available) of the patient also carried the

variant, although a de novo mutation cannot be completely

ruled out. Moreover, two unaffected uncles of the patient, one

paternal, one maternal, of the patient did not carry the vari-

ant. Linkage analysis of Families A–C (Fig. 1) resulted in

LOD scores of 0.68, 0.52 and 0.44, respectively, leading to

an aggregate logarithm of odds (LOD) score of 1.64.

RNA analysis in patient-derived
lymphoblast cell lines

Availability of immortalized lymphoblast cell lines from

patients and controls allowed us to further delineate the

functional effects of the above-described mutations at the

mRNA level. KIF5A protein expression is tightly restricted

to neurons preventing KIF5A protein analysis by western

blotting; however, KIF5A mRNA was detectable in

lymphoblast cell lines by PCR. Sequencing of the PCR

products confirmed the presence of wild-type but failed to

detect mis-spliced mRNA in lymphoblast cell lines from

patients with the splice site variants c.2993-1G4A and

c.3020+2T4C (Fig. 2A). This is most likely attributable

Figure 1 Genetic analysis shows co-segregation of the KIF5A splice site variants and the apparent missense variant c.3019A`G

with ALS. (A) c.2993-1G4A (B) c.3020+2T4C. (C) c.3019A4G. Obligate carriers of the respective variant are abbreviated as ‘oc’. All

currently asymptomatic mutation carriers are 45 years old or younger. m = mutant allele; PD = Parkinson’s disease; w = wild-type allele.
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to nonsense-mediated decay (NMD) of the RNA tran-

scribed from the mutant alleles. To confirm a loss of ex-

pression of the splice site mutant alleles, we tried to

quantify the total KIF5A mRNA levels in c.2993-1G4A

and c.3020+2T4C splice site mutant and wild-type

lymphoblast cell lines. However, possibly as a result of

generally low KIF5A expression in non-neuronal cells, the

results were too variable for quantification. Interestingly,

the above-mentioned C-terminal rare variant, which theor-

etically leads to a single amino acid exchange in exon 27

[c.3019A4G; p.(Arg1007Gly)], deviates from the expected

effect at the mRNA level: Bioinformatic splice site analysis

(Berkeley Drosophila Genome Project; Celniker et al.,

2002; http://www.fruitfly.org/seq_tools/splice.html) already

Figure 2 Sequencing and qPCR analysis of mRNA of lymphoblast cell lines from KIF5A SNV and mutation carriers. (A) mRNA

sequencing of the splice site mutations c.2993-1G4A and c.3020+2T4C shows absence of the mutated allele. (B) mRNA sequencing of the

apparent missense variant c.3019A4G reveals a disruption of the splice donor site of intron 27. (C) mRNA sequencing of the SNV rs113247976

[c.2957C4T; p.(Pro986Leu)] suggests unaltered pre-mRNA splicing. (D) As analysed by quantitative PCR, heterozygous carriers of the SNV

rs113247976 show equal KIF5A mRNA levels as wild-type carriers. (E) Overview of the mutational hotspot around exons 26 and 27 linked to ALS.

Figure 3 Localizations of mutations in the KIF5A gene in the respective diseases caused by KIF5A mutations. HSP10 = hereditary

spastic paraplegia type 10; NEIMY = neonatal intractable myoclonus.
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predicts a decrease of the splice site score from 0.79 for the

wild-type splice donor site in intron 27 to 0.16 upon the

c.3019A4G change. In agreement with this prediction,

sequencing of the PCR product from the respective lympho-

blast cell line shows that this variant, separated only by one

nucleotide from the 50 end of intron 27, disrupts the splice

donor site of intron 27 (Fig. 2B). This results in a skipping

of exon 27 and the predicted truncating change

p.Asn999Valfs*39 at the protein level. Thus, this variant,

one of the ALS-linked canonical splice site mutations from

this study (c.3020+2T4C) and the splice site mutation

(c.3020+1G4A) found in familial ALS exome data of the

AVS, are all expected or experimentally proven to disrupt

the splice donor site of intron 27. However, contrary to the

canonical splice site mutations, mis-spliced mRNA resulting

from the c.3019A4G [p.(Arg1007Gly)] missense mutation

is detectable in the lymphoblast cell lines from the respect-

ive patient (data not shown). We speculate that this result

may be explained by a differential stability of the respective

pre-mRNAs before or during the splicing event.

In our analysis of lymphoblast cell line RNA, the above-

described SNV rs113247976 [p.(Pro986Leu)] did not have

an impact on splicing of introns 26 or 27, and the respect-

ive mRNA level was unaltered compared to wild-type

lymphoblast cell lines (Fig. 2C and D). Together with our

data and the splice site mutation derived from the AVS, we

identified four different mutations predicted or experimen-

tally shown to affect splicing of introns 26 or 27 of KIF5A

in familial ALS (Fig. 2E).

Clinical phenotypes of KIF5A muta-
tion carriers

The phenotypes of the patients with a canonical KIF5A

splice site mutation or with the c.3019A4G predicted mis-

sense variant that led to abrogation of the intron 27 splice

donor site were compatible with a classical ALS syndrome:

Specifically, adult-onset of initial focal asymmetric onset of

affection of both the upper and lower motor neuron sys-

tems with later generalization, bulbar motor involvement,

emotional lability, absence of vegetative symptoms and sen-

sory symptoms in most patients, as well as rapid disease

progression and early death—all of which were fully com-

patible with a typical ALS phenotype rather than HSP or

CMT (Table 1 and Supplementary Table 1)

Patients carrying the SNV rs113247976 [c.2957C4T;

p.(Pro986Leu)] found to be enriched in familial ALS

tended to have a (non-significantly) shorter disease duration

and a significantly decreased proportion of FTD co-morbid-

ity compared to the background cohort of German patients

with familial ALS (Supplementary Table 3). However, the

number of and clinical information on SNV carriers

rs113247976 needs to be extended before it can be defin-

itely ascertained whether rs113247976 is modifying the dis-

ease phenotype.

Finally, we screened nine patients with sporadic ALS, from

whom post-mortem brain tissue was available, for the SNV

rs113247976. One of nine patients carried this SNV.

Neuropathological examination revealed typical stage 2 TDP-

43 neuropathology (Braak et al., 2013, 2017; Brettschneider

et al., 2014; Tan et al., 2013) (Supplementary Fig. 1).

Discussion
The present data, supported by previous suggestive findings

(Kenna et al., 2016; McLaughlin et al., 2017), indicate that

KIF5A is a novel ALS gene. In our study, the association of

rare KIF5A variants with ALS was predominantly carried

by loss-of-function mutations, in particular the two splice

site mutations found among the studied 426 ALS families.

Notably, in the familial ALS group of the AVS, another

KIF5A splice variant is reported in a familial ALS patient

(c.3020+1G4A), affecting the same splice donor site as the

c.3020+2T4C mutation found in our cohort.

Corroborating the link to ALS, both of the splice site mu-

tations (c.2993-1G4A and c.3020+2T4C) we identified co-

segregated with the disease. The splice site mutations were

present in all seven patients from whom DNA or indirect

information about their mutation status (obligate carriers)

was available. Furthermore, no healthy individual older

than the expected age of disease onset and carrying the mu-

tation was identified in the two families studied. This infor-

mation, although in its present form limited, is suggestive of a

high penetrance of KIF5A loss-of-function mutations.

In contrast to loss-of-function mutations, we found no

significant association between familial ALS and rare mis-

sense variants (MAF51%). Nevertheless, it is well pos-

sible that at least a subset of missense variants is

pathogenic. KIF5A has a z-score of 4.38 (http://exac.broad-

institute.org/gene/ENSG00000155980), i.e. fewer missense

variants than expected, which indicates a general intoler-

ance towards variation in this gene. Remarkably, RNA

analysis of patient-derived cell lines revealed that one of

the rare (predicted) missense variants (c.3019A4G; pre-

dicting p.Arg1007Gly) turned out to abrogate the splice

donor site in intron 27, the same donor site that is affected

by two of the above mentioned canonical splice site muta-

tions (c.3020+1G4A and c.3020+2T4C).

The KIF5A mutations previously described in HSP or

CMT2 patients are restricted to missense mutations in the

kinesin motor domain (amino acid positions 9–327) and in

the alpha-helical coiled-coil domain (amino acid positions

331–906) (summarized in Kaji et al., 2016; Guinto et al.,

2017). By contrast, the ALS-associated mutations described

here (Fig. 2E) are predicted to affect the C-terminal part of

KIF5A or to represent loss-of-function mutations, as experi-

mentally shown for two of them (overview in Fig. 3).

Moreover, deletion mutations in the same C-terminal

domain that are predicted to cause a frame-shift with

stop loss and an elongated protein (c.2854delC,

c.2921delC, c.2934delC), have been associated with the
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severe developmental syndrome neonatal intractable myo-

clonus (NEIMY) (Duis et al., 2016; Rydzanicz et al., 2017).

Given our and previously reported data, it is thus possible

to link the N-terminal and the C-terminal mutational hot-

spots in KIF5A to HSP and to CMT or to ALS and

NEIMY (Fig. 3). The C-terminal globular tail has been

demonstrated to be necessary for the binding of cargo-

adaptor proteins (e.g. TRAK1/2, GABARAP) (Nakajima

et al., 2012; Randall et al., 2013). Mutations predicted to

affect the C-terminal tail, if translated into protein, might

therefore lead to altered binding of cargo to KIF5A, al-

though this awaits experimental confirmation. By contrast,

mutations in the N-terminal kinesin motor domain linked

to HSP and CMT decrease the velocity and flux of cargo

transport (Wang et al., 2010). This could explain why mis-

sense mutations in the N-terminal kinesin motor or the

central coiled-coil domain cause the milder HSP/CMT2

phenotype, whereas mutations in the C-terminal small globular

domain induce the more severe ALS and NEIMY syndromes,

possibly owing to altered cargo binding, haploinsufficiency or a

dominant-negative effect of truncated KIF5A.

In this study, we only included ALS patients who had

been diagnosed by experienced ALS clinical specialists

adhering to stringent ALS criteria (Andersen et al., 2005,

2012). This is important, not the least because two previ-

ous reports suggested a possible link between ALS and

KIF5A, but lacked precise clinical information (Kenna

et al., 2016; McLaughlin et al., 2017). Considering the

relative phenotypic similarities between ALS, HSP, and

CMT, it cannot be excluded that part of the association

signal in the previous large studies arose from HSP or

CMT patients misdiagnosed as (slowly progressive) ALS.

The patients in our study showed a classical ALS pheno-

type. Nevertheless, overlapping syndromes may exist and

could complicate the distinction between ALS, CMT and

HSP in some instances. Along this line, it remained unclear

if the pronounced sensory symptoms of Patient A/II.13

were the consequence of a paraneoplastic syndrome or indi-

cated CMT2 co-morbidity.

Interestingly, we observe a co-occurrence of rs113247976

with rare genetic missense variants in other known ALS

genes in 11 of 29 patients carrying this particular SNV.

Half of these variants have been reported to be pathogenic

for ALS in earlier studies (Gitcho et al., 2008; Kimonis

et al., 2008; Kühnlein et al., 2008; Chiò et al., 2009;

Örlén et al., 2009; Deng et al., 2011; Brenner et al.,

2016; Nguyen et al., 2018), while the rest are of uncertain

significance (Supplementary Table 2). Supporting our ob-

servation of a bigenic effect for ALS causality, one of the

patients who carried the rs113247976 also had a TARDBP

p.N352S mutation, in agreement with van Blitterswijk et al.

who described that 50% of patients with familial ALS car-

rying the TARDBP p.N352S mutation also have a muta-

tion in another ALS gene (Van Blitterswijk et al., 2012).

Moreover, only homozygous or compound heterozygous

SPG11 mutations have been shown to cause juvenile

ALS, HSP or CMT2. Nevertheless, considering that both

SPG11 and KIF5A are involved in axonal transport and

cause the same phenotypic spectrum when mutated, one is

inclined to speculate about an additive effect of the

observed co-occurrence of heterozygous SPG11 mutations

and the SNV rs113247976 in KIF5A. Similarly, the NEK1

variant (p.Ser1036Ter) observed in combination with

rs113247976 and the UBQLN2 mutation p.P509S—previ-

ously described by Deng et al. (2011)—shows incomplete

penetrance (Brenner et al., 2016; Nguyen et al., 2018).

Thus, penetrance of NEK1 mutations may require one or

more additional genetic variants in the same patient. Taken

together, we therefore hypothesize that the SNV rs113247976

lowers the threshold for phenoconversion in carriers of add-

itional ALS gene mutations. This would be compatible with

an oligogenic mode of inheritance and could possibly also

explain a substantial proportion of sporadic ALS cases.

A patient with the rare KIF5A missense variant

(c.1422A4T; p.Gln474His, Table 1) suffered from ALS

and FTD. Co-segregation analysis of this variant was unfor-

tunately not possible. Preliminary results suggested a reduced

frequency of FTD co-morbidity among ALS patients carry-

ing the SNV rs113247976 (Supplementary Table 3); how-

ever, this result requires replication in larger cohorts.

In conclusion, we demonstrate here that highly penetrant

C-terminal KIF5A splice site mutations can cause ALS and

we present detailed clinical information on the KIF5A-

linked ALS phenotype. The type of mutations together

with RNA analysis in patient-derived cell lines indicates

that haploinsufficiency is the most likely molecular genetic

mechanism for highly penetrant KIF5A mutations. In add-

ition, we report that the SNV rs113247976 is associated

with familial ALS and possibly involved in digenic/poly-

genic inheritance of the disease, representing thus far, to

our knowledge, the most frequent genetic factor contribut-

ing to ALS pathogenesis. Our findings underline the im-

portance of intracelluar transport molecules for ALS

pathogenesis. Finally, we outline a hypothesis on how the

type and location of KIF5A variants determine the mani-

festation of four different neurological syndromes.

Web resources
ALS Variant Server, Worcester, MA (http://als.umassmed.

edu/).
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Örlén H, Melberg A, Raininko R, Kumlien E, Entesarian M, Söderberg
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