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Abstract

Motivation: Molecular phenotyping by gene expression profiling is central in contemporary cancer research and in
molecular diagnostics but remains resource intense to implement. Changes in gene expression occurring in
tumours cause morphological changes in tissue, which can be observed on the microscopic level. The relationship
between morphological patterns and some of the molecular phenotypes can be exploited to predict molecular
phenotypes from routine haematoxylin and eosin-stained whole slide images (WSIs) using convolutional neural
networks (CNNs). In this study, we propose a new, computationally efficient approach to model relationships
between morphology and gene expression.

Results: We conducted the first transcriptome-wide analysis in prostate cancer, using CNNs to predict bulk RNA-
sequencing estimates from WSiIs for 370 patients from the TCGA PRAD study. Out of 15 586 protein coding tran-
scripts, 6618 had predicted expression significantly associated with RNA-seq estimates (FDR-adjusted P-value
<1x107%) in a cross-validation and 5419 (81.9%) of these associations were subsequently validated in a held-out test
set. We furthermore predicted the prognostic cell-cycle progression score directly from WSls. These findings sug-
gest that contemporary computer vision models offer an inexpensive and scalable solution for prediction of gene
expression phenotypes directly from WSIs, providing opportunity for cost-effective large-scale research studies and
molecular diagnostics.

Availability and implementation: A self-contained example is available from http://github.com/phiwei/prostate_coex
pression. Model predictions and metrics are available from doi.org/10.5281/zenodo.4739097.

Contact: mattias.rantalainen@ki.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction (Abida et al., 2019; Ren et al., 2018), and enable molecular subtyp-

Prostate cancer is one of the most common types of cancer and cause
of cancer related deaths in men (Bray ez al., 2018). Molecular phe-
notyping is currently increasing in importance in both the research
and clinical settings, as it enables detailed characterization of indi-
vidual tumours and provides information that enables cancer preci-
sion medicine (Collins and Varmus, 2015). Molecular phenotyping
can reveal molecular aetiology (Barbieri et al., 2012; Gerhauser
et al., 2018; Taylor et al., 2010), predictive and prognostic markers
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ing (Cancer Genome Atlas Network, 2012; Guinney et al., 2015;
Wirapati et al., 2008). Gene expression profiling by RNA-
sequencing offers a broad molecular phenotype of prostate cancer
(The Cancer Genome Atlas Research Network, 2015; Stelloo et al.,
2018). In recent years, several gene expression-based prostate cancer
assays for clinical use have been introduced. The Prolaris cell-cycle
progression (CCP) score provides an assessment of disease aggres-
siveness, a 10-year risk of metastasis after therapy, risk of recurrence
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after prostatectomy and disease-specific mortality under conservative
management based on the mean mRNA expression of 31 genes in ei-
ther biopsy or prostatectomy tissue (Bishoff et al., 2014; Cooperberg
et al., 2013; Cuzick et al., 2012). Other mRNA-based diagnostic tests
are the Oncotype Dx genomic prostate score (Cullen et al., 2015;
Eure et al., 2017; Klein et al., 2014; Knezevic et al., 2013; Van Den
Eeden et al., 2018), the Decipher Biopsy and Post-operative scores
(Erho et al., 2013; Marrone et al., 2015; Nguyen et al., 2017). It has
also been shown that gene expression is associated with prostate
cancer grades (Hamzeh et al., 2019; Penney et al., 2011). However,
molecular phenotyping remains costly and time-consuming. There is
therefore a demand for tools that can be used to cost-efficiently
identify the molecular characteristics of large cohorts of patients
retrospectively in research studies, as well as patients in the clinic.
This has the potential to identify both novel biomarkers as well as
help prioritizing patients that may benefit from more comprehensive
molecular phenotyping.

With the advent of digital pathology, where histopathology
slides are digitized as part of the routine workflow, computer-based
image analysis can now be applied to analyse morphological
patterns in histopathology images. It has been demonstrated that
computer vision models can be applied to predict molecular charac-
teristics from tissue morphology, including mutations, molecular
subtypes (Kather et al., 20205 Schaumberg ez al., 2018) and gene ex-
pression (Fu et al., 2020; Schmauch et al., 2020). Compared with
conventional bulk DNA- or RNA-sequencing, these models also
capture spatially resolved intra-tumour heterogeneity (He et al.,
2020; Wang et al., 2021). While previous studies have demonstrated
the feasibility to predict molecular phenotypes from haematoxylin
and eosin (H&E)-stained whole slide images (WSIs), the majority of
these models are pan-cancer models (Fu et al., 2020; Schmauch
et al., 2020) based on tumours originating from a range of organs.
Although it can be assumed that some morphological patterns are
shared among these tumours, it is unlikely that morphological
patterns in general share their specific association with gene
expression features across different cancers. Hence, cancer-specific
models are almost certainly required to achieve optimal prediction
performance.

To date, no comprehensive analysis of the potential of computer
vision models for whole-transcriptome analysis in prostate cancer
has been reported. We therefore conducted a transcriptome-wide
analysis of gene expression prediction modelling specifically for
prostate cancer using data from the TCGA PRAD (The Cancer
Genome Atlas Research Network, 2015) study, applying a rigorous
performance estimation strategy. We developed a novel computa-
tionally efficient modelling approach that exploits the co-expression
patterns in gene expression data. This methodology can be deployed
on relatively constrained computational infrastructure. Previous
studies with this objective either relied on convolutional neural net-
works (CNNGs) as feature extractors, with secondary models fitted to
the CNN features, or on single transcript CNNs (Wang ez al.,
2021). These approaches are either limited in capacity to learn
domain-specific representations, or are computationally very costly.
We therefore propose to jointly predict individual expressions in
clusters of co-expressed (correlated) genes with multi-output mod-
els. This allows exploiting potential shared patterns and investigat-
ing the possibility of predicting transcripts and pathways that have
previously been implicated in prostate cancer. To demonstrate a
clinically relevant application, we show that this approach can be
applied to predict the prognostic CCP score (Bishoff ez al., 2014;
Cooperberg et al., 2013; Cuzick et al., 2012).

2 Materials and methods

2.1 Study materials

This study is based on image and expression data from the publicly
available TCGA PRAD (The Cancer Genome Atlas Research
Network, 2015) dataset, which consists of 403 patients with 449
WSIs of formalin-fixed paraffin embedded H&E-stained sections of
resected prostate tumours. These patients originate from 27 cancer

centres and organizations, each of which contributed between 1 and
62 patients. From these 403 patients, 399 patients with adenomas
and adenocarcinomas were included in this study, whereas 4
patients with ductal and lobular neoplasms were excluded. Of these
patients, 389 with matching WSIs and gene expression data from tu-
mour tissue available through TCGA were further selected. For
patients with multiple WSIs available, we included one at random.
A turther nine patients were excluded due to a prior systemic treat-
ment or synchronous malignancies. The patient selection is shown in
Supplementary Figure S1. We tiled and preprocessed the WSIs of
these 380 cases as described in the Supplementary Materials and
Methods, and identified cancer regions using a cancer detection
model that we developed with transrectal core needle biopsy data
from the STHLM3 prostate cancer diagnostic study (Gronberg
et al., 2015; Strom et al., 2020) (see Supplementary Materials and
Methods). Supplementary Figure S2 shows the performance of the
cancer detection model in the STHLM3 biopsy test set and an anno-
tated subset of the TCGA PRAD study. Further information on the
cancer detection model is provided in the Supplementary Materials
and Methods. Subsequently, 10 patients whose largest contiguous
tumour area was below 1 mm? were excluded. The remaining 370
patients were included in this study. For each WSI, we only included
tiles that we predicted to be malignant. We then randomly selected
92 (24.86%) of these 370 patients as a held-out test set. To this end,
we computed 500 random splits stratified on the International
Society of Urological Pathology (ISUP) grading system (Epstein
et al., 2016) and selected the split with the best matching age distri-
butions as determined by a Kolmogorov—Smirnov test. The remain-
ing 278 patients, which we will refer to as the development set, were
further split into 10 cross-validation (CV) folds. The demographic
and clinical characteristics of both the CV set and the held-out test
set are provided in Supplementary Table S1.

2.2 Gene selection

The TCGA PRAD RNA expression data includes 60 843 transcripts.
The biomaRt (Durinck ez al., 2005) hsapiens_gene_ensembl current-
ly lists 22 802 transcripts as protein coding. Of these, expression
levels were available for 19 601 transcripts in the TCGA PRAD
dataset, which were selected for further analyses. We only included
genes for which there are at least three counts in at least 10% of
patients, since less frequently expressed genes may not be possible to
model with the number of samples in this study. This further
excludes 40135 transcripts, resulting in a set of 15 586 included tran-
scripts. In subsequent analyses, normalized expression values were
used [log2 of the upper quartile normalized fragments per kilobase
of transcript per million mapped reads (FPKM-UQ) as preprocessed
with HTSeq (Anders et al., 2015)].

2.3 Identification of sets of co-expressed transcripts

In order to reduce the computational complexity of predicting
expression levels of 15 586 transcripts, we propose a novel approach
based on clustering the transcripts based on their co-expression.
Transcripts were assigned to clusters only based on the development
data in order to preserve independence of the test set. Clustered tran-
scripts were subsequently jointly predicted with multi-output CNN
models, with the expression values of the transcripts in each cluster
as the response variables, such that a cluster consisting of 7 tran-
scripts is predicted by a CNN with 7 outputs, one for each tran-
script. Supplementary Figure S3 shows this modelling approach.
Supplementary Figure S4 depicts the number of transcripts initially
included in each cluster, the number of transcripts in each cluster
brought forward for validation in the test set, and the average abso-
lute Spearman correlation for all gene pairs within the clusters. The
clustering is described in more detail in the Supplementary Materials
and Methods.

2.4 Model optimization and performance evaluation

We compared the joint cluster prediction with three alternative
modelling approaches. In the first, we optimized a CNN to jointly
predict the expression of all 15 586 genes in one single model. In the
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second approach, we extracted a feature vector for each tile using an
ImageNet (Russakovsky et al., 2015) pretrained ResNet18 (He
et al., 2016) model and fitted boosting models with LightGBM (Ke
et al., 2017) (Igbm) to predict gene expression with one boosting
model per gene. To reduce the computational cost during model se-
lection, these models were compared in a randomly selected subset
of 10 clusters that contains 2636 transcripts. To evaluate the cluster-
ing, we randomly reassigned all genes of this subset into 10 random
clusters of matched sizes to investigate whether representations
learned with the combination of gradients of co-expressed genes
yield improved performance compared to a random combination.
Furthermore, we optimized single transcript prediction CNNss for a
subset of 50 transcripts that were randomly sampled out of the 2636
transcripts. While single transcript CNNs are not a viable option for
a transcriptome-wide analysis in this study considering the available
computational resources, it is nevertheless an important baseline for
interpreting the prediction performance of the proposed method.

For each transcript, we centred and scaled all expression values
by the mean and variance of the respective training data before
training the corresponding model. We then assigned this slide-level
expression as response for all the tiles of the respective slide. The
mean prediction across tiles was used to assign a slide-level
predicted expression value. In order to preserve the independence of
the validation folds and to reduce computational cost, hyperpara-
meters were tuned in five different fold allocations for this subset of
10 clusters for the CNN models, whereas hyperparameters of the
single-gene Igbm models were optimized on a random subset of 200
out of these 2636 transcripts. This validation procedure is compar-
able to a nested 10-fold CV, as shown in Supplementary Figure SS5.
For § of the 10 splits, we excluded the respective outer validation
fold, used 2-folds as inner validation folds and 7-folds for model fit-
ting. Predictions for each of the validation folds were concatenated
to obtain an independent prediction for each patient in the develop-
ment set. Further details of the model optimization are provided in
the Supplementary Materials.

After selecting the best performing out of the four investigated
modelling approaches based on their performance on the outer val-
idation folds, we performed the inner CV with the 40 remaining
clusters with the best performing model to determine an optimal
resolution out of 40x, 20x and 10x for each of the remaining tran-
scripts. We then fitted one CNN for each cluster and resolution level
with 9 training folds that include the 2 inner validation folds and the
prediction performance of each of the 15 586 transcripts was eval-
uated on the respective outer validation folds. While each cluster
was predicted entirely at every considered resolution level, we only
used the prediction at the resolution level that was previously deter-
mined as optimal for the respective transcript.

Spearman rank correlations between the slide-level predictions
and the RNA-seq expression level values were used as the primary
performance metric. Genes with FDR (Benjamini and Hochberg,
1995) adjusted P-value <0.0001 were brought forward for valid-
ation in the test data. To obtain predictions in the test data, we pre-
dicted all test set tiles with all 500 models from the 10-folds and 50
clusters for all 3 resolution levels, and averaged over the 10 predic-
tions (one from each of the 10 CV models) per tile at the resolution
level that was selected for each gene.

2.5 Gene set enrichment analysis

Gene set enrichment analysis (Subramanian ez al., 2005) (GSEA)
was applied to investigate whether any specific biological functions
were implicated with transcripts that were associated with morph-
ology. The Reactome (Jassal et al., 2020) pathway knowledge data-
base was used in the analysis together with genes (15 586) ranked
by their respective p-values from Spearman correlations between
CNN predictions and RNA-seq expression estimates. GSEA was
performed on P-values from the CV data rather than the test data,
since ranked enrichment analysis can identify significantly enriched
gene sets even if a proportion of the included genes did not meet any
significance thresholds.

2.6 CCP score

In order to investigate potential clinical applications of this modelling
approach, we computed the CCP score (Bishoff ez al, 2014;
Cooperberg et al., 2013; Cuzick et al., 2012), both from the TCGA
RNA-seq expression data and from model predictions. The CCP is a
commercial prognostic test that is intended to support clinical decision
making and is computed by taking the mean of 31 highly correlated
gene expression levels. We evaluated the prediction performance by
computing an RNA-seq-based CCP and assessed the Spearman correl-
ation between this score and a CNN-based score that was computed
as the mean of all CCP genes that met the validation criterion for the
test set (FDR-adjusted P-value <0.0001 in the CV data). In order to
evaluate whether the prognostic performance of the CNN-predicted
CCP is comparable to the CCP based on the RNA-seq data, we per-
formed univariate hazard analysis with Cox proportional hazard
models with time to biochemical recurrence (BCR) as the outcome.

3 Results

We developed and applied a new approach for transcriptome-wide
prediction of prostate cancer gene expression using deep CNN mod-
els. Prediction performance was validated in a held-out test set.

3.1 Comparison of modelling strategies

We first evaluated four CNN-based modelling approaches for the
prediction of gene expression in a subset of 2636 transcripts from
10 randomly drawn clusters (see Section 2). The cluster-based
approach, which exploits shared representations for co-expressed
genes, achieved the highest average Spearman correlation (0.243) as
well as the highest number (1191 out of 2636, 45.18%) of signifi-
cant correlations (FDR-adjusted P-values <0.0001). Predicting
genes in randomly assigned clusters resulted in 1030 (39.07%) sig-
nificant correlations. Fitting lgbm boosting models to ImageNet
ResNet18 features with one boosting model per gene or predicting
all selected 15 586 genes jointly with a single CNN resulted in 693
(26.29%) and 0 (0%) significant correlations out of 2636 genes,
respectively. The distribution of Spearman correlations for each
modelling approach is visualized in Figure 1a. The P-value from
one-sided Wilcoxon rank sum test for the proposed ‘corr cluster’
method compared to the second-best method, ‘rnd cluster’, is below
0.0001. Figure 1b shows a comparison of Spearman correlations
between a randomly sampled subset of 50 transcripts between the
proposed method and CNNs that were optimized to predict single
transcripts. The mean difference in Spearman correlation is 0.024.
The P-value from a paired one-sided Wilcoxon rank sum test that
compares the distributions is below 0.01, indicating higher correla-
tions for the correlated cluster CNN. Average training times per
gene were also assessed and are depicted in Figure 1c, revealing sub-
stantially shorter times for the cluster-based approaches with
11.39s per transcript, compared to 33.18 s per transcript-wise Igbm
model. Single transcript CNNs require ~3550's per transcript.

3.2 Transcriptome-wide prediction of prostate cancer

expression values

Based on the model comparison in the previous section, the cluster-
based method was selected for the transcriptome-wide analysis
across all 15 586 transcripts. First, the prediction performance
across all transcripts was assessed in (nested) CV (Fig. 1). Out of the
15 586 predicted gene expression levels, 6618 (42.5%) were associ-
ated with the corresponding RNA-sequencing-based estimates
[Spearman correlation, FDR-adjusted P-value <1 x10~*, adjust-
ment with the method described by Benjamini and Hochberg
(1995)]. The 6618 significant transcripts were brought forward for
validation in the held-out test (92 patients). Out of the 6618 tran-
scripts, 5419 (81.9%) had a Benjamini and Hochberg (BH)-adjusted
P-value <0.01 in the test set. Based on this criterion, the lowest sig-
nificant correlation between predicted expression and RNA-seq-
based expression measurements was 0.274. The distributions of
Spearman correlations are depicted in Figure 1a for the entire CV
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Fig. 1. Performance of modelling approaches. (a) Boxplots of distributions of Spearman correlation coefficients for different modelling approaches and validation sets, as well
as a comparison of computational efficiency. Vertical dashed lines indicate the significance threshold for adjusted P-values of 0.0001 in the validation set and vertical dotted
lines indicate the corresponding threshold in the test set of 0.01. corr clusters refers to correlation-based clustering, rnd clusters to random cluster assignments, Igbm to predic-
tion with boosting models based on ResNet18 features and all gene to a cnn that predicts all 15 586 selected genes at once (distribution shown only includes compared 2636
genes). CV denotes the boxplot of Spearman correlations between gene expression and the respective CNN prediction for all 50 clusters comprising 15 586 genes in the valid-
ation data, using the corr clusters method. A total of 6618 genes had an adjusted P-value lower than 0.0001. Test denotes the boxplot of Spearman correlations of the 6618
selected genes in the held-out test set, with 5419 adjusted P-values below 0.01. (b) Comparison between a Spearman correlation for 50 randomly sampled transcript that were
predicted with single transcript CNNs and the proposed method. (c) Comparison of the training time per gene for different modelling approaches. Fitting one CNN per tran-
script requires ~300 times more training time as compared to the proposed cluster-based method

data and test set, respectively. Supplementary Figure S6a—-d shows
area under the receiver operating characteristic curves (AUCs), sen-
sitivities and specificities for classification whether expression is
higher than the transcript-wise median, as well as a comparison of
Pearson and Spearman correlation for the 15 586 transcripts in the
CV data and the 6618 selected transcripts in the test data. For a sub-
set of 78 out of the 92 test set cases, PSA, ISUP grade and age are
available. When adjusting for these potential covariates with a linear
regression model and CNN predictions as the exogenous variable
and RNA-seq expression estimates as the endogenous variable, 4690
(70.9%) transcripts out of the 6618 that were brought forward for
evaluation in the test set, are statistically significant after BH-
adjustment. Out of these, 4512 (68.2%) transcripts satisfy both crite-
ria. In a univariate analysis with linear regression models, 5257
(79.4%) of predicted transcripts were significantly marginally associ-
ated with RNA-seq estimates. Supplementary Figure Sé6e shows a
comparison of the Spearman correlations associated with significance
determined by correlation and multivariable analysis. All performance
metrics for each transcript both for the CV data and the test data are
available through the online Supplementary Material. Further details
of the multivariable analysis, including an analysis of tumour cellular-
ity, are provided in the Supplementary Materials and Methods. The
gene with the highest Spearman correlation between RNA-seq and
CNN prediction in the test set was BRICDS, with a correlation of
0.749. Figure 2a shows scatter plots for the gene BRICDS together
with example tiles with low and high predicted expressions (Fig. 2b
and ¢). BRICDS belongs to the BRICHOS family, which is assumed
to act as a chaperone in protein folding (Johansson et al., 2009).

3.3 Genes associated with molecular mechanisms of

prostate cancer

Among the significantly predicted transcripts, several of the corre-
sponding genes have previously been reported to be associated with
molecular mechanisms of prostate cancer. Out of the 20 genes
included in an expression-based androgen receptor (AR) activity
score (The Cancer Genome Atlas Research Network, 2015), two
were significantly predicted from WSIs: GNMT, and MPHOSPH9
with respective correlations of 0.51, and 0.324. The relationship be-
tween predicted and RNA-seq expression estimates for GNMT is
shown in Figure 2d, with examples of low and high expression in
Figure 2e and f. Further significantly predicted genes in the androgen
signalling pathway were NCORT1 (0.468), the gene encoding the AR

(0.322) and NCOA2 (0.31), which has previously been found to be
over-expressed in 8% of primary tumours and 37% of metastases
(Taylor et al., 2010). FOXA1 and SPOP expression predictions were
not significantly associated with their expression (Spearman correla-
tions of 0.013 and 0.22 in CV). However, a human paralog of
SPOP, SPOPL, which can act as a negative regulator of SPOP (Clark
and Burleson, 2020) was correlated with 0.526.

Expression of the DNA repair genes CDK12 (examples in
Fig. 2g-i), which is frequently mutated in metastatic prostate cancer
(Grasso et al., 2012), and ATM show Spearman correlations of
0.577 and 0.56 between predicted and RNA-seq expression. The
DNA mismatch repair genes MSH2 and MSH6 (0.383 and 0.305)
have been found to be frequently mutated in hypermutated micro-
satellite unstable advanced prostate cancers (Pritchard et al., 2014).

While PTEN did not meet the inclusion criterion due to low
expression, multiple established tumour suppressor genes had a sig-
nificant association between RNA-seq estimates of gene expression
and prediction. ZFHX3, which could be predicted with a correlation
of 0.6, is a tumour suppressor gene that down-regulates prolifer-
ation via MYC in prostate cancer (Hu et al., 2019). Other signifi-
cantly associated tumour suppressor genes include APC, Rb1,
KMT2D and KMT2C, with Spearman correlations of 0.6, 0512,
0.512 and 0.484.

The PI3K pathway is up-regulated in 30-50% of prostate can-
cers and has been identified as a therapeutic target (Morgan ef al.,
2009). PIK3CA and PIK3R1 were predicted with Spearman correla-
tions of 0.458 and 0.407. The GTPase HRAS is upstream of the
PI3K pathway and has a Spearman correlation of 0.568. MED12 is
a subunit of the Mediator kinase complex and is essential in the
transcription of protein coding genes. It is frequently over-expressed
in castration-resistant distant metastatic and locally recurrent pros-
tate cancers as compared to androgen-sensitive prostate cancers or
benign prostatic tissue (Shaikhibrahim et al., 2014) and could be
predicted with a Spearman correlation of 0.454.

3.4 Gene set enrichment analysis

GSEA revealed 12 significantly enriched pathways that belong to
the functional groups of the cell cycle, RNA metabolism, the im-
mune system, the metabolism of proteins, signal transduction,
haemostasis, chromatin organization, the circadian clock and me-
tabolism. Brief description of the identified pathways, their adjusted
P-values as well as the distribution of Spearman correlations


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac343#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac343#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac343#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac343#supplementary-data

3466 P.Weitz et al.
CNN BRICDS CNN GNMT CNN CDK12 CNN CCP
(d) 18 19 20 (g) 16.0 16.5 17.0 (j) 14 15
T T T T T y 18 [T T =
] ° L]
L]
Ll
25 ¢ e*
0 . . .
= ~
g = o} & 16
= = o [v]
& 5}
o < v <
s 3 g -
2 = 2
14
uke | p=0749 |
(b) BRICDS low (k)

(i)

Fig. 2. Comparison between predicted and RNA-seq expression. The lower two rows provide examples of tiles with low and high predicted expression for selected genes. Each
panel in the lower two rows contains 16 example images, divided by black lines. Each row in the subplots contains four tiles by the same patient, with four rows corresponding
to four different patients. The edge length of each of the 16 tiles is 110.88 um. (a) Scatter plot between CNN prediction and RNA-seq estimates of expression for the best pre-
dicted gene BRICDS with a Spearman correlation of 0.749. (b) Examples of tiles with low predicted BRICDS expression. (c) Example tiles with high predicted expression.
(d—f) Corresponding plots for GNMT with a Spearman correlation of 0.501. GNMT is part of the androgen signalling pathway. (g-i) The respective relationship and examples
for the DNA repair gene CDK12, with a Spearman correlation of 0.577. The corresponding plots for the CCP score are displayed in (j-1), with higher expression being associ-

ated with higher proliferation, ISUP grade and poorer prognosis

between CNN predictions and sequenced expression levels are
depicted in Supplementary Figure S7. The most significantly
enriched pathway, R-HSA-113510 with an adjusted P-value of
0.005, regulates DNA replication through the Rb1 E2F pathway.
This pathway has previously been found to be frequently mutated in
prostate cancer (Grasso et al., 2012). Besides the tumour suppressor
gene Rb1, this pathway also contains the CCP gene RRM2, which
encodes a reductase that catalyzes the formation of deoxyribonu-
cleotides from ribonucleotides. Both the second and third most
strongly associated pathways, R-HSA-6782315 and R-HSA-72200,
serve the metabolism of RNA. R-HSA-6782315, with an adjusted P-
value of 0.07, is involved in tRNA modification in the nucleus and
cytosol and has previously been implicated in human diseases,
including cancer (Torres et al., 2014).

3.5 CCP score

Of the 31 genes that comprise the CCP, 29 were validated in the test
set, which excludes CDC2 and CENPM. We therefore computed a
CNN-based CCP score as the average of the 29 remaining CCP
genes and compared it with an RNA-based CCP score that is based
on all 31 transcripts. The Spearman correlations between the 29
CNN predictions and their RNA expression is depicted in Figure 3a
and provided in Supplementary Table S2. The CNN CCP score has
a Spearman correlation of 0.527 (bootstrapped 95% CI 0.357,
0.665) with its RNA-seq counterpart (Fig. 2j, examples of low and

high expression in Fig. 2k and 1). The corresponding AUC for classi-
fying whether the CCP is expressed above or below its median in the
test set is 0.733. Figure 3b reveals a comparable relationship be-
tween ISUP grade and ranked CCP score both for the CNN predic-
tion and RNA-seq. BCR is the only outcome with a sufficient
number of events for time-to-event analysis in the TCGA PRAD
study, with 50 (18%) and 20 (21.7%) patients with BCR events in
the CV and the test set, respectively. The HR of the RNA-seq-based
CCP was 1.68 (1.256, 2.246) in the CV and 1.351 (0.956, 1.909) in
the test data. For the CNN-predicted CCP, the respective HR values
were 2.579 (1.412, 4.713) and 2.943 (1.055, 8.212) (Fig. 3c). There
is an insufficient number of events for multivariable analysis in the
test data. We performed multivariable analysis in a subset of 238
patients from the CV data for which ISUP, PSA and age are avail-
able, which includes 50 recurrences. Supplementary Figure S8 shows
the multivariable CPH-model coefficients, which are also provided
in Supplementary Table S5. Neither the predicted nor the RNA-
based CCP are statistically significant in the multivariable analysis.
Figure 3d depicts CNN CCP predictions overlayed over representa-
tive example WSIs for cases of all ISUP grades.

4 Discussion

In this study, we performed the first transcriptome-wide gene ex-
pression prediction specifically for prostate cancer and identified a
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Fig. 3. Comparison between the cell-cycle progression (CCP) score based on RNA-seq and CNN predictions. (a) Spearman correlation between sequenced and predicted gene
expression in the test set with bootstrapped confidence intervals. (b) Ranked CCP scores per ISUP grade both for RNA CCP as well as CNN CCP. (c) Univariate hazard ana-
lysis for time to first BCR for the RNA-seq-based and predicted CCP score in the CV data and the test set. The HR of the RNA-seq-based CCP is 1.68 (1.256, 4.713) in the CV
and 1.351 (0.956, 1.909) in the test data. For the predicted CCP, the respective HR values are 2.579 (1.412, 4.713) and 2.943 (1.055, 8.212) in the test set. (d) Examples of
WSIs per ISUP grade with overlaid local CCP score predictions. Penmarks in the WSIs originate from the diagnostic workflow before WSI digitization and likely indicate cancer

regions

set of 5419 genes whose expression is associated with morphological
changes that are detectable by current computer vision models in the
TCGA PRAD dataset. We furthermore evaluated this approach to
predict a prognostic gene expression-based proliferation score. To
this end, we optimized CNN models to predict 15 886 frequently
expressed protein coding genes and assessed four different computa-
tionally efficient modelling approaches.

As compared to fitting one CNN per gene, the co-expression-
based modelling approach proposed here reduces the number of
models that need to be fitted from 15 586 to 50, which roughly
translates to a 300-fold reduction in computational cost. This
increases computational efficiency substantially and reduces hard-
ware requirements and costs, while not reducing prediction
performance as compared to CNN models that were optimized to
predict single transcripts. Using correlated instead of randomly
assigned clusters for joint prediction proved to be a computationally
inexpensive way to increase model performance. We speculate that
this may be because co-expression of genes is more likely to be asso-
ciated with similar morphological features and therefore, representa-
tions learned in correlated clusters generalize across genes in each
cluster. This study therefore provides strong indications that the pre-
diction of transcripts in co-expressed clusters can enable end-to-end
CNN model training without loss in performance for transcriptome-
wide analyses. As opposed to training secondary models on
extracted features, this has the benefit that task-specific representa-
tions can be learned, which could further improve prediction

performances particularly compared to secondary models once more
training data becomes available.

Previous studies reported prediction of mRNA expression from
WSIs of H&E-stained tissue with pan-cancer models, including in
the TCGA PRAD cohort (Fu et al., 2020; Schmauch et al., 2020).
The study presented by Schmauch er al. is difficult to compare to
this study since it only relies on CV to assess prediction performance
and reports Pearson correlation as the performance metric.
Furthermore, the presented results include transcripts that are not
known to encode proteins. Generally, the numbers of significantly
predicted transcripts are in a similar order of magnitude. A direct
comparison to the results by Fu et al. reveals a similar number of sig-
nificantly predicted genes in the TCGA PRAD cohort. While a rela-
tively high number of transcripts are found to be significantly
predicted in these studies, effect sizes are relatively small for most
transcripts, but for some of the transcripts the effect sizes are
expected to be relevant for some purposes. How many of these cor-
relations are sufficiently high to be useful depends on the context of
an intended application.

This study has a few limitations. Although our results are based
on data from a multi-centre study and while we applied a stringent
validation approach with both a fully independent internal test set
and a nested CV for model selection, we have not been able to per-
form validation in a fully independent cohort, since there are cur-
rently no additional studies available with both RNA-sequencing
data and WSIs. Furthermore, although RNA-seq is now established
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for gene expression estimation, orthogonal validation through poly-
merase chain reaction may be valuable. The size of this study is
expected to be a limitation with respect to optimizing the models.
We expect model performance to improve with more data both for
already significantly predicted transcripts as well as with respect to
the number of transcripts that can be predicted accurately.
However, there are unknown upper limits to the correlations in this
study since the tissue material used for bulk sequencing is not neces-
sarily identical to the tissue sectioned and stained for the WSIs. This
limits the correlations both due to noise in labels during training as
well as when comparing predicted gene expression to bulk sequenc-
ing estimates. We based our models and predictions on regions of
high tumour purity by identifying cancer regions with a cancer de-
tection model. This means that the model is only defined for image
tiles of cancer tissue and cannot be applied to WSIs of normal tissue
sections. However, since the detection model was developed on bi-
opsy data, it required additional calibration in the prostatectomy
WSIs and we expect that cancer detection could potentially be
improved further. Considering that we found tumour cellularity to
not confound gene expression predictions, we nevertheless conclude
that the cancer detection model is a useful component of the model-
ling approach.

In the set of genes that were significantly predicted in this study,
there were many genes that are implicated in prostate cancer.
Particularly, the expression of genes of the cell cycle and of genes
involved in proliferation, such as the genes of the CCP score were
predicted significantly. Transcripts of known tumour suppressor
and DNA repair genes CDK12, ATM, Rb1, KMT2D and ZFHX3
were also predicted with high correlations. However, a surprisingly
low number of genes from the androgen signalling pathway had a
significant correlation between prediction and gene expression, des-
pite the central role of androgen in prostatic carcinogenesis, with the
exception of GNMT and a few other genes. Based on this, we can
speculate that gene expression activity in the androgen signalling
pathway has limited impact on tissue morphology. We identified 12
pathways that are enriched for genes that could be predicted from
WSIs, including those related to cell cycle, metabolism of RNA and
proteins, the immune system and signal transduction based on
ranked GSEA. Some of these pathways had previously been impli-
cated in prostate cancer. Further investigation into the relationship
between the differential expression of the significantly correlated
genes and their associated morphology may yield novel biological
insight or candidates for diagnostic, prognostic or predictive bio-
markers. Potential clinical use of computer vision-based gene ex-
pression prediction was investigated through an analysis of the
prognostic CCP score. Rank-based analysis revealed that the pre-
dicted CCP score has a similar relationship to the ISUP grade as the
sequencing-based score. Univariate time-to-event analysis with BCR
as outcome revealed that both the RNA-seq-based and the CNN-
predicted CCP were prognostic in the CV analysis, whereas only the
CNN-predicted CCP was prognostic in the test set. This analysis
was, however, based on a relatively low number of events and
patients. Prediction of molecular phenotypes and cell-cycle score
from histopathology images may prove clinically useful in low-
resource environments in which molecular diagnostics are unavail-
able, or to analyse large cohorts of patients for which sequencing is
too costly, including large-scale studies of archived slides that may
not be suitable for RNA-sequencing.

In conclusion, our findings indicate that the expression of a large
number of genes is significantly associated with morphological pat-
terns. While considering the limitation that only approximate pre-
diction of gene expression levels is possible from histopathology
images, this study provides further evidence of a strong association
between routine clinical H&E-stained histopathology slides and
average tumour gene expression. We conclude that contemporary
computer vision models offer an inexpensive and scalable solution
for prediction of gene expression phenotypes directly from WSIs,
providing opportunity for cost-effective large-scale research studies
and molecular diagnostics.
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