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Abstract

Seasonality drives ecological processes through networks of forcings, and the resultant complexity requires creative
approaches for modeling to be successful. Recently ecologists and climatologists have developed sophisticated
methods for fully describing seasons. However, to date the relationships among the variables produced by these
methods have not been analyzed as networks, but rather with simple univariate statistics. In this manuscript we used
structural equation modeling (SEM) to analyze a proposed causal network describing seasonality of rainfall for a site
in south-central Florida. We also described how this network was influenced by the El Niño-Southern Oscillation
(ENSO), and how the network in turn affected the site’s wildfire regime. Our models indicated that wet and dry
seasons starting later in the year (or ending earlier) were shorter and had less rainfall. El Niño conditions increased
dry season rainfall, and via this effect decreased the consistency of that season’s drying trend. El Niño conditions
also negatively influenced how consistent the moistening trend was during the wet season, but in this case the effect
was direct and did not route through rainfall. In modeling wildfires, our models showed that area burned was
indirectly influenced by ENSO via its effect on dry season rainfall. Area burned was also indirectly reduced when the
wet season had consistent rainfall, as such wet seasons allowed fewer wildfires in subsequent fire seasons. Overall
area burned at the study site was estimated with high accuracy (R2 score = 0.63). In summary, we found that by
using SEMs, we were able to clearly describe causal patterns involving seasonal climate, ENSO and wildfire. We
propose that similar approaches could be effectively applied to other sites where seasonality exerts strong and
complex forcings on ecological processes.
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Introduction

In the science of ecology, seasons are generally defined as
lasting fixed spans within the year. These conventional
definitions, however, often ill-serve attempts to define important
climate-driven relationships in ecosystems; as stated by Basille
et al. [1], the use of conventional seasons can often lead to
“faulty conclusions if the periods do not match biological
reality.” To address this issue, over the last several decades
more sophisticated methods for describing seasons have been
developed, and the resulting variables related to ecological
phenomena. For example, in southern Florida Slocum et al. [2]
estimated how dry season rainfall affected area burned by
wildfires when the season was conventionally defined versus
when it was defined using cumulative rainfall anomalies. The
former definition resulted in a R2of 0.22 while the later resulted
in a R2of 0.41. In the western United States, Westerling et al.
[3] used estimates of timing of snowmelt (developed by Stewart

et al. [4]) to define relationships with wildfires. They found that,
starting around 1987, snowmelt began to occur earlier in the
year and corresponded with higher temperatures and a greater
frequency of large wildfires. Finally, animal behavior scientists
routinely use the behavior of animals to define seasons (e.g.,
[5]; see sources in [1]). Based on these examples, it is clear
that ecologists are starting to view conventionally defined
seasons as simplistic and information poor, and are turning to
new methods to learn more about how seasons affect
ecosystems.

One issue, however, that comes up when using these new
methods is that the resultant data sets contain more variables
than when using conventional methods. A conventional data
set may, for example, contain just rainfall, whereas a more
sophisticated method may estimate rainfall, onset date,
cessation date, and duration. These additional variables
constitute a system of seasonal components whose
relationships may be complex. This complexity increases
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further when one considers ENSO or other global climate
cycles, as such cycles may not affect just rainfall but any of the
other variables describing the season [6,7]. Despite this added
complexity, the relationships among the variables are usually
described using univariate approaches, that is, methods that
analyze just one dependent variable (e.g., correlation, multiple
regression) [2,3,6,8]. This is a missed opportunity, as the
relationships can be drawn as causal diagrams, for example,
one that describes how seasons that begin earlier in the year
are longer and have more precipitation. Once such a diagram
is made, it can then be pointed towards ecological phenomena
of interest. In this way, the relationships among global climate
cycles, seasonality, and ecological phenomena can be
described more clearly than when using univariate analyses.

Here we describe a case study in which we develop causal
diagrams describing relationships among seasonal descriptors,
ENSO and a wildfire regime at a subtropical site in south-
central Florida (the Avon Park Air Force Range, or APAFR).
The seasonal descriptors we used were derived in a previous
study [2] using cumulative rainfall anomalies (CRAs). The
strength of the relationships among the variables in the causal
models, as well as the overall fit of the models, was estimated
using structural equation models (SEMs). Our specific
questions addressed by these SEMs are outlined in detail
below. Using these methods, we were able to demonstrate how
SEMs can be used to describe complex relationships among
seasonal descriptors, as well as how these descriptors related
to ENSO and an ecological disturbance regime.

Methods

Study Site
The APAFR is a 42,000 ha military installation in south-

central Florida (27°35’ N, 81°16’ W). It has a subtropical
climate that is divided into wet and dry seasons. The
characterization of these seasons using CRAs [2] found that
the wet season lasted, on average, from May 21 to October 1
(a duration of 134 days), while the dry season lasted from
October 2 to May 20 (a duration of 231 days). The dry season,
despite being twice as long as the wet season, had roughly half
the rainfall (mean ± 1 SD: 42 ± 15 cm yr-1 versus 89 ± 27 cm
yr-1). Year to year, there was considerable variation in how long
the seasons lasted and when they started; onset dates of the
two seasons had standard deviations of almost one month and
durations had standard deviations greater than a month. Other
studies of seasonality conducted in central and southern
Florida have also found well-demarked wet and dry seasons
[9-12], but none have documented annual changes in season
length, onset date, or cessation date.

About 38,000 ha at the APAFR are subject to recurrent fire.
The behavior of these fires is heavily influenced by subtle
elevation gradients that clearly delimit plant communities of
varying hydroperiod and flammability (the communities range
from floodplain marshes to xeric uplands over a gradient
ranging from 9.1 to 41.2 masl) [13-15]. The ground cover of
these communities is dominated, to varying extent, by wire
grass (Aristida beyrichiana), dwarf live oak (Quercus minima),
and saw palmetto (Serenoa repens) [13,14]. The overstory in

the pine savannas is dominated by south Florida slash pine
(Pinus elliotii var. densa), longleaf pine (Pinus palustris), or
both. While the APAFR contains tracts of managed or
disturbed areas, including pine plantations, improved pastures,
and target sites, it has 23,000 ha of some of the most diverse
fire-maintained landscapes remaining in the region (S. Orzell,
unpublished data). It also contains numerous endangered
species [16].

The installation was established in World War II to provide
military personnel practice in bombing, strafing, and related
exercises. Because of these exercises, most of the wildfires on
the range are of military origin, with a smaller portion being
ignited by lightning (over 1997-2007, 89 military fires burned
15,400 ha while 51 lightning fires burned 6,350 ha; APAFR fire
records). Wildfires generally occur from January to August, with
the largest fires occurring during the transition between the dry
and wet seasons (i.e., around May to June) (M.G. Slocum,
unpublished data, cf. [11,12]). The amount of area burned by
wildfires is much smaller than that burned by prescription,
which accounted for 106,000 ha of the total area burned over
1997-2007. Prescribed fires are conducted to manage fuel
loads and to maintain habitat for endangered species. They
have been conducted on a 3 year rotation since the early
1990s. While they control fuel loads, they do not appear to
substantially affect wildfires in subsequent years (Pearson
correlation: area burned by prescribed fires versus area burned
by wildfires in next year, r = 0.29, p = 0.30, n = 30 yrs). Finally,
note that military and lightning wildfires tend to behave similarly
in any given year (Pearson correlation: area burned by military
fires versus area burned by lightning fires, r = 0.80, p = 0.003,
n = 11 yrs).

Data
The CRA analysis of the site’s seasons [2] used methods

developed by Camberlin and Diop [8] for another subtropical
region (Senegal).CRAs are useful because they convert daily
rainfall data into a waveform, thereby allowing clear
visualization of trends in rainfall and a full characterization of
the seasons (see Appendix S1). Slocum et al. [2] specifically
estimated onset date, cessation date, and duration for both the
wet and dry seasons over 1950-2007 (58 years). Also, because
the lengths of the seasons were rigorously defined in the
analysis, rainfall was estimated more accurately than when
using a conventional method for defining seasons. Lastly, the
analysis provided a fifth variable, “trend consistency”, which
described how consistent the drying and moistening trends
were in the dry and wet seasons, respectively. This variable
was measured using R2 scores; see Appendix S1 for a brief
description of how these scores were derived. Trend
consistency proved to be a unique and powerful predictor of
wildfire activity at the site [2]..

ENSO was described using Niño 3.4, an index derived from
sea surface temperature anomalies over a specific region of
the equatorial Pacific Ocean [17]. As values of this index
increase, they describe increasingly stronger El Niño
conditions, and as they decrease they describe increasingly
stronger La Niña conditions. This index has been shown to be
superior for predicting rainfall in Florida compared to other
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ENSO indices [18,19]. Monthly Niño 3.4 values from January
1950 to December 2007 were obtained from the National
Oceanic and Atmospheric Administration’s Climate Prediction
Center (information online at http://www.cpc.ncep.noaa.gov/
data/indices). We took the mean of the these values over the
specifically-defined spans of each season. Because these
spans started and ended within months, we adjusted the
calculations so that incomplete months were proportionately
weighted.

Data describing number of wildfires and area burned per
year were collected from the APAFR’s fire records over 30
years (1978-2007).

Conceptual models
SEMs represent multivariate hypotheses about cause and

effect in systems. They allow the evaluation of these
hypotheses to discover if they are consistent with underlying
patterns in the data. One issue that often comes up when
discussing SEMs involves the assumption of causality among
the relationships proposed. This issue is of particular concern
when the data used are observational, such as in this study,
because these kinds of data cannot be tested for causality
using randomized experiments [20]. We therefore deem it
important to state here what we mean by “causal”. When we
say a relationship is causal, we mean that it is logically so (e.g.,
longer periods will have more rain), or are widely established to
be so in the literature (e.g., ENSO affects rainfall). In cases like
the latter, the causal assumption is based on a process of
evidential build up: ENSO is thought to influence rainfall
because the initially proposed hypothesis has been followed by
numerous studies that confirmed that hypothesis [21]. Clearly,
a more extensive debate of the meaning of causality is beyond
the scope of this manuscript, but more information can be
found elsewhere (e.g., Shipley [20]).

We developed our multivariate hypotheses by drawing on the
previous modeling effort as well as on general knowledge of
the system (see sources in Slocum et al. [2]). There are many
ways that SEMs can be employed to better describe complex
systems and to generate hypotheses to guide future studies
[22]. In our study we chose to use a model building approach.
We started with simple models that only contained pathways
with some theoretical support. We viewed the patterns
revealed by these starting models as confirming, or not
confirming, theory. If these starting models did not fit the data,
we then conducted an exploratory procedure in which we
allowed the data to specify “competing” models within the
general framework of the starting models. We then determined
if these models fit the data in ways substantially different than
the starting models (that is, did they simply add detail to the
starting models, or did they suggest strongly differing
patterns?). In the Results we detail the strength (in a statistical
sense) of the various models and relationships examined, while
in the Discussion we detail which patterns revealed by the
SEMs are the most consistent with theory, and which appear to
be more hypothesis generating. We developed separate
models for wet and dry seasons, and for the APAFR’s wildfire
regime.

Seasonal models
Our starting models for the dry and wet seasons are shown

in Figure 1A and 1B, respectively. Our reasoning for the
pathways of these models is:

1 Seasons starting earlier in the year will be longer and have
more rainfall. These are straightforward relationships that are
supported by correlations in the studies by Goswami and
Xavier [6] and Camberlin and Diop [8].

2 Heavy rainfall will reduce the consistency of the drying trend
in the dry season and increase the consistency of the
moistening trend in the wet season. A graphical analysis in
Slocum et al. [2] found that dry seasons with more rainfall had
lower trend consistency. For the wet season, we reasoned that
more rainfall would reduce the possibility of droughts.

3 ENSO will influence rainfall, particularly in the dry season.
For dry seasons in Florida it has been well documented that
rainfall increases under El Niño and decreases under La Niña
[10,23-28]. These effects were confirmed for our specific site in
Slocum et al. [2]. For the wet season, Slocum et al. [2] also
found a weak positive relationship between Niño 3.4 and
rainfall, so we specified such a relationship in Figure 1B. We
note, however, that other studies have found that El Niño has a
weak tendency to induce drought during the wet season
[29,30].

4 El Niño conditions will negatively affect trend consistency in
both seasons. In Florida, the increased dry season rainfall
induced by El Niño occurs because El Niño allows greater
passage of frontal systems through the region [26,28,31,32]. In
Slocum et al. [2] these systems appeared as peaks of CRAs in
the graphical analysis mentioned above. We therefore
predicted that dry seasons undergoing El Niño conditions
would have lower trend consistency, and that this effect would
be routed via rainfall (i.e., we expected the effect to be indirect)
(Figure 1A). Conversely, we expected that La Niña conditions
would produce the opposite results. For the wet season, we
also predicted that El Niño conditions would decrease trend
consistency, as such an effect was found to be strong in the
previous study. This prediction is also consistent with the
results of other studies indicating that El Niño induces drought
in the wet season [29,30]. We did not specify this relationship
as routing via rainfall (as we specified the relationship between
Niño 3.4 and rainfall to be positive and such a positive
relationship cannot “conduct” a negative one). Rather, we
specified a direct negative relationship between Niño 3.4 and
wet-season trend consistency in Figure 1B.

Note that by putting our starting models together in these
ways we purposely produced models that were both simple
and theoretically consistent. Such an approach, however,
constrains the models to contain indirect pathways that do not
necessarily have theoretical support. For example, our dry
season model (Figure 1A) suggests that longer dry seasons
will have less consistent drying because they have more
rainfall. Models that only contain such indirect pathways
constitute what are known as “mediation tests”, that is, the
models assume that all of the important variation between two
variables is accounted for by their relationships with a
mediating variable. If this assumption does not hold, then
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Figure 1.  Conceptual causal diagrams describing relationships among descriptors of ENSO and the seasons.  We
designed these models for (A) the dry season and (B) the wet season based on relationships that have support from previous
studies (see text). Arrows are coded to represent predicted effects (black = negative effect, red = positive effect). Using these
starting models as a basic framework, we designed a third model (C) which specified all possible relationships among the seasonal
descriptors (blue arrows). This latter model was saturated and was used to produce exploratory models using Amos’s model
specification procedure. In all panels, diagonal black arrows represent error terms.
doi: 10.1371/journal.pone.0075946.g001
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model evaluation will indicate poor goodness of fit. Such
meditating effects are one reason to follow up starting/
conceptual models with more exploratory efforts.

For our exploratory models, we used the same general
framework as used in the starting models, but we specified all
possible relationships within this framework so that the model
became saturated (Figure 1C). We then ran a model selection
process that examined all possible combinations using these
pathways (described in more detail below). We predicted that
this process would produce models that would confirm many of
the pathways outlined in our starting models, but could also
specify new pathways of interest. When new pathways were
specified, we carefully considered if they were theoretically
likely in the Discussion.

Finally, readers may note that the models in Figure 1 contain
onset date and not cessation date. The reason for this is that
cessation and onset date are used to calculate duration, and
thus these two variables do not contain unique information
when included together in a model with duration. We therefore
(and quite arbitrarily) decided to include onset date and not
cessation date in our models. It is still of interest, however, to
understand how cessation date may influence the other model
elements. We therefore conducted another set of analyses
involving cessation date. The hypotheses tested were parallel
to those used for onset date, that is: are seasons that end later

in the year longer, and how does ENSO influence cessation
date and duration, and via these two variables, rainfall? For the
sake of brevity, we relegate these analyses to Appendix S2.

Wildfire models
Our starting model describes how wildfire at the APAFR may

have been influenced by ENSO and seasonal descriptors
(Figure 2). Because of our small sample size (n = 30 years), it
was important to make this model as simple as possible. We
therefore only included seasonal descriptors that were found to
be the most important in Slocum et al. [2] for affecting wildfire
area burned and number of fires. The specific pathways we
included in the model were:

1 The positive effect of Niño 3.4 on dry season rainfall.
2 A negative effect of dry season rainfall on area burned and

number of fires [10-12,33].
3 A positive effect of number of fires on area burned.
4 A negative effect of wet-season trend consistency on number

of fires and area burned in the subsequent fire season. These
relationships were found to be strong in the previous study
using multiple regression [2].

Adding these pathways together in a model suggests that the
following mediating relationships may be important (Figure 2)

Figure 2.  Conceptual model describing how ENSO and seasonal climate govern the wildfire regime.  Included in the model
are climate variables found to be important in the previous study [2], including Niño 3.4 (measured over the dry season), dry-season
rainfall, and the consistency of the moistening trend in the previous wet season. Black and red arrows represent predicted negative
and positive effects, respectively, and together make up our starting, theory-based model. Blue arrows were then added to the
framework to saturate it for use in exploratory models produced by Amos’s model specification procedure.
doi: 10.1371/journal.pone.0075946.g002
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5 By increasing rainfall, Niño 3.4 will reduce area burned and
number of fires.

6 Wet seasons with consistent moistening will reduce area
burned by reducing number of fires.

7 Dry season rainfall will reduce area burned by reducing
number of fires.

For our exploratory models describing wildfire relationships,
we used the same approach that we used for the seasonal
models, that is, we took our starting model and added all the
remaining pathways so that the model became saturated
(Figure 2). We then tested all possible combinations of this
saturated model using the model selection process.

Data analysis
Before conducting SEMs, we examined the normality of all

variables. In most cases the data were not normal, and we
therefore applied transformations. To correct for positive skew,
we applied either a square root transformation (wildfire number
and area burned), a natural log transformation (wet season
duration and rainfall), or a log base-10 transformation (dry
season onset date). To correct for negative skew, we squared
the data (onset date of the wet season and duration of the dry
season). The frequency distribution for trend consistency had
extreme negative skew, and we therefore “reflected” the data
so that they became positively skewed, transformed them
using the natural log transformation, and then re-reflected them
[34]. This was accomplished by using this formula: y=(abs(ln(1-
x))), where y is the transformed value, abs is absolute value, ln
is the natural log function, and x = the R2 score estimating trend
consistency (see Appendix S1). The performance of these
transformations was evaluated using box-and-whisker plots
and Shapiro-Wilk tests using the UNIVARATE procedure of
SAS release 9.3 (SAS Institute Inc., Cary, North Carolina). We
also examined the relationships in our SEMs to see if they
were linear. After the transformations, all relationships were
found to be linear.

Estimation for our SEMs was conducted using maximum
likelihood. Model fit was based on χ2 values and their
associated p values. P values ≤ 0.05 indicate that the χ2 score
rejects the null hypothesis stating that there is no difference
between the underlying pattern in the data implied by the
model and the underlying pattern found in the raw data (with
“underlying pattern” referring to the respective correlation
matrices). Thus, rejecting the null hypothesis indicates that a
SEM fits the data poorly [22]. In the models, the strength of the
various effects (arrows) are shown with path coefficients. We
used partial regression coefficients, which represent the
change expected if a predictor is varied and the rest of the
predictors in the model are held constant. We standardized
these coefficients so that they were readily comparable to each
other (i.e., they are presented in standard deviation units). The
collective ability of the coefficients to explain variation in the
endogenous variables are shown with R2 scores. All analyses
were conducted using IBM SPSS Amos version 21 [35].

The exploratory models were created and evaluated using
the specification search procedure of Amos. This procedure
examined all possible combinations of the pathways shown in
Figures 1C and 2, producing a list of models that can be sorted

by various fit statistics. We found the Browne-Cudeck criterion
(BCC) to be the most useful (see 30). This statistic is similar to
the Akaike Information Criterion (AIC) in that it measures the
trade-off between model complexity and model fit. “Good”
models are simple but still have high goodness of fit, and are
given a lower BCC. The BCC imparts a somewhat stronger
penalty than the AIC if the model is complex [36]. We
examined the model with the lowest BCC value (i.e., the “best”
model), and then the next nine models with the lowest BCC
values. For each of the seasonal models we found that the
“best” model was the most informative, so we do not describe
the other models. For the wildfire models we found that the
second “best” model was of most interest, and we therefore
detail it and contrast it with the “best” model.

We performed diagnostic procedures to address issues with
autocorrelation and limited sample size [37]. These diagnostics
revealed no substantial issues, and are detailed in Appendix
S3.

Results

Seasonal models
We began by examining the dry season as outlined in our

starting model (Figure 1A). Maximum likelihood estimation of
this model produced a BCC of 65.5 and a χ2 of 45.3 with 6 df (p
< 0.001) (Figure 3A). This model was therefore indicated to fit
the data poorly, suggesting that our model based purely on
theoretical evidence was not sufficient to describe all the
important patterns in the underlying data.

We therefore ran our exploratory procedure (Amos’s
specification search) in which we allowed the data to specify
“competing” models within the general framework of the
starting model (Figure 1C). The “best” model produced by this
procedure (i.e., the model with the lowest BCC value) had a
BCC of 39.7 and a χ2 of 3.7 with 4 df (p = 0.44) (Figure 3B).
This model was therefore indicated to fit the data and be safe
to interpret. It contained all of the pathways of the starting
model, and indicated that they were all very strong (p values ≤
0.001). Rainfall had the expected negative effect on trend
consistency (i.e., dry seasons with more rainfall were
“punctuated” with more storms), and onset date had the
expected negative effect on season duration (i.e., dry seasons
were shorter when they started later in the year). Onset date
also had an indirect negative effect on rainfall. The strength of
this effect can be calculated simply by multiplying the relevant
pathways (that is, -0.69 × 0.46 = -0.32). Thus, the model
suggested that dry seasons starting later in the year had less
rainfall because they were shorter. Finally, Niño 3.4 induced
rainfall, and, as expected, this produced an indirect negative
effect on trend consistency (0.62 × -0.76 = -0.47).

The model, however, outlined two trends that were not
specified in the starting model (Figure 3B). The first was a
direct negative effect of Niño 3.4 on trend consistency; this
effect was statistically significant but fairly weak. The second
was a direct effect of duration on trend consistency (path
coefficient = 0.53). This effect canceled out much of the indirect
negative effect of duration on trend consistency that routed via
rainfall (0.46x -0.76 = -0.35), such that the total effect was 0.18
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Figure 3.  Structural equation models describing relationships among ENSO and seasonal characteristics for the two
seasons.  Models include (A) our starting, theory-driven model for the dry season (BCC = 65.6; χ2 = 45.3, df = 6, p < 0.001), (B) the
“best” exploratory model for the dry season according to BCC values (BCC = 39.7; χ2 = 3.7, df = 4, p = 0.44), (C) our starting model
for the wet season (BCC = 40.6; χ2 = 18.2, df = 5, p = 0.003), and (D) the “best” model for the wet season (BCC = 28.8; χ2 = 4.1, df
= 4, p = 0.40). Paths are accompanied by numbers, which are standardized partial regression coefficients. The significance of these
coefficients is shown with differently weighted lines (dashed = non-significant, thin = p ≤ 0.05, medium = p ≤ 0.01, and thick = p ≤
0.001). Models use 58 years of climate data collected for the Avon, Park Air Force Range, south-central Florida, USA (1950-2007).
doi: 10.1371/journal.pone.0075946.g003
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(= 0.53 + -0.35). The model therefore indicated that longer dry
seasons had a slight tendency to have a more consistent
drying trend.

We examined the effect of dry-season cessation date in a
separate analysis in Appendix S2. In this analysis, we
examined a model that was similar to the “best” model
described above, but which used cessation date instead of
onset date. The expected relationships were revealed: dry
seasons that ended later in the year were longer (path
coefficient = 0.53, p ≤ 0.001, R2 = 0.28) and had more rainfall
(indirect effect via duration: 0.53 × 0.46 = 0.23).

We next turned to the models describing the wet season.
Our starting model, as outlined in Figure 1B, had a BCC of 40.6
and a χ2 of 18.2 with 5 df (p = 0.003) (Figure 3C). Therefore,
this model, like the starting model for the dry season, was also
indicated to fit the data poorly. We therefore continued our
analysis by producing exploratory models (Figure 1C). The
resultant “best” model is shown in Figure 3D (BCC = 28.8, χ2 =
4.1, df = 4, p = 0.40). Compared to the starting model, this new
model indicated no effect of Niño 3.4 on rainfall, but Niño 3.4
had a positive effect on duration. Like in the dry-season model,
duration was specified to have a direct relationship with trend
consistency, but in this case it was negative. All of these effects
were statistically significant. In addition, the coefficient for the
pathway from rainfall to trend consistency changed from 0.25 in
the starting model to 0.75 in the “best” model. Otherwise, the
two models were similar, having nearly identical coefficients for
the pathways between onset date and duration, duration and
rainfall, and Niño 3.4 and trend consistency.

We interpreted the “best” wet-season model by starting with
the triangle of relationships among season duration, rainfall,
and trend consistency. This triangle specified the expected
positive effect of rainfall on trend consistency (path coefficient =
0.75), that is, rainier wet seasons had more consistent
moistening. Also, season duration was found to have a positive
indirect relationship with trend consistency by increasing
rainfall (0.82 × 0.75 = 0.62), but this effect was almost entirely
cancelled out by the direct negative effect (path coefficient =
-0.60). Thus, the model indicated that longer wet seasons were
not any more consistent in their moistening trend than shorter
wet seasons.

Onset date was shown to have a strong negative effect on
duration, and via this route it also had a strong indirect effect
on rainfall (-0.72 × 0.82 = -0.59). Wet seasons that started later
in the year tended to be shorter and have less rain.

In examining the effects of cessation date (Appendix S2), we
found that, as with the dry season, wet seasons that ended
later in the year were longer (path coefficient = 0.76, p ≤ 0.001,
R2 = 0.58) and had more rainfall (indirect effect via duration:
0.76 × 0.82 = 0.62). We also found, however, that the most
relevant model was one that included a pathway from Niño 3.4
to cessation date (path coefficient = 0.35, p = 0.006, R2 = 0.12)
and not one from Niño 3.4 to duration. This result suggests that
the way Niño 3.4 increased wet-season duration (as shown for
the “best” model in Figure 3D) was by delaying when the
season ended.

Wildfire models
Our starting model had poor fit (BCC = 37.0; χ2 = 9.3, df = 3,

p = 0.05; Figure 4A), and we therefore proceeded to explore
other models using Amos’s specification procedure. We found
that, of the top ten models produced by the procedure (as
ranked by BCC values), the second “best” model was the most
interesting because of its combination of simplicity and
explanatory power (BCC = 32.4; χ2 = 7.1, df = 5, p = 0.21;
Figure 4B). This model differed from the starting model by not
including pathways from dry-season rainfall to number of fires
and from wet-season trend consistency to area burned.
Moreover, it included a strong positive pathway from wet-
season trend consistency to dry-season rainfall. The inclusion
of this pathway was the main reason the second model fit the
data in contrast to the starting model.

Overall this model explained area burned by wildfires with
high accuracy (R2 = 0.63). Two strong direct effects contributed
to this score: a negative effect of rainfall and a positive effect of
number of fires. Area burned was also reduced by three
indirect effects: it was reduced when Niño 3.4 induced more
rainfall (0.59 × -0.51 = -0.30), when consistent moistening in
the previous wet season reduced number of fires (-0.52 × 0.51
= -0.26), and when consistent moistening in the wet season
was followed by rainier dry-seasons (0.35 × -0.51 = -0.18).

The model explained number of fires with less accuracy (R2

= 0.27). Number of fires was shown to be reduced when the
previous wet season had greater trend consistency.
Surprisingly, number of fires was not significantly affected by
dry-season rainfall (a result also found in the starting model;
Figure 4A). This meant that the model failed to support our
prediction that dry-season rainfall would reduce area burned by
reducing number of fires.

The “best” model was more complex than the second “best”
model (BCC = 32.3; χ2 = 2.0, df = 3, p = 0.57; Figure 4C). It
indicated two additional negative effects on area burned, one
from Niño 3.4 and the other from wet-season trend
consistency. These additional pathways were accompanied by
a weaker pathway from dry-season rainfall to area burned. This
configuration boosted the model’s R2 score for area burned in
comparison to the other two models.

Discussion

Patterns in seasonal rainfall
In our SEMs exploring seasonality, we used a model building

approach in which we started with models whose pathways
had theoretical evidence, and followed with models that were
more exploratory. Here we follow this approach with a
discussion of which pathways in the models have the strongest
evidence for causality, and which have the weakest (and
should therefore be considered hypothesis generating). Again,
we caution that, because our data are observational, by
“causal” we mean relationships that have theoretical or logical
evidence to be so.

The mechanisms with perhaps the strongest causal evidence
were those involving how ENSO affected the dry season. Dry
seasons with positive Niño 3.4 values have more rainfall, a
finding fully consistent with the literature [2,10,23-28]. This
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Figure 4.  Structural equation models describing effects of selected climate variables on the wildfire regime.  The models
include: (A) our starting, theory-based model (BCC = 37.0; χ2 = 9.3, df = 4, p = 0.05), (B) the second “best” exploratory model
according to BCC values (BCC = 32.4; χ2 = 7.1, df = 5, p = 0.21), and (C) the “best” exploratory model (BCC = 32.3; χ2 = 2.0, df = 3,
p = 0.57). Paths are labeled with numbers, which are standardized partial regression coefficients. The significance of these
coefficients is shown with differently weighted lines (dashed = non-significant, gray = p ≤ 0.10, thin = p ≤ 0.05, moderate = p ≤ 0.01,
and thick = p ≤ 0.001). Models are drawn using 30 years of climate and wildfire data from the Avon, Park Air Force Range, south-
central Florida, USA (1978-2007).
doi: 10.1371/journal.pone.0075946.g004
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additional rainfall interrupts the season’s drying trend. El Niño
events result in low pressure over the southeastern United
States during winter/early spring, allowing the jet stream to
move farther south and to bring with it more storm fronts
[26,28,31,32]. Conversely, La Niña events induce higher
pressure, steering the jet stream away from the region and
allowing consistent desiccation of the region’s fuels during the
dry season.

Another set of relationships that we view as having strong
support for causality were those involving onset date, cessation
date, duration and rainfall: logically, seasons that started later
in the year (or end earlier) were shorter and had less rainfall.
Similar results were found in the correlation analyses
conducted by Camberlin and Diop [8] for Senegal and by
Goswami and Xavier [6] for India.

In examining the effect of season duration on trend
consistency, our models indicated no net effect for the wet
season and a weak positive effect for the dry season. We
interpreted this to mean that longer seasons were just as likely
to be interrupted by an event (e.g., a storm front in the dry
season or a drought in the wet season) as they were to have
some continuous pattern that reinforced the trend. We note that
our starting models did not specify direct pathways between
duration and trend consistency; rather, they proposed that
duration’s effect on trend consistency would route via rainfall.
This proposed indirect mechanism, however, was not
supported by the data, and was the main reason that the
starting SEMs had poor fit.

One set of hypothesis-generating relationships revealed in
the analyses involved how ENSO affected the consistency of
the drying and moistening trends. Trend consistency is a
unique variable derived in the previous study [2], and as such
relationships involving it should be regarded as hypothesis
generating. For the dry season – while we found that Niño 3.4
negatively affected trend consistency by producing more
rainfall – there was also some residual negative effect that
required a direct pathway between Niño 3.4 and dry-season
trend consistency. What generates this effect is unknown, but
may have something to do with how ENSO affects the
transitions among the seasons (e.g., are they gradual or more
abrupt under particular ENSO phases?). For the wet season,
our models revealed a strong negative effect of Niño 3.4 on
trend consistency, suggesting that El Niño conditions were
inducing droughts. This agrees with other studies that found
that El Niño can induce drought in the wet season [29,30] by
producing greater wind shear at upper levels of the
atmosphere, thereby reducing the formation of tropical storms
[38,39]. We note, however, that our models did not find a
negative relationship between wet-season rainfall and Niño 3.4.
Thus, our analysis suggests that ENSO had a stronger effect
on rainfall variation in the wet season than it had on rainfall
amount at our site.

El Niño conditions were indicated to delay cessation of the
wet season, thereby lengthening the season and leading to
more rainfall. Other studies have also found that ENSO affects
wet season duration and rainfall. Lima and Lall [7], working in
northeastern Brazil, found that El Niño delayed onset of the wet
season, leading to drought. Similar results were found for India

by Goswami and Xavier [6], where El Niño “squeezed” the wet
season by delaying onset and hastening cessation. We view
our finding – while being similar to those of other studies – to
be primarily hypothesis generating, as more study is required
to determine the mechanism via which this delay of cessation
takes place.

Overall, our study shows how SEMs can be used to take full
advantage of the rich data sets provided by the sophisticated
techniques recently developed to define seasons (e.g., [6-8]).
In particular, SEM allows mediation tests. For instance, our
SEMs allowed us to determine if the effect of ENSO on rainfall
appeared to be mostly direct, or to be stronger when routed via
duration. The determination of such a mediating mechanism,
however, cannot be determined when using univariate
analyses. In the correlations provided by Goswami and Xavier
[6], for example, it appears that the way ENSO affected rainfall
was via its effect on duration, but the appropriate partial
regression coefficients were not examined, and so the real
strength of this mechanism remains unclear. More importantly,
such univariate approaches leave students of ENSO and
seasonality left to their own devices to derive what the causal
mechanisms might be; no specific causal structure is proposed.
This lack of specificity in the proposed theory makes it difficult
to agree with it or oppose it, and thereby develop new theory.

Patterns in the wildfire regime
The strongest and simplest set of pathways describing how

seasonal climate and ENSO affected the APAFR’s wildfire
regime were found in the SEM shown in Figure 4C (the second
“best” model as suggested by BCC values). We view these
pathways as either having strong evidence for causality, or as
detailing important hypothesis-generating relationships. The
clearest causal pathway we found described how ENSO, by
affecting rainfall, influenced area burned. The previous work
conducted at the site [2] showed that ENSO influenced rainfall,
and, in a separate univariate analysis, that rainfall influenced
area burned. This suggested a mediation model. SEM clearly
shows that this mediation model is correct, and estimates the
strength of the relationships. This mechanism of ENSO
affecting wildfires by governing rainfall has been well
documented in southern Florida [2,10,40,41], and parallels a
worldwide trend [42]. However, like Slocum et al. [2], these
previous studies fail to detail the mechanism using a causal
network, but instead rely on univariate analyses.

Another straightforward causal relationship incorporated in
the model detailed the effect of fire frequency on area burned.
This relationship was shown to be statistically significant, but
was not as strong as one might suspect (it accounted for 25%
of the variation in area burned; see Figure 4B). This finding
reflects how area burned at the APAFR is not governed so
much by number of wildfires as it is by large wildfires. For
example, just five wildfires accounted for one third of the total
area burned over 1997-2007 [43]. The greater importance of
large fires versus number of fires for explaining total area
burned is a general characteristic of wildfire regimes [44-46].

One hypothesis-generating relationship detailed in the SEM
described how consistency of moistening in the wet season
reduced number of fires and area burned in the next fire
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season. We suspect that wet seasons with consistent
moistening ended with a larger buildup of moisture in the
system (in fuels, soils, marshes, and so forth) compared to wet
seasons that had droughts. This buildup meant that more time
was required for fuels to become sufficiently dry to be ignited in
the subsequent wildfire season. In particular, such seasons
may have prevented military missions from igniting fires in
January, February and March. These results suggest that our
study should be followed up with studies of how wet-season
trend consistency relates to fuel moisture, run off, and water
levels in different habitats, especially those habitats that break
up fuel continuity in the region (e.g., marshes) (see 47). In
addition to this effect on number of fires, wet seasons with
consistent rainfall tended to be followed by dry seasons that
were rainier. Again, this suggests a set of follow-up studies, for
example, an examination of how trend consistency affects the
transitions between the seasons.

Finally, the model revealed one pattern that was found to be
non-significant statistically but which theoretically should be
causal: the effect of dry season rainfall on number of fires.
Certainly this is a relationship that is a general characteristic in
most fire-prone systems [44], and a statistically significant
relationship was found in a study conducted for the nearby
Everglades National Park [10]. We therefore postulate that this
relationship would be revealed to be statistically significant if
more years of data were collected.

The “best” wildfire model suggested by BCC values, besides
fitting the underlying data better than the other tested models,
also produced a higher R2 score for area burned. However, we
found this model to be overly complex by its inclusion of
pathways from Niño 3.4 and wet-season trend consistency to
area burned. Besides being of low statistical significance, these
pathways had less evidence for causal support than the
pathways found in the second “best” model. Therefore, we
viewed these pathways as hypothesis generating, that is, they
suggest that there may be additional mechanisms by which
ENSO and the previous wet season influence wildfire activity
besides through their effects on number of fires and dry-season
rainfall.

In summary, like with our seasonal models, our SEM
analysis of our climate/wildfire data produced a more complete
picture of the system than was presented in the univariate
analyses conducted in the previous study [2]. In particular, it
outlines mediation effects that cannot be described using
multiple regression. We note, however, that because our fire
model has only 30 years of data, it was only capable of
outlining the strongest trends, and much of the work it performs
is hypothesis generation. Also, because of limited sample size
we did not analyze many variables that may have generated
interesting effects (e.g., dry season duration, which was
indicated to be important in the previous study [2]). We made
this decision to reduce the number of variables to avoid the
serious error of over-fitting our model. With more years of data,
however, it will be possible to examine the effects of more
variables, and thereby tie together the fire model with the
seasonal models more closely.

Conclusions

When seasons are fully characterized using sophisticated
methodologies, rich data sets are produced that hold much
promise for determining how seasonality affects ecological
processes. However, the analysis of such data sets requires
statistical techniques that properly estimate the relationships –
particularly the causal ones – among the various seasonal
descriptors derived. We found that when we took such a data
set of seasonal descriptors, and analyzed it with SEM, we were
able to effectively describe how the seasons were influenced
by ENSO, and how in turn seasonal climate regulated a wildfire
regime. While our models were limited in several important
ways – they had limited sample size, and could draw from only
a handful of other studies to derive theory – the causal
networks proposed are, in our opinion, much more efficient for
matching data to theory than the univariate analyses performed
in the previous study [2].

We view our results as being informative for two particular
sets of ecological studies. The first set are studies that use
SEMs to describe how climate affects ecological systems.
Perhaps the field where this is most developed is population
ecology (e.g., [48-51]), but similar models are also starting to
be developed in community ecology [52-54] and disturbance
ecology [55]. We propose that these studies could benefit by
incorporating more sophisticated descriptors of seasonality into
their SEMs. The second set of ecological studies are those that
use a more thorough parameterization of seasonality. These
studies include – as mentioned in the Introduction – those that
use animal behavior to estimate biologically relevant seasonal
descriptors [1,5], as well as studies on wildfires [2,3]. These
studies could benefit from using SEM or other causal modeling.
In short, we advocate that studies investigating how
seasonality affects ecosystems could benefit from a “combined
arms” approach that uses both SEM and more advanced
techniques for defining seasons. Our study demonstrates that
this approach works well in not only describing the potential
causality among the various descriptors of seasonality and
wildfire, but also for outlining hypotheses for future study. For
example, the approach may prove effective in predicting how
climate change might affect the seasons, perhaps by affecting
global climate cycles [56], which in turn may cascade to affect
ecological processes such as disturbance (cf. [3]).
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