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SUMMARY

Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to
upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address
this, we developed a deep learning model called AnoDAN (anomalous gene detection using generative
adversarial networks and graph neural networks for overcoming drug resistance) that unravels the hidden
resistance mechanisms and identifies a combinatorial target to overcome the resistance. Our findings
reveal that the TGF-b signaling pathway, alongside the p53 signaling pathway, mediates the resistance,
with THBS1 serving as a core regulatory target in both pathways. Experimental validation in lung cancer
cells confirms the effects of THBS1 on responsiveness to a p53 reactivator.We further discovered the pos-
itive feedback loop between THBS1 and the TGF-b pathway as the main source of resistance. This study
enhances our understanding of p53 regulation and offers insights into overcoming drug resistance.

INTRODUCTION

Cancer is a major contributor to global mortality, and its incidence is projected to increase over the next 50 years due to the expansion of

aging.1 Lung cancer is the second most common type of cancer, yet it has the highest mortality rate among all cancer types, according to

the World Health Organization and the World Cancer Research Fund International. Lung cancer comprises two main types, which are

non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC can be further sub-classified into adenocarcinoma, squamous

cell carcinoma, and large cell carcinoma based on histology, as reported by the Lung Cancer Foundation of America. Among the diverse

types, lung adenocarcinoma (LUAD) is the most prevalent, and there have been many efforts to develop effective therapies for LUAD

patients.2

LUAD is a complex disease caused by multifactorial factors. However, one of the prominent factors is the abnormality of the tumor sup-

pressor genes. Among them, TP53 is a critical tumor suppressor gene that has an important role in preventing cancer development. Studies

based on TheCancer GenomeAtlas (TCGA) datasets have indicated that TP53 is themost commonlymutated gene in LUAD.3,4 The wild-type

TP53 gene remains inactive due to its interaction with the negative regulator MDM2 until it encounters any signal or stress. Upon stimulation,

TP53 binds to DNA sequences through its DNA binding domain and promotes cell-cycle arrest, DNA repair, and apoptosis to suppress the

progression of tumors. Unfortunately, TP53 mutations frequently occur in the DNA-binding domain, which then leads to loss of function and

tumor progression.5 Thus, restoring the wild-type function of the mutant TP53 is of utmost importance.

Several drugs have been proposed to restore p53 function, including those that target MDM2 or MDM4 negative regulators or those that

directly focus on mutant p53 reactivation. Mutant p53 reactivators include Chetomin, CP-31398, MIRA-1, NSC87511, PRIMA-1, and PRIMA-

1MET, but most of them have failed to receive FDA approval due to solubility issues and toxicity to normal cells.6 MDM2 inhibitors include

Nutlins, AMG232, CGM097, and HDM201, and MDM4 inhibitors are NSC207895 and 17-AAG.7 However, these inhibitors are only effective

when theMDM2orMDM4 gene is amplified andwhen p53 is wild type. One of the compounds that act as a direct reactivator of mutant p53 is

PRIMA-1MET, also known as APR-246 or Eprenetapopt. It is the only compound that is under advanced clinical trials and is a more active and

permeable form of PRIMA-1 with the addition of amethyl group. It is first converted tomethylene quinuclidinone (MQ), and it reacts with thiol

groups and modifies the thiol groups in mutant p53.8 As MQ gains its ability to bind to cysteine residues in the DNA-binding domain of the

mutant p53 protein, it reactivates the p53wild-type conformation and restores its tumor suppressor functions.5With this ability, APR-246 has a

great possibility for efficacy in mutant p53 patients.

Although APR-246 is a promising drug for treating cases with mutant p53, drug resistance presents a significant challenge that requires

further investigation. To overcome the resistance of APR-246 and enhance its efficacy, numerous studies have attempted to identify potential

combinatorial targets or drugs. For instance, in lung cancer, studies have shown that cisplatin and olaparib have synergistic effects with APR-

246.9–11 APR-246 has also been found to help overcome resistance to cisplatin and doxorubicin in ovarian cancer,12 while SLC1A11 has been
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identified as a significant contributor to APR-246 resistance.13 Knockdown of MRP1 has also been found to increase sensitivity to APR-246 in

mutant p53 cell lines.14 However, uncovering themechanisms of drug resistance, rather than just identifying target genes, is a challenging yet

necessary task.

The aim of this study is to comprehend the mechanism underlying APR-246 resistance in LUAD and to identify a target that can overcome

it. Although analyzing differentially expressed genes (DEGs) between sensitive and resistant groups has been previously conducted, it has

limitations since drug resistance results from complex molecular interactions at the pathway-level.15 Likewise, while deep learning has

been used to find therapeutic biomarkers, the underlyingmechanism is elusive.16 Some studies have implemented explainable deep learning

models, but there is more to explore than just finding out which features are influential to make a prediction. To address these challenges, we

propose a computational framework called AnoDAN (anomalous gene detection using generative adversarial networks (GAN) and graph

neural networks (GNN) for overcoming drug resistance). AnoDAN combines GAN and GNN to identify genes that can overcome drug resis-

tance and to unravel the underlying mechanisms by incorporating pathway information. It can also accurately reproduce the distribution of

gene expressions in the sensitive cell lines and identify anomalous genes in the resistant cell lines. Furthermore, AnoDAN can incorporate

datasets with graphical structures using the biological pathway information of the genes to discover hidden mechanisms as well as target

genes for overcoming the resistance. Here, we identified the p53 pathway and TGF-b pathway as central pathways and THBS1 as a target

gene to overcome resistance to APR-246 in LUAD. We also revealed resistance mechanisms and further validated drug response after regu-

lating THBS1 through in vitro experiments. Together, our study presents a combinatorial target in p53 reactivator-resistant lung cancer cells

and provides insights into the mechanisms underlying drug resistance.

RESULTS

Model training results

We employed the AnoDAN framework to discover a combinatorial gene that can overcome drug resistance. The study design is illustrated in

Figure 1. Our investigation focused on APR-246, a reactivator of mutant p53, and we categorized the cell lines into two groups: APR-246 sen-

sitive and resistant, based on their inhibitory concentration (IC50) values. AnoDAN consists of three essential components, namely a gener-

ator, discriminator, and encoder (Figure 2A). To capture the distinctive characteristics of sensitive cell lines, AnoDAN was trained using gene

expression data from these cells. The anomaly score was computed using the trained AnoDAN by calculating difference between real and

generated gene expression data to analyze pathway-level mechanisms and identify the target gene (Figure 2B). Subsequently, in vitro exper-

iments were conducted to validate the effects of the target gene on drug response and elucidate the underlying mechanisms. Detailed in-

formation about the architecture of the AnoDAN can be found in the STAR methods.

The model training was first confirmed using the loss functions, and the results indicated that the generator, discriminator, and

encoder were sufficiently trained as evidenced by converging losses (Figure 2C). The Uniform Manifold Approximation and Projection

(UMAP) plot, which is a common method for reducing high-dimensional data into a two-dimensional representation,17 was also used

to verify model training. The degree of overlap between the real and generated data points is used to assess whether a GAN model

is sufficiently trained. In this study, the real sensitive and generated data points at the final epoch overlapped substantially, signifying

that the GAN underwent effective training (Figure 2D). The UMAPs at the initial and intermediate steps of training showed the gradual

progress in learning process of the model, as shown in Figure S1A. However, in contrast to these results, the real resistant and generated

data points did not exhibit the same level of overlap observed with the real sensitive points. This implies that the model primarily learned

the distributions of sensitive cell line data only (Figure S1B). Furthermore, it is reasonable to speculate that the resistant cell lines might

display higher average sample-level anomaly scores, considering that the model was trained using APR-246 sensitive cell line data. As

anticipated, our results showed that the resistant cell lines indeed display significantly higher anomaly scores compared to the sensitive

cell lines (Figure S1C). Therefore, we validated that the model is sufficiently trained to capture the characteristics of the sensitive cell

lines.

AnoDAN provides three distinct advantages over other methods. Firstly, it incorporates more biological knowledge as it integrates

pathway information during training by utilizing GNN. Secondly, it identifies the key gene that causes major differences between sensitive

and resistant cell lines. Thirdly, it enables the simultaneous identification of target genes and the interpretation of its mechanism with respect

to pathways. Of note, DEG analysis only compares gene expression values of two distinct groups without providing any explanation for the

results, whereas AnoDAN incorporates pathway information. For this reason, the resulting list of genes was also completely different as seen

in Table 1. Furthermore, while other deep learning approaches focus on identifying therapeutic biomarkers, they often fail to elucidate the

mechanism behind the discovery of a biomarker.16 Thus, compared to popular tools like DEG analysis and other deep learning methods,

AnoDAN is a distinct framework for identifying combinatorial targets and their related mechanisms.

p53 and TGF-b signaling pathways are primarily responsible for resistance

Following model training, anomaly scores can be determined at the pathway-level, sample-level, and gene-level through the anomality

scoring process. The resulting pathway-level anomaly score revealed that the top-scored pathways are the p53 signaling pathway, the

TGF-b signaling pathway, and the SCLC (Figure 3A). The scores ranged from 20 to 40 when the highest score was set to 100. From the score

distribution plot, top-scored pathways were classified as those with scores exceeding 60 (Figure S2A). Accordingly, the scores for the top

pathways were 100, 75.4, and 66.2, respectively. The p53 signaling pathway was identified as a top pathway, which is consistent with the

fact that the APR-246 is a mutant p53 reactivator. Additionally, previous studies suggested that the TGF-b signaling pathway could potentially
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play a significant role in the development of resistance to targeted therapy.18 Furthermore, p53 and TGF-b signaling pathways are interlinked,

as mutant p53may impede TGF-b0s tumor-suppressing role by failing to activate its target genes.19 Therefore, the pathway-level score results

and related studies underscore the importance of the p53 and TGF-b signaling pathways in mutant p53 reactivator resistance.

The reliability of AnoDAN is validated through three distinct analyses

To assess the reliability of AnoDANand the resulting findings, themodel was evaluated through variation in application, diversity in dataset, and

graph-based evaluation. First, we subjected the pipeline to validation using a different drug, Trametinib, anMEK inhibitor. This drug is known to

targetMEK1 andMEK2 and is associated with the MAPK signaling pathway. The model was sufficiently trained as presented in Figures S3A and

S3B. The pathway-level score results demonstrated that the TGF-b signaling pathway, the Notch signaling pathway, and the MAPK signaling

Figure 1. Overview of the study design

Our study comprises three principal stages: data collection and preprocessing, model training and target identification, and in vitro validation.

(1) We first collect gene expression, drug response, and pathway data.

(2) We then classify cell lines into drug sensitive and resistant cell lines.

(3) Subsequently, our model is trained utilizing gene expression and pathway data of drug sensitive cells.

(4) Anomaly scores are computed using the pre-trained model.

(5) Based on the obtained pathway-level anomaly scores, we analyze pathways that are predominantly implicated in conferring resistance.

(6) We then explore gene-level anomaly scores in the top-scored pathways to identify a target gene for overcoming resistance.

(7) Finally, we experimentally validate the resistance mechanism and identified target through in vitro experiments.
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pathway are mainly responsible for resistance (Figure S3C). Some studies proved that TGF-b and MAPK signaling pathways are concurrently

related to drug resistance with the HAT1 gene.20 TGF-b signaling-mediated resistance was also studied with BRAFi/MEKi, and the pathway

was speculated to be a key factor in trametinib resistance.18 Co-targeting the MAPK/ERK and Notch signaling pathways were also suggested

as a strategy to improve current cancer therapies.21 In addition to the related pathways, several genes, including MEK1, MEK2, ERK1, ERK2,

BRAF, and KRAS, that are related to trametinib and its resistance were further investigated. The expression of KRAS gene has been known

to be related to MEK inhibitor resistance.22 BRAF is an upstream gene of MEK and ERK1/2 genes are downstream genes of MEK in the

MAPK signaling pathway. As a result, anomaly scores of the six genes were higher in the resistant cell lines compared to the sensitive cell lines

(Figure S3D). This result demonstrates that AnoDAN, which is trained with the trametinib dataset, accurately classifies the genes attributed to

trametinib resistance. Based on these results, we validated that AnoDAN is also applicable to other drugs.

It is also essential to evaluate the robustness of our findings by utilizing various independent datasets. The GDSC database that we

used in this study contains the most comprehensive APR-246 data, and the Cancer Therapeutics Response Portal v2 (CTRPv2) database

stands as the second-largest dataset in this context (see STAR methods). Therefore, we applied the pretrained AnoDAN model to CTRPv2

dataset to compute the anomaly score of the APR-246 resistant cell lines. The model identified four pathways, the p53 signaling pathway,

the TGF-b signaling pathway, the SCLC, and the NSCLC, as the highest-scored pathways, which is consistent with our initial results (Fig-

ure S3E). By observing two different datasets with the consistent results, we concluded that our results are robust irrespective of data-

sets used.

In the model training process, pathway information was incorporated to impart more biological information to the model. Therefore, we

further investigated whether the model trained on APR-246 sufficiently utilizes the connection links among genes in each pathway by

Figure 2. Architecture and training results of AnoDAN

(A) Schematic representation of the AnoDAN architecture. AnoDAN training consists of GAN and Encoder training. Gene expression and pathway data of

sensitive cell lines are mapped and employed in the GAN training process. Graph neural networks are implemented in the discriminator. The pre-trained

generator and discriminator are subsequently utilized to train the encoder, which also leverages sensitive cell line data.

(B) Detailed visualization of anomality scoring. Anomaly scores can be computed by comparing real gene expression with generated gene expression data.

Scores are obtained at three levels: sample, gene, and pathway-level.

(C) Loss curves for the generator, discriminator, and encoder.

(D) UMAP plot of the GAN model. The resulting data points, comprising real sensitive data (blue) and generated data (orange), are reduced to two dimensions.
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comparing the results before and after shuffling the edges. As a result, top pathways obtained after training with the original structure were

different after edge shuffling. Also, the absolute anomaly scores for the p53 and the TGF-b signaling pathway decreased after shuffling five

times (Figures S3F and S3G). This result suggests that the top two pathways were obtainable with our model because pathway information

was essentially used in the training to identify pathways that are highly responsible for resistance. The results obtained through the application

to trametinib, the use of CTRPv2 dataset, and the shuffling of edges increased the reliability of our method and findings.

THBS1 is identified as a combinatorial target to overcome APR-246 resistance

The top two signaling pathways, p53 and TGF-b signaling pathways, were further investigated by examining the anomaly scores of each gene

in the pathways. Gene-level anomaly scores weremeasured in the LUAD context, and the scores in each pathway were represented in a KEGG

pathway graph. In the p53 signaling pathway, CDKN2A, IGFBP3, SERPINB5, and THBS1 genes had the highest scores (Figure 3B). In the

Table 1. Top-ranked differentially expressed genes (DEGs) between APR-246 resistant and sensitive cell lines

Gene Symbol logFC AveExpr t adj.P.Value B

CSF2RA 1.23740 3.85350 2.82225 0.00787 �3.24631

PCK2 0.76977 5.95040 2.27766 0.02907 �3.77123

LRP5 0.75472 4.24637 2.37357 0.02334 �3.68311

EIF4EBP1 0.54974 8.70917 2.35514 0.02435 �3.70020

MLST8 0.47007 6.04464 2.69971 0.01069 �3.36915

VANGL1 0.43680 6.13314 2.52377 0.01639 �3.54107

MAPKAPK5 0.32306 7.53149 2.18176 0.03605 �3.85719

RASGRF2 0.16946 3.25953 3.06103 0.00426 �3.00087

ARHGEF6 0.15539 3.02520 2.17317 0.03674 �3.86477

CD3E 0.15162 2.99387 3.07349 0.00412 �2.98787

IL19 0.13995 3.06820 2.71453 0.01030 �3.35442

PSTPIP1 0.11781 3.31235 2.22915 0.03243 �3.81499

CYP7A1 �0.07239 2.87883 �2.03951 0.04914 �3.98035

LCP2 �0.10999 2.97049 �2.15206 0.03849 �3.88334

MTMR8 �0.11121 3.09484 �2.16546 0.03737 �3.87157

PIP4K2B �0.26733 5.19828 �2.07416 0.04561 �3.95084

STAT5B �0.26778 4.20323 �2.15645 0.03812 �3.87948

MTMR4 �0.28316 5.63926 �2.39577 0.02216 �3.66241

HSPA8 �0.31152 4.55383 �2.61582 0.01312 �3.45182

SACM1L �0.35700 5.77553 �2.70353 0.01058 �3.36535

MAPK8 �0.37040 4.33737 �2.16354 0.03753 �3.87325

PPP2CB �0.37850 9.75489 �2.11046 0.04216 �3.91958

CTNNB1 �0.39876 8.16499 �2.08867 0.04420 �3.93839

INPP5A �0.41030 5.20685 �2.27919 0.02897 �3.76984

RNASEL �0.42793 3.65431 �3.11374 0.00371 �2.94578

PRKAR1A �0.43274 8.28995 �2.54195 0.01569 �3.52357

CASP7 �0.44555 5.04226 �2.07257 0.04577 �3.95220

PPM1D �0.45548 5.28652 �2.58377 0.01419 �3.48308

ACAA1 �0.48158 6.25164 �2.71216 0.01036 �3.35678

SMAD4 �0.50934 5.90347 �2.74884 0.00946 �3.32019

EGLN1 �0.56473 6.44071 �2.63359 0.01257 �3.43442

LPIN3 �0.59207 4.71826 �2.18743 0.03560 �3.85216

MGST3 �0.64006 10.35586 �2.36405 0.02386 �3.69195

SMAD2 �0.75956 6.73912 �2.34836 0.02474 �3.70647

HBEGF �1.01496 4.77739 �2.34577 0.02488 �3.70887

BMP2 �1.82161 4.74875 �3.65146 0.00086 �2.37093
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TGF-b pathway, INHBB and THBS1 had the highest scores, as represented by the darkest color (Figure 3C). The top-scored genes are rep-

resented in Figure 3D. Gene-level scores were enriched between zero and one, so scores bigger than 1.5 was considered to be the top score

(Figure S2B). For the top-scored gene, their relations with APR-246 or p53-related drugs were additionally scrutinized. A study suggested that

PRIMA-1 treatment with retained CDKN2A shows significant growth inhibition in human glioblastoma and that resistance to PRIMA-1 occurs

through the loss of CDKN2A mRNA and protein expression.23 For IGFBP-3, it was found to play a critical role in responsiveness to DNA

Figure 3. Identification of pathways and genes responsible for resistance

(A) Results of pathway-level anomaly scores.

(B) Network visualization of the p53 signaling pathway.

(C) Network visualization of the TGF-b signaling pathway. These two pathways ranked first and second, respectively, in the anomality scoring procedure. Each

node represents a gene, with the depth of color denoting its anomaly score. Nodes with higher scores exhibit darker colors.

(D) Venn diagram depicting top-scored genes in the p53 and TGF-b signaling pathways. The overlapping gene is situated at the center of the diagram.
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Figure 4. Experimental validation of the resistance mechanism and identified target

(A) THBS1 Knockdown in resistant cell lines.

(B) THBS1 overexpression in sensitive cell lines. Data are presented as mean G SD. *: p% 0.05, **: p% 0.01, ***: p% 0.001, ****: p% 0.0001 (Student’s t test).

Scramble shRNA, shScr; THBS1 shRNA, shTHBS1; THBS1 overexpression, oeTHBS1; Vehicle, Veh.

(C) Cell viability analysis in resistant cells with reduced THBS1 levels.
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damaging therapy.24 In addition, APR-246 was found to have a strong synergy with DNA damaging drugs such as cisplatin and doxorubicin.13

Therefore, regulating IGFBP-3 may have a combinatorial effect with the APR-246 treatment. SERPINB5, THBS1, and INHBB were possible

combinatorial targets with APR-246. Out of the three genes, THBS1 is the only one involved in both the p53 pathway and the TGF-b pathway,

so it was expected to have a wider influence on cells and a stronger effect to overcome resistance.

THBS1, which is also known as TSP1 and Thrombospondin 1, is primarily involved in processes such as angiogenesis, metastasis, apoptosis,

and cell-to-cell and cell-to-matrix interactions.25 It often plays dual roles, and there is research on glioblastoma suggesting that THBS1

silencing inhibits tumor cell invasion and growth.26 Similarly, a study conducted in lung osteosarcoma demonstrated that THBS1 silencing

suppresses cell wound healing, migration, and invasion and inhibits pulmonary metastasis.27 Based on this evidence, THBS1 was identified

as a combinatorial target for APR-246.

Gene expression data obtained from GDSC showed significant increase in THBS1 expression in resistant cell lines with a p value of 1.75e-10

(Figure S2C), and our real-time qPCR analysis demonstrated that the mRNA level of THBS1 was higher in resistant cell lines than to sensitive cell

lines (Figure S2D). Thus, we postulated that the downregulation of THBS1 would enhance the APR-246 drug response in resistant cell lines.

Regulating THBS1 level leads to different sensitivities to APR-246

Experimental validation of a target gene was performed using shRNA and overexpression vectors for THBS1 knockdown and overexpression,

respectively. Prior to viral production, the drug responses of NCI-H1792, NCI-H1793, NCI-H2009, and HCC827 cell lines were experimentally

validated. Cell lines were selected based on Z score normalized IC50 values derived from GDSC data and the presence of TP53 mutations.

Results from cell growth assays indicated that NCI-H1792 and NCI-H1793 exhibited increased cell viability while NCI-H2009 and HCC827 ex-

hibited statistically significant cell death upon treatment with APR-246 (Figures S4A and S4B). Treatment was administered at concentrations

of 10, 15, 20, 25, and 30 mM with a control (vehicle), and drug response was dose-dependent in sensitive cell lines. Crystal violet staining of

APR-246 treated cells corroborated cell growth curve data and showed a clear distinction between sensitive and resistant cell lines (Fig-

ure S4C). Consequently, NCI-H1792 and NCI-H1793 were designated as resistant cell lines while NCI-H2009 and HCC827 were designated

as sensitive cell lines throughout the paper.

Knockdown of THBS1 was performed using shRNA, as shown in Figure 4A, with primers listed in Table 2. Cell growth curves were

compared between shScr and shTHBS1. At an APR-246 concentration of 30 mM, cell viability was maintained at 10% in both NCI-H1793

and NCI-H1792. Statistically significant decreases in cell viability were observed in knockdown cells compared to the control at a concentra-

tion of 25 mM with a p value of 0.002 in NCI-H1792 and 7.61e-10 in NCI-H1793 (Figure 4C). Crystal violet staining of living cells revealed a

marked difference in THBS1 knockdown cells. The same experiments were conducted using different THBS1 shRNA sequence to avoid

the potential off-target effects. For those treated with different shRNA sequence, the drug response also significantly increased in NCI-

H1792 and NCI-H1793 (Figures S5A and S5B). Therefore, these results indicate that reduction of THBS1 levels in resistant cells can overcome

resistance to APR-246 and increase drug sensitivity. Additionally, the THBS1 gene was overexpressed using an overexpression vector in NCI-

H2009 and HCC827, which are the APR-246 sensitive cell lines (Figure 4B). Cell viability assays showed that the cell line became resistant to

APR-246 after overexpression of THBS1 in both cell lines (Figure 4D). This indicates that THBS1 is a critical mediator of resistance to APR-246.

Additionally, THBS1 knockdown was performed in sensitive cell lines such as NCI-H2009 and HCC827. Drug responses were enhanced at

lower APR-246 concentrations, as shown in Figures S5C and S5D. Drug toxicity is a common issue in cancer treatment, but combinatorial treat-

ment involving THBS1 silencing and APR-246 administration at a lower concentration in sensitive cell lines may mitigate this problem.

Resistance can be overcome by inhibiting the positive feedback loop between THBS1 and TGF-b pathway

The activation of signaling pathways has a strong influence on diseases or infections,28 and positive feedbacks in a pathway are critical in eluci-

dating the underlying mechanisms.29 Also, the genes involved in positive feedbacks often act as master switches to drive biological events.30

In this study, the p53 signaling pathway and the TGF-b signaling pathways are related in such a way that p53 activates THBS1, which in turn

activates the TGF-b pathway through TGFb1 activation. Previous studies have demonstrated that THBS1 activates the TGF-b pathway via

phosphorylation of SMAD2/3.31,32 Once the TGF-b pathway is activated, it transcriptionally regulates THBS126 as well as represented in Fig-

ure 4E. This positive feedback between the THBS1 and TGF-b pathway underlies the resistance mechanism observed in this study.

The TGF-b signaling pathway is widely associated with drug resistance and has been shown to inhibit tumor cell progression in early

stages but promote it in advanced stages.18 In various cancer types, including NSCLC, the TGF-b signaling pathway is strongly asso-

ciated with resistance to targeted therapy. Overexpression of TGFbRII has been shown to induce drug resistance through activation of

Figure 4. Continued

(D) Cell viability analysis in sensitive cells with elevated THBS1 levels. Data are presented as meanG SD of three replicates. *: p% 0.05, **: p% 0.01, ***: p% 0.001,

****: p% 0.0001 (Student’s t test). Cells were seeded in a 96-well plate and treatedwithDMSO, APR-246 25 mM,or 30 mMafter 24 h.Colonieswere stainedwith crystal

violet as depicted in the bottom.

(E) Schematic representation of the interplay between the TGF-b signaling pathway, THBS1, and p53. The dotted line denotes autocrine effects of THBS1.

(F) Abstracted representation of the resistance mechanism under monotherapy and combination treatment. Red lines or boxes indicate activation.

(G) Western blot analysis in resistant cells after knockdown.

(H) Western blot analysis in sensitive cells after overexpression. Cells were subjected to the indicated gene regulation or treatments, and the specified proteins

were detected.
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the TGF-b signaling pathway.33,34 However, resistance mechanisms vary depending on cancer type and drug and are not yet fully

understood.

Here, we hypothesized that the positive feedback loop between THBS1 and the TGF-b signaling pathway results in adverse effects that

outweigh the therapeutic benefits of APR-246 under monotherapy (Figure 4F). This is attributable to the pre-existing activation of THBS1 via

TGF-b, as represented in Figure 4E. Consequently, downregulation of THBS1 expression attenuates TGF-b pathway activation, thereby

potentiating the efficacy of APR-246 (Figure 4F).

Consistent with our hypothesis, western blot analysis confirmed that concomitant THBS1 silencing and APR-246 treatment in resistant

cell lines resulted in diminished expression of THBS1, TGFb1, and phospho-SMAD2/3 proteins (Figure 4G). The identical results were

observed with different shRNA sequence targeting THBS1 (Figure S5E). We also demonstrated that resistant cell lines exhibiting elevated

THBS1 levels also displayed higher TGFb1 levels relative to sensitive cell lines (Figure S6A). THBS1 knockdown cells exhibited reduced

TGFb1 mRNA levels, corroborating our previous results (Figure S6B). Subsequently, we derived pathway activity scores from Signaling

Pathway Enrichment using Experimental Datasets (SPEED) provided by GDSC. A comparison between resistant and sensitive cell lines uti-

lized in our study revealed a statistically significant increase in SPEED TGF-b signaling pathway activity in resistant cell lines with a p value of

0.0394 (Figure S6C). Collectively, these data substantiate our assertion that the TGF-b signaling pathway is hyperactivated in resistant cell

lines.

Conversely, sensitive cell lines exhibiting lower THBS1 and TGFb1 levels were treated with a TGF-b pathway activator for 24 h. As antic-

ipated, this resulted in an elevation of TGFb1 levels in both sensitive cell lines, NCI-H2009 and HCC827, and the THBS1 level also increased

with the same tendency (Figures S6D and S6E). Western blot analysis performed on control, THBS1 overexpressing, APR-246 treated, and

APR-246 untreated cells revealed that TGFb1 and phospho-SMAD2/3 protein expressions increased in parallel with THBS1 expression (Fig-

ure 4H). These findings confirm that activation of the TGF-b signaling pathway induces THBS1 activation; thus, out experimental data vali-

dated the existence of a positive feedback loop between THBS1 and the TGF-b pathway. Therefore, inhibition of THBS1 overcomes resis-

tance by disrupting this feedback mechanism.

DISCUSSION

LUAD is the most prevalent subtype of lung cancer, with TP53 mutation being the most common. Numerous TP53-related drugs have been

developed, with some targeting wild-type p53 and others mutant p53, and most of them leading to upregulation of p53. Despite their po-

tential, drug resistance poses a significant obstacle to their effectiveness. This study specifically focuses on APR-246, a mutant p53 reactivator

that restores the wild-type conformation and tumor suppressor functions of p53. It is the onlymutant p53 reactivator in the advanced stages of

clinical trials.35 Despite being used in various cancer types, APR-246 faces a drug resistance problem that hinders its effectiveness. Therefore,

overcoming resistance to such p53 reactivators is the primary goal of this study.

To find a target gene that plays a significant role in resistance, we developed a computational framework called AnoDAN. In order to

mimic biologically plausible gene expression patterns by machine learning models, we combined GAN and GNN. The GNN in the discrim-

inator enabled the generator to incorporate more biologically relevant information into the generated samples. By integrating GNN into the

GAN, we were able to identify which signaling pathways are key mediators of resistance, providing more insights into the biological mech-

anisms underlying drug resistance.

Consequently, we found that the p53 and the TGF-b signaling pathways are mostly responsible for APR-246 resistance with the highest

pathway-level anomaly scores. The THBS1 gene was overlapped in both pathways, as its gene-level anomaly score was one of the top-ranked

scores for the two pathways in common, therefore, we selected it as a combinatorial target with APR-246. From in vitro experiments, we vali-

dated that knockdown of THBS1 increases its responsiveness to APR-246 in resistant cell lines and that overexpression of THBS1 induces resis-

tance in sensitive cell lines. The primary mechanismwas the positive feedback loop between THBS1 and the TGF-b pathway, which ultimately

mediates the sensitivity to APR-246.

AnoDAN is a versatile computational framework that can also be utilized to identify combinatorial targets for overcoming resistance to

various drugs, since many targeted therapies confront drug resistance problems. For instance, when AnoDAN was trained on gene expres-

sion data from cell lines sensitive to trametinib (anMEK inhibitor), it identified theMAPKpathway, which is strongly associatedwith trametinib,

as one of the top pathways (Figure S3C). This indicates that AnoDAN can be widely utilized for other drugs, particularly for those with limited

information on effective combinatorial targets. Moreover, this framework, which involves comparing two groups with distinct characteristics

and detecting anomalies, has previously been employed in different fields, such as traffic flow detection, retinal damage detection, network

intrusion detection, and IoT big data anomaly detection.36 However, aside from being applied to medical image data, this approach has not

been applied in biological fields, particularly when using gene expression and pathway data. In addition, a variety of methodologies exist for

Table 2. real-time qPCR primer sequences

Target gene Forward primer sequence (50-30) Reverse primer sequence (50-30)

GAPDH TGATGACATCAAGAAGGTGGTGAAG TCCTTGGAGGCCATGTGGGCCAT

THBS1 GGGGCGTCAATGACAATTTCCAG TCACCACGTTGTTGTCAAGGGT

TGFb1 TACCTGAACCCGTGTTGCTCTC GTTGCTGAGGTATCGCCAGGAA

ll
OPEN ACCESS

iScience 26, 108377, December 15, 2023 9

iScience
Article



modeling of signaling pathways and their dynamics.37 These pathways serve a pivotal role in elucidating biological phenomena such as cell

state transitions across distinct cellular states.38,39 Given the significance of signaling pathways in the context of drug resistance, our frame-

work comprehensively addresses the pathway-related components of resistance mechanisms. Therefore, efforts to apply this approach in

different contexts, such as the identification of combinatorial targets through the integration of gene expression and pathway data, hold sub-

stantial significance and offer opportunities for addressing numerous unsolved problems in the field of cancer research.

In summary, discovering a combinatorial target that enhances the efficacy of a drug is essential to prevent frequent cancer treatment fail-

ures. In this study, we suggest a combination of the p53 reactivator, e.g., APR-246, and THBS1 silencing as a therapeutic strategy in mutant

p53 LUAD.We also propose a computational framework called AnoDAN to find an anomalous gene in resistant lung cancer cells. In addition,

AnoDAN can be applied to different drugs, including other p53 upregulating drugs, and tissues to discover cancer therapy combinations and

decipher underlying resistance mechanisms.

Limitations of the study

This study predominantly utilized gene expression data for the identification of a target gene to overcome resistance. However, it is important

to acknowledge that certain target genes may exhibit no discernible differences in expression. Despite their unaltered expression, these tar-

gets may still hold substantial significance in overcoming drug resistance. Furthermore, some targets which do not have a direct causal link

with resistance but still exert a significant influence on resistancemay remain undetectedby ourmethod. Another limitation of our study is that

identification of a target gene is limited to the genes involved in specific pathways utilizedduring training. To address these limitations, further

studies should undertake more comprehensive analyses, incorporating diverse data types such as DNA, protein, and epigenetics data, and

encompassing a broader spectrum of pathway information.
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Söderqvist, M., Segerbäck, D., Bergman, J.,
Fersht, A.R., Hainaut, P., Wiman, K.G., and
Bykov, V.J.N. (2009). PRIMA-1 reactivates
mutant p53 by covalent binding to the core
domain. Cancer Cell 15, 376–388. https://doi.
org/10.1016/j.ccr.2009.03.003.

9. Perdrix, A., Najem, A., Saussez, S., Awada, A.,
Journe, F., Ghanem, G., and Krayem, M.
(2017). PRIMA-1 and PRIMA-1(Met) (APR-
246): From Mutant/Wild Type p53
Reactivation to Unexpected Mechanisms
Underlying Their Potent Anti-Tumor Effect in
Combinatorial Therapies. Cancers 9, 172.
https://doi.org/10.3390/cancers9120172.

10. Deben, C., Lardon, F., Wouters, A., Op de
Beeck, K., Van den Bossche, J., Jacobs, J.,
Van Der Steen, N., Peeters, M., Rolfo, C.,
Deschoolmeester, V., and Pauwels, P. (2016).
APR-246 (PRIMA-1(MET)) strongly synergizes
with AZD2281 (olaparib) induced PARP
inhibition to induce apoptosis in non-small
cell lung cancer cell lines. Cancer Lett. 375,
313–322. https://doi.org/10.1016/j.canlet.
2016.03.017.

11. Bykov, V.J.N., Zache, N., Stridh, H., Westman,
J., Bergman, J., Selivanova, G., and Wiman,
K.G. (2005). PRIMA-1(MET) synergizes with
cisplatin to induce tumor cell apoptosis.

Oncogene 24, 3484–3491. https://doi.org/10.
1038/sj.onc.1208419.

12. Mohell, N., Alfredsson, J., Fransson, Å.,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-THBS1 Santa Cruz Cat# sc-59887; RRID:AB_793045

Anti-TGFb1 Santa Cruz Cat# sc-130348; RRID:AB_1567351

Anti-SMAD2/3 Santa Cruz Cat# sc-133098; RRID:AB_2193048

Anti-phospho-SMAD2/3 Cell Signaling Technology Cat# 8828; RRID:AB_2631089

Chemicals, peptides, and recombinant proteins

Crystal violet solution Sigma-Aldrich Cat# HT90132-1L

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat# D2650-100ML

APR-246 MedChemExpress (MCE) Cat# HY-19980

TGF-b1 protein MCE Cat# HY-P7118

RPMI 1640 WelGENE Cat# LM011-02A

DMEM WelGENE Cat# LM001-05

Fetal bovines serum (FBS) WelGENE Cat# PK004-07

Lipofectamine Invitrogen Cat# 11668019

Puromycin Sigma-Aldrich Cat# P8833-100MG

SYBR Master Mix Genet Bio Cat# Q-9200

Critical commercial assays

RNA extraction kit iNtRON Biotechnology Cat# 17211

DiaStar RT kit Solgent Cat# DR23-R10K

Deposited data

Gene expression data GDSC2 https://www.cancerrxgene.org

Drug response data GDSC2 https://www.cancerrxgene.org

Drug response data CTRPv2 https://portals.broadinstitute.org/ctrp.v2.1

Pathway data MSigDB https://www.gsea-msigdb.org

Python code and data used in this study This paper GitHub - https://github.com/Soominll/

AnoDAN

Experimental models: Cell lines

Human lung cancer cell line: NCI-H1793 Korean Cell Line Bank (KCLB) Cat# 91793

Human lung cancer cell line: NCI-H2009 KCLB Cat# 92009

Human lung cancer cell line: NCI-H1792 ATCC Cat# CRL-5895

Human lung cancer cell line: HCC827 KCLB Cat# 70827

Oligonucleotides

Primer for GAPDH, see Table 2 This paper N/A

Primer for THBS1, see Table 2 This paper N/A

Primer for TGFb1, see Table 2 This paper N/A

Recombinant DNA

shTHBS1 sequences:

TGACATCAGTGAGACCGATTT;

GCTGGAAAGATTTCACTGCAT

Sigma-Aldrich N/A

Overexpression vector for THBS1 VectorBuilder Cat# pDNA(VB220725-1808zjh)

Control vector for overexpression:

pLV-Puro-CMV>ORF_Stuffer

VectorBuilder Cat# pDNA(VB900122-0485asj)

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Kwang-Hyun Cho

(ckh@kaist.ac.kr).

Materials availability

The study did not generate new unique reagents.

Data and code availability

� Processed data used in this article are available at (GitHub - https://github.com/Soominll/AnoDAN). All original data can be down-

loaded from GDSC (https://www.cancerrxgene.org/), CTRPv2(https://portals.broadinstitute.org/ctrp.v2.1/), and MSigDB (https://

www.gsea-msigdb.org) databases as listed in the key resources table.
� All original code has been deposited at (GitHub - https://github.com/Soominll/AnoDAN) and is publicly available as of the date of

publication.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

Human lung cancer cell lines, NCI-H1793, NCI-H2009, and HCC827 were purchased from the Korean Cell Line Bank (KCLB), and NCI-H1792

was purchased from the American Type Culture Collection (ATCC). NCI-H1793 and HCC827 were cultured in RPMI 1640 media (WelGENE)

supplemented with 10% Fetal bovines serum (FBS; WelGENE) and antibiotics, which is comprised of 100 units/ml of penicillin, 100 mg/ml of

streptomycin, and 0.25 mg/ml of Fungizone (Life Technologies Corp.). NCI-H1792 and NCI-H2009 were cultured in DMEMmedia (WelGENE)

with the same supplements. All cells were cultured in an incubator with 5% CO2 at a temperature of 37�C.

Reagents

Crystal violet solution and dimethyl sulfoxide (DMSO) were obtained from Sigma-Aldrich (Saint Louis, MO, USA). APR-246 (HY-19980) and

TGF-b1 protein (HY-P7118) were purchased from MedChemExpress (MCE). 25 mg of APR-246 was diluted to the final concentration of

10 mM and treated in the cells for 4–5 days 10 mg/ml of TGF-b1 was treated in the cells for 24 h.

METHOD DETAILS

Data preparation

We developed AnoDANby utilizing both gene expression and pathway data. We could access drug response data of a p53 reactivator, APR-

246, fromNCI60, CTRPv2, and GDSC2 databases. Of these, wemainly utilized gene expression data from the Genomics of Drug Sensitivity in

Cancer (GDSC, https://www.cancerrxgene.org/),45 as it provides the most comprehensive data. In GDSC2, 1,556 genes are encompassed in

all the pathways we used, and for APR-246, there are 968 total cell lines (413 – resistant, 313 – sensitive, 242 – intermediate). Cell line-drug

combinations were provided with the half-maximal inhibitory concentration (IC50) value for each cell line. The IC50 values were log-trans-

formed and normalized using Z score normalization (Z_lnIC50), which sets the mean of all values to 0 and the standard deviation of all values

to 1. Z_lnIC50 greater than 0.5 was classified as resistant, and less than �0.5 was classified as sensitive. The same approach of data

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: pLP1 Invitrogen N/A

Plasmid: pLP2 Invitrogen N/A

Plasmid: pLP/VSVG Invitrogen N/A

Software and algorithms

IncuCyte ZOOM Essen Bioscience N/A

Veriti 96-well Thermal Cycler Applied Biosystems Cat# A48141

QuantStudio 5 real-time PCR system Applied Biosystems Cat# A34322

WGAN-GP Gulrajani et al.40–42 N/A

f-AnoGAN Schlegl et al.43 N/A

GNN Peter et al.44 N/A
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preprocessingwas applied to the trametinib dataset, whichwas used to test the reliability of ourmodel. The total number of genes is the same

as APR-246 dataset, and the total number of cell lines is 767 (302 – resistant, 144 – sensitive, 321 – intermediate).

The secondmost comprehensive APR-246 data from the Cancer Therapeutics Response Portal v2 (CTRPv2, https://portals.broadinstitute.

org/ctrp.v2.1/)46 were also employed to assess the robustness of our findings. The total number of genes for CTRPv2 is also 1,556 and the total

number of cell lines is 210 (53 – resistant, 50 – sensitive, 107 – intermediate). In CTRPv2, we Z score normalized the area under the fitted dose-

response curve (AUC) values, where scores above 0.5 were identified as resistant and below �0.5 as sensitive. Additionally, we obtained

pathway data from the Molecular Signatures Database (MSigDB, https://www.gsea-msigdb.org),47 and specifically acquired canonical path-

ways from the Kyoto Encyclopedia of Genes and Genomes (KEGG).48–50 In total, 34 pathways that are related to cancer and signal transduc-

tion were used. Each pathway data includes the genes involved in the pathway and the interactions among the genes. The interaction types

were transformed into one-hot encoded forms and used as inputs together with the gene expression data.

Architecture and training procedure of AnoDAN

The AnoDAN framework, which is depicted in Figure 1, is comprised of a generator, a discriminator, and an encoder, and draws inspiration

from the f-AnoGAN approach used in image analysis,43 although with a different structure and application. The generator and a discriminator

are trained using theWGAN-GP40–42method. All the hyperparameters employedduring training process are listed in Table S1. To beginwith,

the goal of the generator is to generate synthetic gene expression data that the discriminator, whose role is to accurately classify whether a

given sample is real or generated, cannot distinguish from real gene expression data. It is constructed with three dense layers, incorporating

layer normalization, Leaky ReLu activation functions, and dropout as shown in Figure S7A. When training, the loss function is:

Lgen = �DðGðzÞÞ (Equation 1)

where z is the latent variable.

Next, we incorporated GNN into the discriminator to analyze gene connections and classify samples at the pathway-level, requiring the

generator to produce biologically accurate samples. Graphs representing biological pathways are used, with nodes representing genes and

edges representing gene interactions. Any pathway data can be used, and here we employed graphs from KEGG pathways. Here, the GNN

takes the gene expression value and interaction type as inputs for each gene and edge, respectively. The GNN aggregates the gene and

interaction data iteratively and updates the graphical representation at each time step through the multilayer perceptron model.44 Through

this process, each gene gets positional information in the pathway, which provides more biological bias to the model. Following the graph

networks, the discriminator model undergoes four dense layers, incorporating Leaky ReLu and ReLu activation functions (Figure S7B). This

enables us to investigate anomalous genes at the pathway-level. The loss function for discriminator is expressed as:

Ldisc = Dð~xÞ � DðxÞ + l
�kVx̂DðbxÞk2� 1

�2
(Equation 2)

where ~x = GðzÞ, x represents real data, l is a gradient penalty coefficient, V denotes gradients, bx = ex + ð1 � eÞ~x , e is a random number

sampled from a uniform distribution [0,1), and k$k2 is the sum of squared gradients. The discriminator undergoes training n_critic times while

the generator undergoes training 1 time, as outlined in Table S1. In summary, the GANmodel is trained exclusively on gene expression data

from drug-sensitive cell lines to capture distinctive characteristics of these cell lines.

After training the GAN model, the encoder is also trained on drug-sensitive cell line data (Figure 2A). The main role of the encoder is to

map the real sensitive cell line data to the latent space. Following the encoder mapping, the pre-trained generator then generates data from

the latent space, which is evaluated by the discriminator to calculate loss by adding data reconstruction residuals and residuals in feature

space populated by the discriminator. The encoder is trained using the f-AnoGAN method.43 The loss function for encoder is defined as:

Lenc =
1

n
3 kx � GðEðxÞÞk2 +

k

nd
3 kDðxÞ � DðGðEðxÞÞÞk2 (Equation 3)

where n represents the number of genes in a sample, nd is the number of samples, and k is a weighting factor. This encoder architecture

consists of three dense layers with layer normalization, Leaky ReLu activation function, and dropout (Figure S7C). After some iterative pro-

cesses, the encoder eventually acquires characteristics specific to sensitive cell lines, enabling the identification of anomalous genes andpath-

ways in resistant cell line data. Pathways enrichedwith top-scoredgenes are analyzed and top-scored genes in the top pathways are identified

to be primarily responsible for drug resistance.

Anomality scoring

The anomality scoring process utilizes the pre-trained encoder and generator. Any cell line gene expression can be used as an input, and the

anomaly score is calculated using the difference between real (input) and generated data. As demonstrated in Figure 2B, the sample-level

anomaly score is determined by calculating the sum of the squared difference between the input and generated data:

Asample =
1

n
3 kx � GðEðxÞÞk2 (Equation 4)
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where n is the number of genes in a sample, and k$k2 is the sum of squared difference between real and generated data. The gene-level score

is determined by calculating the absolute difference for each gene between the input and the generated data:

Agene = jx � GðEðxÞÞj (Equation 5)

The pathway-level score is composed of two factors: the proportion of the genes with top 1% gene-level score of each cell line included in

each pathway and the average gene-level anomaly score for the top 1% genes. The average gene-level anomaly score is utilized as a weight,

and the proportion is multiplied by this weight:

Apathway =
ng

np
3wg (Equation 6)

where ng denotes the number of top 1% genes in a pathway, np is the total number of genes in a pathway, and wg represents the average

gene-level anomaly score across the cell lines.

Virus production for knockdown and overexpression experiments

HEK 293T cell was used to transfect shRNA and overexpression vectors targeting THBS1, following the manufacturer’s protocol. Two shRNA

sequences (shTHBS1; TGACATCAGTGAGACCGATTT; GCTGGAAAGATTTCACTGCAT; Sigma-Aldrich) and one overexpression vector

(pDNA(VB220725-1808zjh); VectorBuilder) were used. Control vector (pDNA(VB900122-0485asj); VectorBuilder) and scrambled and pack-

aging mix (pLP1, pLP2, and pLP/VSVG) were used to produce lentivirus using Lipofectamine (Invitrogen). In NCI-H1792, NCI-H1793, NCI-

H2009, and HCC827, transduction was performed using virus product and 4 mg/ml of polybrene (Sigma-Aldrich). Infected cells were selected

using 1 mg/ml of puromycin for at least one week.

Cell growth analysis and crystal violet assay

Cells were seeded at 3-5 x 103 cells/well in a 96 well plate. Cells were then treated with the drugs (APR-246) after 24 h. Cell growth was re-

corded every 3 h using IncuCyte ZOOM (Essen Bioscience) for 4–5 days. Cell viability was analyzed by measuring cell confluence using

IncuCyte ZOOM2016A software. After 4–5 days, cells were stained with 1% (w/v) crystal violet (Sigma-Aldrich) for 30min at room temperature

and washed with distilled water.

Total RNA extraction and quantitative real-time PCR (qRT-PCR) analysis

Following the manufacturer’s guidelines, total RNA was extracted from cells employing a total RNA extraction kit from iNtRON Biotech-

nology. Subsequently, it was treated with RNase-free DNase I from Thermo Fisher Scientific Inc. to eliminate genomic DNA. The synthesis

of complementary DNA (cDNA) was carried out using the DiaStar RT kit (Solgent). Reverse transcription PCR (RT-PCR) was then performed

utilizing the Veriti 96-well Thermal Cycler (Applied Biosystems). Quantitative real-time PCR (qRT-PCR) was performed with the primers and

cDNA using QuantStudio 5 real-time PCR system from Applied Biosystems and SYBR Master Mix from Genet Bio. Sequences of qRT-PCR

primers are listed in Table 2.

Western blot analysis

Cells were initially rinsed with phosphate-buffered saline (PBS) and then subjected to lysis using the mixture of lysis buffer (20 mM HEPES

(pH7.2), 150 mM NaCl, 0.5% Triton X-100, 10% glycerol, 0.1% SDS) in addition to 0.1% protease inhibitor and phosphatase inhibitor cocktail

(Thermo-scientific). This lysis process was carried out while maintaining the samples on ice. For immunoblotting, anti-THBS1 (sc-59887), anti-

TGFb1 (sc-130348), and anti-SMAD2/3 (sc-133098) were obtained from Santa Cruz Biotechnology Inc., and anti-phospho-SMAD2/3 (#8828)

was purchased from Cell Signaling Technology Inc.

QUANTIFICATION AND STATISTICAL ANALYSIS

The AnoDAN framework is explained in detail in Figure 1, as well as the Method details (Architecture and training procedure of AnoDAN).

Anomaly scores were computed following the guidelines outlined in the ‘‘Anomality scoring’’ part of the Method details. Microsoft Excel was

utilized to generate and analyze bar graphs and cell viability curves. In the figures, statistically significant distinctions were denoted with p

values obtained from the Student’s t test. Error bars in the figures represent the mean G standard deviation (SD). The significance levels

were indicated as follows: * for p % 0.05, ** for p % 0.01, *** for p % 0.001, **** for p % 0.0001.
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