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The next chapter for COVID-19: A respiratory virus inflames the brain 
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 
caused the new century’s most severe pandemic. COVID-19, the respi-
ratory disease caused by SARS-CoV-2 infection, can be mild or devas-
tating and in all too many cases, it is deadly. Neurological symptoms are 
also common, affecting as many as 1/3 of COVID-19 patients, and 
include headache, fatigue, myalgia, impaired taste and smell, cognitive 
impairment, and delirium as well as other less common manifestations 
(Misra et al., 2021). What is less clear is how a respiratory virus such as 
SARS-CoV-2 can contribute to these neurological symptoms. The recent 
publication by Frank et al entitled “SARS-CoV-2 spike subunit induces 
neuroinflammatory, microglial and behavioral sickness responses: evi-
dence of PAMP-like properties” gives many insights into the manifes-
tations of COVID-19 as a Brain Disease (Frank et al., in press). 

Frank et al concentrated on S1, an approximately 120 kDa glyco-
protein that is part of the spike protein (S protein), SARS-CoV-2′s viral 
attachment protein (VAP). VAPs determine which cells a virus can 
invade and how efficiently they are taken up. The SARS-CoV-2 variants 
all involve mutations in the S protein, explaining their varying degrees 
of infectivity, and it is S protein that induces the immune reaction of the 
mRNA vaccines. Viral proteins can be very toxic as illustrated by HIV-1′s 
Tat protein and its VAP, gp120. Thus, as Frank et al astutely realized, 
study of S1 in the absence of productive infection can reveal much about 
how SARS-CoV-2 induces neuroinflammation and brain disease. 

Even in the absence of productive infection, immune-active S1 that is 
first produced systemically has many routes by which it can affect the 
brain. Induction of the cytokine storm could disrupt the blood–brain 
barrier (BBB), alter BBB transporters, increase immune cell trafficking 
into brain, alter the blood concentration of transporter substrates, pro-
vide higher blood levels of those cytokines that are transported across 
the BBB, and induce brain endothelial cells to secrete neuroimmune 
substances directly into the brain (Erickson et al., 2018; Erickson et al., 
2021). S1 circulating free in blood can cross the BBB (Rhea et al., 2021), 
and it seems likely that SARS-CoV-2 can also enter the brain by crossing 
the BBB and other mechanisms. Therefore, S1 that is shed from SARS- 
CoV-2 in the brain or periphery may be a source of S1 in the CNS. 

S1 in the brain is likely to be much more neuroinflammatory than S1 

in the blood. Frank et al show S1 injected directly into the brain can 
induce some sickness behaviors, increase brain levels of cytokines, and 
activate microglia and astrocytes. Notably, the S1-induced symptom-
atology described by Frank et al is also not classic sickness behavior as 
weight loss/anorexia were not among its features. Most of the parame-
ters that were characterized by Frank et al. were measured in the acute 
(24 h post) or subacute (7 days post) phases after S1 injection. It is 
noteworthy, then, that Frank et al found that 7 days after central 
administration of S1, neuroinflammation persisted, although the pattern 
had changed. The only cytokine still elevated on day 7 was TNF. 
Intriguingly, the patterns of neuroinflammation differed among brain 
regions at day 7. For example, GFAP was only elevated in hippocampus 
and TLR2 was only elevated in hypothalamus. Cd200r1 was elevated in 
hippocampus and hypothalamus at 24 h, but was decreased below 
controls levels at day 7 in hippocampus and frontal cortex. These find-
ings raise the possibility that the variability in the neurological symp-
toms of COVID-19, both temporally and among patients, has a basis in 
these shifting patterns of neuroinflammation. Clearly, more work needs 
to be done parsing the patterns of S1-induced inflammation and corre-
lating those patterns to symptomatology. 

Among many of the survivors of COVID-19 looms a second chapter in 
their illness: Long Covid. Characterized by many symptoms indicative of 
CNS involvement, Long Covid strikes over 50% of non-hospitalized 
COVID-19 patients (Blomberg et al., 2021) with fatigue, brain fog, and 
other symptoms lingering with little improvement for months (Blom-
berg et al., 2021; Davis et al., 2021) 

Most patients (75–90%) with Long Covid had milder cases of COVID- 
19 not requiring hospitalization (Davis et al., 2021; Vanichkachorn 
et al., 2021), and so the symptomatology cannot be simply ascribed to a 
post-intubation syndrome or having survived a near death experience. 
Some fear that Long COVID may evolve into a chronic neurodegenera-
tive syndrome characterized by cognitive impairment (Hascup and 
Hascup, 2020; Meier et al., 2021). A characteristic of Long Covid is its 
persistence, with little resolution of symptoms 7 months post-infection 
(Davis et al., 2021). Although some symptoms do improve (e.g., fever, 
cough, shortness of breath), others do not (fatigue, palpitations, muscle 
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aches, bone aches) and some became more severe (post-exertional 
malaise, brain fog, memory, speech and language issues). Studies like 
those of Frank et al. which evaluate not only the onset but persistence of 
symptoms and biochemical parameters in models of SARS-CoV-2- 
associated CNS dysfunction are needed to provide more insight on 
Long Covid mechanisms. 

ACE2, a membrane bound enzyme, has been hailed as the protein to 
which S1 binds and so accounts for the infectivity of SARS-CoV-2. 
However, VAPs bind to their ligands in a stochastic fashion and do not 
follow classic receptor-ligand binding kinetics. As such, many viruses co- 
opt a variety of cell surface glycoproteins and glycolipids to serve as 
anchors and “receptors” (Schweighardt and Atwood, 2001). Evidence 
suggests that S1 binds to sites other than ACE2 and ACE2 seems to play 
little or no role in the uptake of S1 by the BBB, liver, kidney, or spleen 
(Rhea et al., 2021). Frank et al found that S1 activated microglia in vitro, 
yet microglia did not express ACE2. Therefore, Frank et al investigated 
other possible receptors and found involvement of TLR2 and TLR4. An 
over-emphasis of the role of ACE2 is, therefore, likely to miss much of 
what S1 and its virus can do and therapeutics targeted solely at ACE2 are 
unlikely to be totally effective. 

In summary, S1 induces inflammation and once in the brain can 
directly induce neuroinflammation. Its abilities to cross the BBB and to 
activate microglia and likely other cells comprising the neurovascular 
unit strongly suggest that it may be a major cause of CNS-related 
symptomatology of COVID-19. Once induced, neuroinflammation is 
persistent and so may underly the symptomatology of Long Covid. 
Clearly, more work needs to be done investigating how S1 and SARS- 
CoV-2 affect brain, behavior, and immunity. 
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