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The spatial and temporal coordination of growth factor signaling is critical for both presynaptic and postsynaptic plasticity

underlying long-term memory formation. We investigated the spatiotemporal dynamics of Aplysia cysteine-rich neurotro-

phic factor (ApCRNF) signaling during the induction of activity-dependent long-term facilitation (AD-LTF) at sensory-

to-motor neuron synapses that mediate defensive reflexes in Aplysia. We found that ApCRNF signaling is required for

the induction of AD-LTF, and for training-induced early protein kinase activation and late forms of gene expression, exclu-

sively in postsynaptic neurons. These results support the view that ApCRNF is critically involved in AD-LTF at least in part

through postsynaptic mechanisms.

A prevailingmodel of themolecularmechanisms underlying long-
termmemory (LTM) formation involves a dynamic interaction be-
tween presynaptic and postsynaptic signaling occurring at critical
synapses in response to learning-inducing experiences (Mirisis
et al. 2016; Poo et al. 2016; Smolen et al. 2019). Growth factor
(GF) signaling is a family of evolutionarily conserved molecular
mechanisms with spatiotemporal dynamics that support the com-
plex nature of this interaction (Kopec and Carew 2013; Edelmann
et al. 2014). Following their pioneering discovery as molecules
important for neural development (Levi-Montalcini 1987), GFs
have been characterized as critical molecular components of
multiple forms of plasticity underlying LTM (Park and Poo 2013;
Poon et al. 2013). GFs are released extracellularly and bind to
membrane-associated receptors to activate a variety of down-
stream intracellular signaling in different neurons, and have
been shown to act, both in distinct brain regions, and at different
time points following learning-inducing stimuli (Edelmann et al.
2014). Consequently, GF signaling constitutes a unique spatial
and temporal molecular network that mediates both intercellular
and intracellular signaling at synapses undergoing plasticity.
Understanding the complexity of this network requires the delin-
eation of the spatiotemporal dynamics of its individual molecular
steps in a cell-specific manner, a challenging endeavor which has
been difficult to achieve in the highly complex mammalian brain,
but can be aided by studies of the simpler neural networks of
invertebrate models. Indeed, two recent studies in mammals and
invertebrates directly compared pre- and postsynaptic effects of
GF signaling at synapses undergoing long-lasting plasticity, and
found evidence for complex interactions between GF, neurotrans-
mitter, and neuromodulator signaling, as well as between down-
stream intracellular events occurring in both compartments (Jin
et al. 2018; Lin et al. 2018).

In the current work, we took a single-cell approach in study-
ing the spatiotemporal dynamics of GF signaling during the initi-
ation of long-term synaptic plasticity, by using the spatial

resolution of the sensory-to-motor neuron (SN-MN) synapses
mediating defensive withdrawal reflexes in Aplysia californica.
This monosynaptic circuit constitutes a critical site of plasticity
underlying behavioral sensitization of these reflexes (Pinsker
et al. 1973; Cleary et al. 1998). To induce synaptic activity, which
is known to regulate the synthesis, release, and signaling of GFs
(Poo 2001), we used activity-dependent (AD) training, in which
serotonin (5HT) neuromodulation is paired with neuronal acti-
vity, and which produces both LTM for sensitization (LTS;
Walters 1987) and long-term facilitation (LTF) at SN-MN synapses
(Schacher et al. 1997). We focused our analysis on Aplysia
cysteine-rich neurotrophic factor (ApCRNF), a novel Aplysia GF
which we previously identified and showed: (i) to be expressed in
both SNs andMNs, (ii) to be released in the central nervous system
in response to AD training, and (iii) to promote LTF at SN-MN syn-
apses (Pu et al. 2014). In the present study, we investigated the spa-
tiotemporal dynamics of ApCRNF signaling during the induction
of AD plasticity and found that: (i) AD training induces LTF at
SN-MN synapses, as well as activation ofmitogen-activated protein
kinase (MAPK) and increased expression of CCAAT-enhancer bind-
ing protein (C/EBP)mRNA in both SNs andMNs; (ii) ApCRNF signal-
ing is required for the induction of AD-LTF; and (iii) ApCRNF
signaling is required for AD training-induced activation of MAPK
and mRNA expression of C/EBP and ApCRNF, exclusively in MNs.
Collectively, our findings strengthen previous models of plasticity
in Aplysia (Kandel 2012; Byrne and Hawkins 2015), and, in addi-
tion, reveal novel postsynaptic mechanisms of plasticity governed
by GF signaling in Aplysia.

We previously showed that ApCRNF is released extracellularly
in an activity-dependent manner (Pu et al. 2014). In the present
study, we tested the hypothesis that ApCRNF signaling is required
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for the induction of AD-LTF at cultured SN-MN synapses. To block
the signaling of extracellularly released ApCRNF, we used an
ApCRNF antibody, which we previously characterized as a
function-blocking antibody. AD training in the presence of IgG
control induced LTF, while application of anti-ApCRNF during
and for 1 h after training blocked LTF. Moreover, treatment with
anti-ApCRNF alone did not affect basal synaptic transmission
(Fig. 1). These results support the hypothesis that ApCRNF signal-
ing during and immediately after AD training is required for the in-
duction of LTF at SN-MN synapses.

We next investigated the molecular mechanisms induced by
ApCRNF during AD-LTF induction, focusing on the spatiotempo-
ral dynamics of ApCRNF signaling. Long-lastingmemory and plas-
ticity require activation of protein kinases and gene expression
across species (Mirisis et al. 2016; Smolen et al. 2019). Two well-
established examples from the mammalian and Aplysia literature,
are MAPK activation (Sharma and Carew 2004; Sweatt 2004) and
cAMP response element binding protein (CREB)-dependent tran-
scription (Alberini 2009). We first focused on activation of
MAPK, a second messenger cascade that links extracellular events,
such as GF release, to intracellular signaling, and is required for
long-lasting forms of memory and synaptic plasticity in Aplysia
and other species (English and Sweatt 1996; Atkins et al. 1998;
Ota et al. 2008; Pagani et al. 2009;Michel et al. 2011a). In addition,
in Aplysia SNs, an early phase of MAPK activation is reliably ob-
served following a variety of LTF-inducing training paradigms, in-
cluding AD training (Martin et al. 1997; Shobe et al. 2009; Philips
et al. 2013; Liu et al. 2014). Hence we asked whether ApCRNF sig-
naling is required for AD training-induced early MAPK activation
in cocultured SNs and MNs. AD training in the presence of IgG in-
duced a significant increase in 1-h MAPK activation in both SNs
and MNs, when compared with controls. Interestingly, treatment
with anti-ApCRNF blocked the increase in 1-h MAPK activation
only in MNs (Fig. 2A1–B2). To further investigate the direct in-
volvement of ApCRNF in postsynaptic MAPK activation, we asked
whether ApCRNF can facilitate this process. We found that, al-
though one pulse of 5HT in the presence of vehicle control was in-

sufficient to induce a significant increase in 1-hMAPK activation in
MNs, consistent with similar findings in SNs (Shobe et al. 2009; Ye
et al. 2012), one pulse of 5HT paired with recombinant ApCRNF
protein led to a significant increase in 1-h MAPK activation in
MNs (Fig. 2B3,B4). These data are consistentwith previousfindings
that one pulse of 5HT andApCRNF (but not ApCRNFalone) induce
LTF (Pu et al. 2014), suggesting that ApCRNF released in response
to synaptic activity interacts with signaling downstream from
5HT receptors to induce plasticity. Thus, the combination of block-
ing and gain-of-function effects reported here supports the view
that ApCRNF signaling during and immediately after AD training
plays a significant role in MAPK activation exclusively in MNs.

MAPK is a major signaling pathway through which GFs
regulate gene expression, and its activation is required for
CREB-dependent transcription in Aplysia and other systems
(Finkbeiner et al. 1997; Roberson et al. 1999; Chin et al. 2006;
Rajasethupathy et al. 2009). One of the primary downstream tar-
gets of CREB is C/EBP, an immediate-early gene and transcription
factor, which is induced following LTM-producing training across
species (Guan et al. 2002; Hatakeyama et al. 2006; Levitan et al.
2008; Arguello et al. 2013) and is required for LTM (Taubenfeld
et al. 2001) and LTF expression (Alberini et al. 1994; Lee et al.
2001). Consequently, we hypothesized that ApCRNF signaling is
required for AD training-induced transcription of C/EBP. To exam-
ine the presynaptic sensory compartment, we conducted qPCR
on SN clusters collected from Pleural-Pedal ganglia that received
either AD or control training ex vivo. The postsynaptic motor
compartment was comprised of cocultured MNs that received AD
or control training in vitro and were analyzed using single-cell
qPCR. Importantly, the relative expression levels of C/EBP
mRNAs to those of the housekeeping gene GAPDH were similar
in both compartments, indicating that results from the two prepa-
rations are comparable. In SNs, we found that C/EBP mRNA levels
were significantly increased at 1 and 3 h after AD training, when
compared with controls. However, there was no significant effect
of anti-ApCRNF treatment on the AD training-induced increase in
C/EBP mRNA expression in SNs at either time point (Fig. 3A1). In

MNs,C/EBPmRNA levels were also signifi-
cantly increased at 1 and 3 h after AD
training. Interestingly, application of
anti-ApCRNF blocked the increase in C/
EBP expression in MNs at 3 h (but not at
1 h) posttraining (Fig. 3B1). These results
suggest that AD training induces early
and late increased expression of C/EBP in
both SNs and MNs, but that only the late
expression in MNs is dependent on
ApCRNF signaling.

Synaptic activity induces the release
and transcription of GFs (Poo 2001), and,
interestingly, GF transcription has been
reported downstream from both GF and
C/EBP signaling (Bambah-Mukku et al.
2014). Thus, in a final set of experi-
ments, we examined pre- and postsynap-
tic ApCRNF gene expression and its
possible dependence on ApCRNF signal-
ing after AD training. In SNs, ApCRNF
mRNA levels were not significantly regu-
lated by AD training in the presence of
IgG or anti-ApCRNF at either 1 or 3 h after
training (Fig. 3A2). In MNs however, the
pattern of ApCRNF gene expression was
different. AD training in the presence of
IgG or anti-ApCRNF did not significantly
regulate ApCRNF expression at 1 h

A1 A2

Figure 1. ApCRNF signaling is required for AD-LTF. Pleural SNs and abdominal L7 MNs were cocul-
tured according to an established protocol (Zhao et al. 2009) and kept in culture for 5 d, prior to the
start of experiments. LTF was induced by a molecular analog of AD training: a single 5 min pulse of
5HT (10 µM) combined with high-KCl (100 mM) artificial sea water (ASW), which depolarizes
neurons (Shobe et al. 2009). A custom-made blocking ApCRNF polyclonal antibody (AnaSpec, raised
against the epitope CSHRNANCQNDCFDIEFGKVKPR, 5 µg/mL) was used to block ApCRNF signaling
30 min before, during, and for 1 h after training. Intracellular recordings were performed in SN-MN co-
cultures as described in Liu et al. (2014). The amplitude of excitatory postsynaptic potentials (EPSPs) was
recorded before (pretest) and 24 h after AD training (posttest). LTF is reflected by a significant increase in
EPSP amplitude at posttest, and is presented as a percentage of pretest values. Representative traces (A1)
and summary data (A2) show that AD training induced LTF in the presence of IgG (126.3 + 7.9%, n=7,
t6 = 2.926), but not in the presence of anti-ApCRNF (96.8 + 8.1%, n=6, t5 = 0.518, NS). Anti-ApCRNF
treatment did not affect basal synaptic transmission (98.2 + 5.1%, n=6, t5 = 0.277, NS). Mean +SEM,
two-tailed, paired t-tests for within-group comparisons, one-way ANOVA (F(2,16) = 5.454, P<0.05) fol-
lowed by Tukey’s multiple comparisons tests for between-group comparisons (IgG+KCl + 5HT vs.
Anti-ApCRNF+KCl + 5HT: P<0.05, IgG+KCl + 5HT vs. Anti-ApCRNF: P<0.05), (*) P<0.05.
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posttraining. But, at 3 h posttraining, ApCRNF levels were signifi-
cantly increased, and anti-ApCRNF treatment blocked this increase
(Fig. 3B2). Taken together, these findings suggest that AD training
increases lateApCRNF expression exclusively inMNs, and that this
postsynaptic induction requires ApCRNF signaling during and im-
mediately after training.

In the present study we investigated the effects of AD training
in the Aplysia SN-MNmicrocircuit, and found novel pre- and post-
synaptic spatiotemporal dynamics of evolutionarily conserved
molecular mechanism such as GF signaling, protein kinase activa-
tion, and CREB-dependent transcription. In addition, our data
show that signaling of the Aplysia GF ApCRNF is required during
AD training for the induction of LTF and for postsynaptic molecu-
lar events. While presynaptic MAPK activation and C/EBP induc-
tion have been reported previously in Aplysia in response to a
variety of training paradigms (Alberini et al. 1994; Michael et al.
1998; Lyons et al. 2006; Philips et al. 2013), we found that these
molecular events occur at similar timepoints in postsynaptic

MNs, a novel finding adding to the exist-
ing literature on postsynaptic effects of
LTF induction (Li et al. 2005; Hu et al.
2015; Jin et al. 2018). Interestingly, only
the postsynaptic (not presynaptic) events
we described are regulated by ApCRNF
signaling, suggesting that comparable
molecular events can have different re-
quirements and possibly different roles
in distinct cells. Moreover, these findings
suggest that a GF expressed both pre- and
postsynaptically, can exert cell-specific ef-
fects during the initiation of long-term
plasticity. It would be interesting to ex-
amine whether and how these cellular
specific effects of GF signaling are affected
by different learning-inducing patterns
(e.g., activity-dependent vs. activity-inde-
pendent training, LTF vs. long-term
depression inducing training).

An important question raised by our
data is how the differentmolecular events
induced by AD training interact to sup-
port LTF. Our experiments, in which we
disrupted ApCRNF signaling with extra-
cellular application of a blocking anti-
body during and for 1 h following AD
training, suggest that ApCRNF is released
and binds to receptors to induce post-
synaptic intracellular signaling during
the induction and/or the first hour of
consolidation of LTF. This is in agreement
with GFs being both rapidly released in
response to AD stimulation (Kuczewski
et al. 2009), and required for memory
during or shortly after behavioral train-
ing (Park and Poo 2013). Furthermore,
GF signaling has been shown to activate
the MAPK pathway in presynaptic neu-
rons following LTF-inducing training in
Aplysia (Hu et al. 2004; Chin et al. 2006;
Kopec et al. 2015). Our results add to this
literature by showing that GF signaling
also regulates postsynaptic MAPK activa-
tion. While the endogenous ApCRNF re-
ceptor and its signaling mechanisms are
not yet known, one way in which GF sig-
naling can activate MAPK is through re-

ceptor tyrosine kinase phosphorylation of Ras GTPases (Chao
2003). In addition, GF signaling andMAPK activation have been re-
ported upstream of C/EBP expression (Finkbeiner et al. 1997; Lyons
et al. 2006; Kopec et al. 2015). Interestingly, our data show that
ApCRNF signaling is required for 1-h MAPK activation and for 3-h
(but not 1-h) C/EBP expression inMNs, suggesting a possible mech-
anistic link between these twomolecular events. Although our data
do not provide evidence for a causal interaction between early
MAPK activation and late C/EBP expression, other studies in
Aplysia have reported that MAPK can positively regu-
late CREB-dependent transcription through multiple pathways
in response to learning-inducing stimuli (Michael et al. 1998;
Yamamoto et al. 1999; Lyons et al. 2006; Philips et al. 2013).
Alternatively, activation of kinases other than MAPK could be in-
duced downstream from ApCRNF and/or 5HT signaling and could
contribute to lateC/EBP expression. Intriguingly, in this andourpre-
vious study (Pu et al. 2014), we found that ApCRNF requires addi-
tional signaling downstream from 5HT receptors to induce its

A1 A2

B1 B2

B3 B4

Figure 2. ApCRNF signaling during AD training is required for MAPK activation exclusively in MNs.
Immunofluorescence analysis (as described in Liu et al. 2014) was performed on SN-MN cocultures at
1 h after AD training, or after treatment with a single 5 min pulse of 5HT (10 µM) and recombinant
ApCRNF protein (500 ng/mL), added 30 min before, during, and for 1 h after the 5HT pulse. MAPK ac-
tivation was assessed as mean fluorescence intensity of phosphorylated cytoplasmic MAPK in the cell
body (primary antibody: P-MAPK, 1:200 dilution, Cell Signaling Technology; secondary antibody:
Cy5, Abcam, 1:500 dilution). The trained samples were compared to and represented as a percentage
of ASW-treated controls. Representative images (A1) and summary data (A2) show that, in SNs, AD train-
ing induced a significant increase in MAPK activation in the presence of IgG (151.4 ± 13.5%, n=6, t13 =
2.817) and anti-ApCRNF (156.3 ± 12.8%, n=6, t13 = 3.143). (B1,B2) In MNs, AD training induced a sig-
nificant increase in MAPK activation in the presence of IgG (125.7 ± 5.4%, n=11, t21 = 2.206), but not in
the presence of anti-ApCRNF (98.8 ± 8.9%, n=12, t22 = 0.092, NS; between-group comparison t21 =
2.533). (B3,B4) In MNs, one pulse of 5HT and vehicle (0.1% BSA in ASW) did not significantly regulate
MAPK activation (101.5 ± 9.7%, n=17, t25 = 0.132, NS), but one pulse of 5HT and recombinant ApCRNF
induced a significant increase in MAPK activation (124.4 ± 6.7%, n =18, t29 = 2.810). Mean +SEM, two-
tailed, unpaired t-tests for within- and between-group comparisons, (*) P<0.05, (**) P<0.01. Scale bar
25 µm.

Postsynaptic effects of ApCRNF in AD-LTF

www.learnmem.org 126 Learning & Memory



effects. Two attractive candidates for such parallel pathways are
protein kinases A and C, which are known to be activated following
long-lasting memory-inducing training (Sutton and Carew 2000;
Shobe et al. 2009; Michel et al. 2011b) and to be required for
C/EBP activity (Kaang et al. 1993; Yamamoto et al. 1999).
Additionally, our data do not address whether the observed 3-h C/
EBP expression represents a wave of de novo gene expression, or sta-
bilization of previously (1-h) transcribed C/EBP mRNA, a posttran-
scriptional regulation required for LTF (Yim et al. 2006). Lastly,

our data show that ApCRNF signaling is also required forApCRNF in-
duction inMNs. Autoregulation of GF transcription has been previ-
ously described and proposed to produce positive feedback loops
that support long-lasting plasticity and memory (Zhang et al.
2016; Jin et al. 2018). In addition, in one of these proposed feedback
loops, early GF signaling is required for C/EBP expression, which in
turn is necessary for late GF gene expression (Bambah-Mukku et al.
2014). This raises the intriguing possibility that the 1-hC/EBP induc-
tion phase we observed in MNs is required for the 3-h ApCRNF in-
duction in the same neurons. Given our present results, it would
be interesting for future research to investigate the causal links be-
tween postsynaptic MAPK activation, C/EBP and ApCRNF gene ex-
pression, and their functional requirement in the induction of LTF.

Our findings suggest that, during and immediately after
AD training, ApCRNF specifically activates receptors on MNs.
However, it is possible that there are SNs effects that were not cap-
tured by the time points and signaling cascades we investigated
here. Moreover, our current results do not reveal whether
ApCRNF is released frompre- and/or postsynaptic sites, or whether
it acts in an autocrine or paracrinemanner. Future studies can read-
ily address these important questions by studying signaling in iso-
lated cultured neurons. Finally, ApCRNF is one of several Aplysia
GFs critically involved in memory-related plasticity (Zhang et al.
1997; Kassabov et al. 2013; Kukushkin et al. 2019), raising interest-
ing questions regarding how different GFs coordinate their unique
and shared signaling across time and space to contribute to the
complex molecular interactions between neighboring neurons at
critical synapses that support long-lasting plasticity and memory.
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