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INTRODUCTION

At the outset, I would like to make it clear that the purpose of this article is to highlight the
fundamental significance of recent discoveries that prove insects and crustaceans possess dedicated,
natural, adaptive, antiviral mechanisms that involve production of DNA for somatic and hereditary
functions. It is probable that these immune mechanisms do not occur in mammals and other
vertebrates. Instead of clearing viruses as vertebrate survivors usually do, crustaceans and insects
usually develop low level persistent infections (sometimes for multiple viruses) that can last for a
lifetime but produce no gross signs of disease (Flegel, 2020). These persistent infections are not latent
or chronic. They involve adaptive immunity that depends on shuttles between host and viral RNA
and DNA rather than depending on antibodies (which crustaceans and insects do not produce). The
hosts are persistently, actively infected and remain infectious for naïve members of their population,
sometimes with lethal consequences.

This phenomenon of tolerating viruses in persistent infections has been called viral
accommodation (Flegel, 2020). Based on accumulating evidence beginning around 2005 and on
a previously underappreciated publication (Lin et al., 1999), it was hypothesized (Flegel, 2009) that
the mechanism for viral accommodation involves natural, host autonomous genetic modification
(AGMo) that gives rise to natural transgenic organisms (NTO). Briefly, it was proposed that
crustaceans and insects can recognize foreign viral mRNA and make variable, fragmental cDNA
copies (called viral copy DNA or vcDNA) from it using endogenous reverse transcriptase (RT).
These copies are inserted into host genomic DNA by host integrase (IN). Some of these inserts
subsequently produce antisense-RNA transcripts that can induce a protective, antiviral response via
the RNA interference (RNAi) pathway. If they occur in germ-cell chromosomes, they are heritable,
and may result in heritable, adaptive immunity.

The first insertion of non-retroviral, viral genome fragments into a host insect genome was
described before 2000 (Lin et al., 1999), followed by others in both crustaceans and insects between
2006 and 2011 (Tang and Lightner, 2006; Maori et al., 2007; Saksmerprome et al., 2011). However, in
2012, after the discovery of such inserts in mammals, the term endogenous viral elements (EVE) was
used to describe them and was subsequently generally adopted (Feschotte and Gilbert, 2012).

Now, several publications on insects have given experimental proof that AGMo is involved in the
viral accommodation process in insects and that it gives rise to EVE resulting in NTO (Goic et al.,
2013; Goic et al., 2016; Whitfield et al., 2017; Tassetto et al., 2019; Suzuki et al., 2020). They have also
revealed that the EVE in mosquitos are located in PIWI-interacting RNA (PiRNA) gene-like clusters
and produce anti-sense RNA that results in an RNAi response via a newly discovered type of PIWI
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protein. The insect work also revealed, unexpectedly, that the
vcDNA was produced in both linear and circular forms and that
it was capable of producing small interfering RNA (siRNA) as an
immediate antiviral response (i.e., in addition to generating EVE that
may lead to RNAi by a less-direct pathway) (Tassetto et al., 2017).
These publications and those relating to crustaceans have recently
been reviewed (Flegel, 2020; Taengchaiyaphum et al., 2021).

OPINION

Here, I would like to focus on the fact that the insect discoveries
negate the former, general belief that animals do not possess
dedicated natural mechanisms for recording environmental
adaptations in hereditary DNA (except perhaps for epigenetics).
This expands the realm of AGMo and NTO well beyond that
previously revealed in the archaebacteria and eubacteria that
modify chromosomal DNA by the CRISPR mechanism for
antiviral immunity (Mojica et al., 2005; Makarova et al., 2020).
It also raises the possibility that similar mechanisms may occur in
eukaryotes other than crustaceans and insects.

One good outcome of the revelation that AGMo is an ancient,
natural biological process in bacteria and some animals is that the
widespread public fear of genetically modified organisms (GMO)
of any type may be unwarranted. Clearly, mankind has been living
together with at least some NTO, growing them, eating them and
using their products unknowingly for millennia without any
apparent harm. It is also probable that NTO may include plants
due to possible similar interactions with viral pathogens as those
described for crustaceans and insects (da Fonseca et al., 2016).

With respect to shrimp and economic insects, the new
knowledge raises tantalizing possibilities for future
applications. For example, a clear understanding of the process
of EVE generation, combined with the availability of specific
pathogen free (SPF) breeding stocks should allow for the
development of cultured crustaceans and insects such as bees
and silkworms that can tolerate most or all their current viral
threats. This should be achievable by injecting ovaries with
appropriately-designed, vaccine-like reagents that would feed
into the natural AGMo mechanism and result in acquisition
of protective EVE at specifically designated positions in the
genomic DNA of breeding-stock germ cells. Then, the
subsequent offspring could be screened for presence of the
resulting EVE. Use of chimeric primers for PCR would allow
for detection and maintenance of the relevant EVE in the
resulting NTO stocks, even in the absence of positive selective
pressure from continuous exposure to the relevant viruses.

However, for me, the most important ramification of these
discoveries is negation of the former paradigm that there were no
dedicated, natural mechanisms in eukaryotes for recording
adaptive, environmental responses in somatic or heritable,
chromosomal DNA. This negation should open the way for
fertile imaginations regarding other possible pathways that
might have arisen during evolution as selected beneficial
modifications of the underlying AGMo mechanisms to record
adaptive environmental responses in DNA of animals and
perhaps other eukaryotes. This might not be for germline

issues only, but also for advantageous, non-heritable somatic
processes. A good example of the latter is the use in host insects of
vcDNA in linear and circular forms to not only generate EVE but
also to launch an immediate, adaptive, systemic, anti-viral
immune response (Tassetto et al., 2017). That response
involves variable, individual somatic cell shuttles between RNA
and DNA, and also involves exosome-like vesicles (ELV) that can
serve as systemic transfer vehicles for siRNA and possibly vcDNA
via insect and crustacean blood (called hemolymph).

Is it possible, if not probable, that evolution has morphed the
currently known AGMo mechanisms to serve other purposes?
What might be the possibilities in organisms such as plants and
fungi, for example, that excel in asexual (somatic)
reproduction? I also wonder, for example, whether the
mechanisms might have morphed in a manner that has
allowed DNA (amongst the most stable molecules we know)
to serve as a somatic repository of long-term human memory.
Key features of AGMo seem to be available for such a purpose.
These would include the possibility of individual nerve cells to
carry out autonomous genetic modifications to select or modify
existing piRNA-like gene clusters or generate new piRNA like-
genes via PIWI proteins. Some cells may also have the ability to
transfer small RNA and DNA fragments (linear and/or
circular?) among cells via exosome-like vesicles as insects do
to defend against viruses. Indeed, exosomes carrying micro
RNA (miRNA) are already known to occur in cerebrospinal
fluid, but not in blood serum (Khasawneh et al., 2018; Akers
et al., 2015). Currently, this miRNA is studied mostly in
relationship to brain disfunctions.

With respect to being a candidate for involvement in long-term
memory, a necessary but currently missing feature is some type of
protein with RNA binding ability that might be activated by
sensations (site, sound, touch, etc) to initiate a pathway leading
to DNA-based long-term memory. If so, there is potential for
enormous variation in miRNA among individual brain cells and
even greater variation among individual people. As with EVE, these
individual intercellular differences would be difficult to
characterize, even by high throughput sequencing. Further, it is
likely that the individual “specific DNA sequence” for a common
sensory signal like “red” would vary from person to person and
require communicative learning to achieve group consensus. Since
extracellular products associated with these processes might be
disruptive if distributed throughout our bodies, is it possible that
the blood-brain barrier is there not just to keep some things out but
also to keep some things in? Under the former paradigm, these
thoughts would have been dismissed out of hand. Perhaps now,
they might not be considered as “useless, wild imaginings.” This is
just an example of the kind of speculation that I would like to
engender in skilled specialists with active imaginations, and
especially in the young who may be less encumbered by long
held convictions that might limit their willingness to explore
possibilities previously considered to be impossible.

The confirmation that NTO and its underlying mechanisms
exist in at least some eukaryotes opens a fascinating new frontier.
It is unpredictable where it may ultimately lead, but it has
potential to fundamentally affect all the biological sciences.
Thus, my main purpose here is to raise broad awareness of
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the underlying mechanisms of known AGMo that leads to NTO
and to awaken the curiosity and fertile imaginations of those who
may wish to explore this new frontier.
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