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Abstract

Background: Epicutaneous immunotherapy (EPIT) is a promising method for treating

food allergies. In animal models, EPIT induces sustained unresponsiveness and pre-

vents further sensitization mediated by Tregs. Here, we elucidate the mechanisms

underlying the therapeutic effect of EPIT, by characterizing the kinetics of DNA

methylation changes in sorted cells from spleen and blood and by evaluating its per-

sistence and bystander effect compared to oral immunotherapy (OIT).

Methods: BALB/c mice orally sensitized to peanut proteins (PPE) were treated by

EPIT using a PPE-patch or by PPE-OIT. Another set of peanut-sensitized mice trea-

ted by EPIT or OIT were sacrificed following a protocol of sensitization to OVA.

DNA methylation was analyzed during immunotherapy and 8 weeks after the end

of treatment in sorted cells from spleen and blood by pyrosequencing. Humoral and

cellular responses were measured during and after immunotherapy.

Results: Analyses showed a significant hypermethylation of the Gata3 promoter

detectable only in Th2 cells for EPIT from the 4th week and a significant

hypomethylation of the Foxp3 promoter in CD62L+ Tregs, which was sustained only

for EPIT. In addition, mice treated with EPIT were protected from subsequent sensi-

tization and maintained the epigenetic signature characteristic for EPIT.

Conclusions: Our study demonstrates that EPIT leads to a unique and stable epige-

netic signature in specific T-cell compartments with downregulation of Th2 key reg-

ulators and upregulation of Treg transcription factors, likely explaining the

sustainability of protection and the observed bystander effect.
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1 | INTRODUCTION

Allergen-specific immunotherapy is an attractive strategy for the

treatment of food allergy.1,2 Epicutaneous immunotherapy (EPIT)

has proven efficacious in animal models 3-6 and more recently in

humans.7-9 The aim of EPIT is to reduce sensitivity to an allergen

(desensitization) or to abolish sensitivity altogether (tolerance or

sustained unresponsiveness, defined as the continued absence or

reduction of sensitivity after the completion of therapy and dis-

continuation of repeated allergen exposure). The mechanism of

immune tolerance to allergens remains largely unknown, but pre-

liminary studies demonstrated increased levels of allergen-specific

blocking IgG antibody associated with a reduction in specific IgE

levels,3,4 reduced recruitment of inflammatory cells such as eosino-

phils,5 and prevention of sensitization to further allergens.6 In this

study, we investigated a well-characterized mouse model of pea-

nut sensitization combined with EPIT to define epigenetic mecha-

nisms underlying the induction of desensitization to peanut with

EPIT. More precisely, the DNA methylation patterns were evalu-

ated in the gene regulatory regions of four key transcription fac-

tors involved in T-cell lineage differentiation (Gata3 (Th2), Tbx21

(Th1), Rorc (Th17), and Foxp3 (Tregs)).

As key immune-regulatory cells, Tregs have been shown to play

a pivotal role in maintaining immune tolerance following epicuta-

neous immunotherapy in a mouse model.10,11 Moreover, several

studies have demonstrated that epigenetic modifications in CpG-rich

regions within the FOXP3 locus are associated with stable FOXP3

expression and cell-suppressive functions of Tregs.12-16

We hypothesized that Foxp3+ Tregs might play a key role in the

process of immune tolerance in both animal models and humans and

thus investigated epigenetic modification at the Foxp3 locus within T

cells. We also evaluated whether the decrease in IgE and/or Th2

cytokines could be associated with epigenetic alterations of the Th2

key regulator Gata3. To decipher the regulation of Treg and Th2 sig-

naling, we engaged in epigenetic analyses of specific T-cell subsets

(Th1, Th2, CD62L+ Tregs, and CD62L� Tregs).

Here, we identify an epigenetic signature of Th2 cells and CD62L+

Tregs unique to EPIT-treated animals that could be considered for

monitoring immunotherapy.

2 | MATERIALS AND METHODS

2.1 | Animals

Three-week-old female BALB/c mice (Charles River, Lyon, France)

were housed under standard animal husbandry conditions. All experi-

ment was performed according to the European Community rules on

animal care and with a positive evaluation from the Ethical Commit-

tee no 26 (2012-041). Mice were acclimated for 1 week before

starting the sensitization to peanut protein (PPE).
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GRAPHICAL ABSTRACT

EPIT induces sustained hypermethylation of Gata3 in Th2 cells and demethylation of Foxp3 in CD62L+ Tregs. The epigenetic signature is

unique compared to OIT. Gata3 hypermethylation and Foxp3 demethylation correlate with biologic effects, particularly the protection against

further sensitizations.
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2.2 | Induction of sensitization and epicutaneous
immunotherapy

Mice were first sensitized to PPE by means of 6 intragastric gavages

as previously described,3,4,17 with 1 mg of PPE mixed with 10 lg of

Cholera Toxin (Servibio, USA). Sensitization was monitored by evalu-

ating blood samples for the production of specific IgE (ie, 10 days

after the last gavage) as detailed in the Data S1.

2.2.1 | Experiment 1

In a first experiment, sensitized mice were divided into two groups,

one group treated by EPIT and the other one not treated (Sham).

Epicutaneous immunotherapy was performed using the Viaskin�

patch (DBV Technologies, Paris, France) loaded with 100 lg of PPE

and an 8-week consecutive treatment protocol, which has previously

been described (Figure 1A).3,4 Two groups of 8 mice were sacrificed

after sensitization at weeks 1, 2, 4, and 8 of immunotherapy and

8 weeks after the end of immunotherapy (8 + 8 weeks).

2.2.2 | Experiment 2

In a second experiment, sensitized mice treated as indicated in

experiment 1 were sacrificed at the end of the sensitization proce-

dure, at the end of EPIT and 8 weeks after the end of EPIT for har-

vesting spleens for cell extraction and sorting of Th1, Th2, CD62L+

Tregs, and CD62L� Tregs (detailed procedure in the Data S1).

2.2.3 | Experiment 3

In a third experiment, sensitized mice were divided into three groups,

one group treated by EPIT, the second one by oral immunotherapy

(OIT), and the third one not treated (Sham). Epicutaneous immunother-

apy was performed as described above, and OIT was performed fol-

lowing the protocol published by Diozeghy et al11 adapted from

Leonard et al18 consisting of the administration of 1 mg of PPE the

first week, 2 mg the second week, then 5 mg the 5 following weeks.

Mice were sacrificed as previously described, with groups dedicated to

specific time points. In addition, 3 groups (EPIT, OIT, and Sham) were

exposed to a procedure of sensitization to ovalbumin (OVA) after com-

pleting the immunotherapy phase as previously described 3,19 and then

were sacrificed 10 days after the end of sensitization to OVA.

For the two experiments, blood and spleens were collected after

sacrifice to stimulate in vitro splenocytes and/or purify cell

populations using magnetic beads isolation kits (Miltenyi Biotec,

Paris, France).

2.2.4 | Experiment 4

In a fourth experiment, we applied a previously described procedure

to isolate Tregs from milk-sensitized mice treated by EPIT.6 More

precisely, a group of mice were first sensitized to milk and then epi-

cutaneously treated with milk EPIT or placebo (Sham) patch. After

sacrifice, spleens were harvested to isolate 2 subsets of Tregs (at

least 95% purity): CD62L+ expressing cells or not (detailed procedure

in Data S1). Tregs were then transferred to nonsensitized mice

before initiating sensitization to peanuts.6 A group of mice, which

did not receive Tregs and were sensitized to peanuts, served as posi-

tive controls. Mice were challenged intravenously, and thirty minutes

after the challenge, body temperature was measured as well as

mouse mast cell protease-1 (mMCP1) in plasma.6 This experiment

was reproduced 2 times.

2.3 | Evaluation of the methylation level of
transcription factors in cells isolated from spleen and
blood

Amplification products were designed to regions known to exhibit T-

cell lineage-specific differential DNA methylation including the Treg-

specific demethylated region in Foxp3,15 the CpG island in the first

exon of Rorc,20,21 the CpG island in the first intron of Tbx21,22 and

the promoter-associated CpG island of Gata3.6 Details on the

pyrosequencing analysis are given in the Data S1.23

2.4 | Measurement of Gata3 mRNA expression

mRNA expression of Gata3 was analyzed by qPCR using the follow-

ing amplification primers: Gata3 50-GAGGAGGAACGCTAATGG-30

and 50-TTTCGATTTGCTAGACATCTTC-30 and normalized to the

geometric mean of the expression of three reference genes (Sdha,

Actb, and Ppia; detailed procedure in Data S1).24

2.5 | Statistical analysis

Differences between groups were analyzed by a Mann-Whitney,

ANOVA, or Kruskall-Wallis test followed by post hoc analysis with

Dunn’s or Tukey’s multiple comparisons test. The GraphPad Prism

Software 6.0 (San Diego, CA, USA) was used for statistical analysis.

F IGURE 1 Epicutaneous immunotherapy (EPIT) induces DNA hypermethylation of Gata3 and hypomethylation of Foxp3 in CD4+ cells
purified from spleen and blood during EPIT, which is accompanied by a reduction of Gata3 mRNA expression in CD4+ cells purified from the
spleen. A, Experimental design for the methylation analysis of DNA isolated from CD4+ T cells, CD8+ T cells, and CD19+ B cells (of spleen and
blood) occurring during EPIT for sensitized mice epicutaneously treated using a patch loaded with peanut protein extract (EPIT) or a placebo
(Sham). Analysis of the methylation levels of the Gata3 promoter in CD4+ cells isolated from (B) spleen and (C) whole blood at week 8 (8 wk)
of EPIT and 8 weeks after the end of EPIT (8 + 8 wk). Analysis of the methylation levels of Foxp3 in CD4+ cells isolated from (D) spleen and
(E) whole blood at week 8 (8 wk) of EPIT and 8 weeks after the end of EPIT (8 + 8 wk). (F) Measurement of the expression level of Gata3
mRNA by RT-qPCR. Results are expressed as individual data and median. Differences between groups were analyzed by a Kruskall-Wallis test
followed by Dunn’s multiple comparison test. *P < .05, **P < .01 and ***P < .001
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Results are expressed as individuals and/or median with range. A

value of P < .05 after correction for multiple testing was considered

significant.

3 | RESULTS

3.1 | Epicutaneous immunotherapy modifies the
level of DNA methylation for Th2 and Treg
transcription factors

In a first experiment, sensitized mice were divided into two groups,

one group treated by EPIT and the other one not treated (Sham)

(Figure 1A). The level of DNA methylation at the Gata3 promoter in

spleen and blood CD4+ cells was comparable in mice peanut sensi-

tized and in naive mice (Figure S1 a and b). During EPIT, the level of

methylation increased significantly from the 4th week of treatment

in CD4+ cells from spleen of peanut-sensitized mice (P < .05,

Figure S1a) and blood (P < .01, Figure S1b). The methylation level

observed at the end of EPIT (week 8) (Figure 1B and C) was sus-

tained 8 weeks after the end of EPIT (P < .01 in spleen and

P < .001 in blood). The Gata3 hypermethylation was accompanied

by a decrease in Gata3 mRNA expression observed at the end

(P < .01 vs Sham) and 8 weeks after the end of EPIT (P < .05 vs

Sham) (Figure 1F). No change in the DNA methylation was seen at

the Gata3 promoter in CD19+ and CD8+ cells from spleen and blood

(Figure S2a-d).

In the Treg-specific demethylated regions (TSDR) of Foxp3, methy-

lation in CD4+ cells in spleen and blood was comparable in mice sensi-

tized to peanut and in naive mice (Figure S1c and d). The level of

methylation for the TSDR of Foxp3 significantly decreased during

EPIT, from the 4th week of treatment (Figure S1c-d, P < .001 and

P < .01) until the end (Figure 1D and E, P < .01 for both). The methy-

lation decrease was sustained 8 weeks after the end of treatment in

spleen (P < .001) and blood (P < .01) (Figure 1D and E). The increase
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F IGURE 2 Epicutaneous immunotherapy (EPIT) decreases the Th2 profile in serological and cellular responses (spleen) to peanut protein
extract. (A-C) Sera were harvested after sensitization to peanut protein (PPE) (W0) and during EPIT (W2, W4, W6, and W8) and after the end
of EPIT, in the Sham, EPIT, and naive groups until 8 weeks off treatment (W8 + 8), to measure, respectively IgE, IgG1, and IgG2a reactive to
PPE. (D) The percentage of CD4+CD25+Foxp3+ cells was evaluated after harvesting of splenocytes. (E-G) Measurement of cytokines secreted
by splenocytes after 3 d of reactivation. Results are expressed as mean � SD in lg/mL or in percentage of total splenocytes for Tregs and in
pg/mL for cytokines. Differences between groups were analyzed by a Kruskall-Wallis test followed by Dunn’s multiple comparison test, and
differences between time points for the same treatment groups were analyzed by ANOVA followed by Tukey’s multiple comparisons test.
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2 wk, 4 wk; ΦP < .05 EPIT 1 wk vs EPIT 2 wk, 4 wk, 8 wk, 8 + 8wk
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in the expression of Foxp3 has previously been published.5,10 No

change was observed in the other cells (CD8+ and CD19+) isolated

from spleen and blood as expected (Figure S2e-h).

No change was observed for the Rorc and Tbx21 promoters

whatever the source (spleen or blood) or the cell type (CD4+, CD8+

or CD19+) (Figure S3 for RORc and Figure S4 for Tbx21).

3.2 | Foxp3 demethylation and Gata3
hypermethylation correlate with biological effects
induced by EPIT

Specific antibodies (sIgE, sIgG1, and sIgG2a) were monitored after

sensitization and every 2 weeks during the 8 weeks of EPIT and after

8 weeks without EPIT (Figure 2A-C). During the 8 weeks of EPIT, sIgE

slowly decreased and there was a significant difference between EPIT

and Sham (P < .05) at the end of the treatment (Figure 2A). This sig-

nificant difference was maintained after the end of the treatment by

EPIT. There was no modification during and after EPIT for sIgG1 (Fig-

ure 2B), while sIgG2a significantly increased in EPIT-treated mice

compared with Sham (P < .05) from the 2nd week until the end of

immunotherapy (Figure 2C). No changes were observed in Sham-trea-

ted mice. The significant increase in sIgG2a observed for EPIT was

sustained 8 weeks after the end of immunotherapy (P < .01).

Moreover, the proportion of CD4+CD25+Foxp3+ Tregs was signifi-

cantly enhanced when analyzed directly after harvesting splenocytes

in peanut-sensitized mice compared with negative control/na€ıve mice

and further increased by EPIT compared with Sham after 8 weeks of

immunotherapy (P < .05, Figure 2D). This induction remained signifi-

cant compared with Sham after the end of the treatment of EPIT

(P < .05, Figure 2D). No significant increase in Tregs compared with

sensitized mice was obtained for Sham whatever the time point ana-

lyzed.

In parallel, Th2 cytokines were measured in the supernatants of

in vitro reactivated splenocytes. Splenocytes from EPIT-treated mice

produced significantly less Il4, Il5, and Il13 (at least P < .05), com-

pared with Sham, from the 2nd week of treatment until the end of

treatment (Figure 2E-G) and remained significantly lower 8 weeks

after the end of EPIT (P < .05, Figure 2E-G). We evaluated also

expression of Ifn-c and Il10, but did not observe any change after

EPIT in comparison with Sham (data not shown).

F IGURE 3 Epicutaneous immunotherapy (EPIT) does not modify the proportions of Th1 and Th2 cells, but increases Foxp3+ Tregs,
CD62L+, and CD62L� Tregs obtained from spleen. Gating strategy (A and D) and analysis of the proportions of Th2 (B), Th1 (C) after a short
in vitro stimulation with PMA-ionomycin, and Foxp3+ Tregs (E), Foxp3+ CD62L+ Tregs (F), and Foxp3+ CD62L� Tregs (G) ex vivo after EPIT.
For CD4+, IL4+, and IFNc+ gates, the y-axis was arbitrarily defined with a fluorochrome different from those used in the gating strategy and
without any specific antibody (PerCP-Cy5.5 or APR-Cy7). Results are expressed as mean � SD in percentage of total CD4+ T cells. Differences
between groups were analyzed by a Mann-Whitney test. *P < .05, ***P < .001
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3.3 | Foxp3 demethylation and Gata3
hypermethylation occur in different cell populations,
respectively CD62L+ Tregs and Th2 cells

Tregs and Th2 cells are involved in allergic sensitization to food, and

we monitored whether those changes reflect an altered distribution

of T-cell subsets or a change in the epigenetic profile of a particular

T-cell subpopulation. After peanut sensitization and 8 weeks of pea-

nut EPIT, the proportions of Th1, Th2, and Foxp3+ Treg cells were

analyzed by cell sorting (Figure 3A and D). The proportion of Th1

and Th2 cells was not modified by EPIT (Figure 3B-C). As previously

shown in independent experiments,11 Foxp3+ Tregs increased during

EPIT to a similar extent in CD62L+ and CD62L� subsets (Figure 3E-

G). The methylation level for Gata3 did not vary in Th1, CD62L+,

and CD62L� Tregs (Figure 4B, F and H). In contrast, the methylation

level of Gata3 increased significantly following EPIT in Th2 cells

(P < .05; Figure 4D) and was maintained 8 weeks after the end of

EPIT (P < .05; Figure 4D). Of note, Th2 cells were the only analyzed

cell subtype in which Gata3 was not methylated, Foxp3 demethyla-

tion did not occur in Th1 (Figure 4C), Th2 (Figure 4E), which were

found nearly completely methylated, or CD62L� Tregs (Figure 4I). A

significant decrease in methylation level in Foxp3 was only seen in

CD62L+ Tregs after EPIT (P < .05 vs Sham; Figure 4G) and was

maintained 8 weeks after the end of EPIT (P < .001 vs Sham; Fig-

ure 4G).

3.4 | The epigenetic signature observed with EPIT
is unique compared with OIT

In an independent experiment, we assessed the methylation changes

in spleen and blood CD4+ T cells isolated from peanut-sensitized mice

in EPIT, Sham and in a third group receiving OIT. The efficiency of OIT

was verified through the measurement of specific IgE and IgG2a, yield-

ing similar results than those obtained in Dioszeghy et al11 (data not

shown). This confirmed that the degree of methylation of the Gata3

promoter increased significantly during EPIT in CD4+ T cells from

spleen (P < .05 at the end of treatment, Figure 5B) and blood (P < .01

at the end of treatment, Figure 5C), whereas the DNA methylation

level of the Foxp3 TSDR decreased significantly during EPIT in spleen

(P < .01 at the end of treatment, Figure 5D) and in blood (P < .01 at

the end of treatment, Figure 5E). For EPIT, epigenetic changes were

sustained after the end of the treatment (8 + 8 week, Figure 5B-E).

Oral immunotherapy did not modify the methylation level of

the Gata3 promoter in spleen or blood compared with Sham (Fig-

ure 5B and C). Furthermore, the level of DNA methylation

remained unaltered compared with Sham 8 weeks after the end of

treatment (8 + 8 week). In the Foxp3 TSDR, a methylation decrease

was observed in the spleen (P < .05) together with a trend for a

decrease in the blood (P = .0649) (Figure 5D and E). Those modifi-

cations were not sustained after the end of OIT treatment

(8 + 8 week) in both spleen and blood. In agreement with the first
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F IGURE 4 Hypermethylation of Gata3 is restricted to Th2 cells and hypomethylation to Foxp3 in CD62L+ Tregs at the end of epicutaneous
immunotherapy (EPIT) and 8 weeks after the end of EPIT. (A) Experimental design for the methylation analysis in T-cell compartments (Th1,
Th2, and Tregs). Analysis of the methylation levels of the Gata3 promoter and the Foxp3 Treg-specific demethylated regions (TSDR) in Th1 (B
and C) and Th2 cells (D and E), CD62L+ Tregs (F and G), and CD62L� Tregs (H and I) isolated from spleen at week 8 (immediately after
treatment) or 8 weeks after the end of EPIT (sustainability). Results are expressed as individual data, and median. Differences between groups
were analyzed by a Kruskall-Wallis test followed by Dunn’s multiple comparison test. ns nonsignificant, *P < .05, **P < .01
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experiment, there was no modification in the DNA methylation

levels for the Tbet and Rorc promoters in spleen or blood whatever

the immunotherapy treatment.

3.5 | The epigenetic signature is maintained after
sensitization to a new allergen (OVA) and correlates
with the absence of sensitization to OVA
(nonallergen-specific effect)

The DNA methylation patterns were assessed in spleen and blood

CD4+ T cells from peanut-sensitized mice treated by EPIT, Sham or

OIT and subsequently submitted to a protocol of sensitization to

OVA. During this protocol, the methylation level of the Gata3 pro-

moter remained significantly increased in EPIT mice, compared to

Sham, in the spleen (P < .05, Figure 5B) and blood (P < .05,

Figure 5C). In parallel, the methylation degree of the Foxp3 TSDR in

EPIT-treated mice remained significantly decreased, compared to

Sham, in spleen (P < .05, Figure 5D) and blood (P < .01, Figure 5C).

Oral immunotherapy did not modify the Gata3 promoter methylation

in spleen or blood (Figure 5B-C), compared to Sham. On the con-

trary, during the OIT protocol of sensitization to OVA, the Foxp3

TSDR methylation level significantly decreased, compared to Sham,

in spleen (P < .05, Figure 5D) and blood (P < .05, Figure 5E).

Specific antibodies (sIgE, sIgG1, and sIgG2a) were monitored

after the sensitization to OVA as new allergen (Figure 5F-H). sIgE

and sIgG1 levels were significantly enhanced for Sham and OIT

compared with EPIT (P < .01), whereas sIgG2a was significantly

increased for EPIT compared with Sham and OIT (P < .01).

F IGURE 5 Epicutaneous immunotherapy (EPIT) leads to a unique DNA methylation profile in CD4+ cells (spleen and blood) compared with
oral immunotherapy (OIT) in peanut-sensitized mice, which is sustained after sensitization to ovalbumin (OVA) (new allergen) and correlates
with serological response to OVA. (A) Experimental design. Analysis of the methylation levels of the Gata3 promoter in CD4+ cells isolated
from (B) spleen and (C) whole blood at week 8 (8 wk) of EPIT or OIT, 8 weeks after the end of immunotherapies (8 + 8 wk) and after
sensitization to OVA. Analysis of the methylation levels of Foxp3 in CD4+ cells isolated from (D) spleen and (E) whole blood at week 8 (8 wk)
of EPIT or OIT, 8 weeks after the end of immunotherapies (8 + 8 wk) and after sensitization to OVA. (F-H) Sera were harvested after EPIT to
peanut protein (PPE) and sensitization to OVA for the EPIT, OIT, and Sham groups, to measure, respectively, IgE, IgG1, and IgG2a reactive to
OVA. For methylation analyses, differences between groups were analyzed by a Kruskall-Wallis test followed by Dunn’s multiple comparison
test. For sera, differences between groups were analyzed by a Mann-Whitney test. Results are expressed as individual data and median. ns
nonsignificant, *P < .05, **P < .01
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3.6 | Foxp3 DNA demethylation on CD62L+ Tregs is
associated with prevention from further sensitization
conferred by EPIT (nonallergen-specific effect)

Given the link between CD62L+ Treg cell numbers, Foxp3 expres-

sion, the desensitization process, and long-term protection, we

determined whether protection could be transferred by CD62L+

and/or CD62L� Tregs. The latter were isolated from milk-EPIT-trea-

ted mice and injected to na€ıve mice before peanut sensitization and

intravenous challenge. Serum levels of peanut-specific IgE increased

significantly in the positive control and the CD62L� Treg groups

(P < .01; Figure 6B), compared to the negative control group. No
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F IGURE 6 Demethylated CD62L+ Tregs confer protection against sensitization to a new allergen (peanut). (A) Experimental design for the
evaluation of the bystander effect conferred by CD62L+ Tregs and CD62L� Tregs after epicutaneous immunotherapy (EPIT). (B) and (C)
serological response to sensitization to peanut expressed in lg/mL; (D) and (E) anaphylaxis was evaluated by measuring body temperature and
the level of mMCP1 in plasma 30 min after intravenous injection of peanut solution in negative control, positive control, CD62L+ Treg EPIT,
and CD62L� Treg EPIT groups. Differences between groups were analyzed by a Kruskall-Wallis test followed by Dunn’s multiple comparison
test. Individual data and medians are plotted *P < .05, **P < .01, ***P < .001
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increase in peanut-specific IgG2a was observed for these groups

(Figure 6C). Mice with CD62L+ Tregs transfer before peanut sensiti-

zation did not develop peanut-specific IgE, compared to the positive

control group (P < .01, Figure 6B), but significantly increased pea-

nut-specific IgG2a (P < .001; Figure 6C). The positive control and

CD62L� Treg groups developed anaphylaxis during peanut challenge

marked by a drop in temperature (�6°C, P < .001 vs negative con-

trol group and �5°C, P < .01 negative control group, respectively)

(Figure 6D) and increase in plasma mMCP1 (P < .001 and P < .01 vs

negative control group) (Figure 6E). Mice with CD62L+ Treg transfer

before peanut sensitization were protected from anaphylaxis com-

pared with the positive control group (P < .001 for temperature drop

and P < .01 for plasma mMCP1, Figure 6D and E).

4 | DISCUSSION

Epicutaneous immunotherapy is a promising treatment option for

food allergy, based on animal models3-5 and clinical trials.7-9 A com-

prehensive analysis of epigenetic modifications induced by EPIT and

their role in the regulation of the immune response is currently lack-

ing. The present study, in a model of peanut-sensitized mice, shows

that the induction of a unique epigenetic signature by EPIT might

account for both the sustainable effect of EPIT and its ability to pre-

vent sensitization to further allergens, as previously shown.6

In this study, we tested whether the methylation of key tran-

scription factors (Gata3, Tbet, Rorc, and Foxp3) is involved in the effi-

cacy of EPIT, its sustainability, and the bystander effect.6 Mice

sensitized to peanuts have been widely used to prove the biological

and clinical efficacy of EPIT.3-6 Changes in DNA methylation were

measured in cells sorted from spleen and blood, more precisely T

cells (CD4+ and CD8+) and B cells (CD19+), and then more specifi-

cally in Th1, Th2, CD62L+ Tregs, and CD62L� Tregs, likely the key

cell populations for EPIT, based on current knowledge.10 Sorting cell

populations is crucial: DNA methylation differences may relate to

individual variations or be diluted or masked if the cell population of

interest is a minor component of PBMCs (reviewed in25), such as for

Tregs.26,27 Genome-wide studies in autoimmune diseases have high-

lighted the diverging DNA methylation patterns in disease-relevant

blood cell populations,28,29 and the advantage of detecting larger

(and more robust) methylation differences when working with cell-

sorted populations compared with whole blood.30 In this study,

sorted cells were not antigen-specific, which could explain some dif-

ferences compared with published data.16

The hypermethylation of the Gata3 promoter and hypomethyla-

tion of the Foxp3 TSDR induced by EPIT occur only in CD4+ T cells

and correlate with previous findings of biological parameters. Gata3 is

a key transcription factor in immune regulation,31 for example, Th2 dif-

ferentiation and function32 and in the regulation of Treg cell function

by binding to the regulatory regions of the Foxp3 locus. The methyla-

tion of a CpG-rich island of Gata3 decreases its expression, as con-

firmed in the present study, directly decreasing allergy-skewing

cytokines (Il4, Il5 and Il13) secretion. Although numerous disease-

relevant cell populations express Gata3 (eg, eosinophils, mast cells,

innate lymphoid cells, and other T-cell subsets), sorting CD4+ Th1,

Th2, and Treg cell subsets delineated the effect only to the Th2 lin-

eage. This change was not observed in CD4+ T cells isolated after OIT.

A growing body of evidence suggests that DNA methylation in combi-

nation with other epigenetic modifications such as histone modifica-

tions is critical for the development of Th2 immunity and allergic

disease.33,34 The promoter of Gata3 is marked by both activating and

repressing histone modifications, a bivalent state also reported after

Th2 lineage determination,35 which commonly goes along with a larger

plasticity compared with DNA methylation at Th1/Th2 regulatory

regions.36 Interestingly, the proportion of Th2 cells in spleen was not

modified by EPIT, whereas their methylation level was enhanced, sug-

gesting a change of the phenotype of the Th2 population upon EPIT

similar to what was recently observed for eosinophils in asthma and

which probably correspond to a different activation state.37

Our data suggest that changes at the Gata3 locus may dramatically

influence cellular responses, including T-cell cytokine secretion and B-

cell production (decrease of specific IgE). At the clinical level, DNA

methylation changes in genes with direct relevance to Th2 immunity

and asthma are associated with allergic asthma in innercity children38

as well as the protective farm environment.39 Binding sites of GATA3

are found in the promoter region of Il5 and Il13.40 Therefore, the mod-

ulation of Gata3 could allow the simultaneous abrogation of the

expression of a number of inflammatory cytokines and the decline of

the excessive Th2 lineage specification.41,42

FOXP3 is a specific marker of Treg cells and serves as a lineage

specification transcriptional factor of Treg cells. Both mice and

human mutations of FOXP3 result in a complex syndrome of dysreg-

ulation and enteropathy.43,44 DNA methylation of promoter and

gene regulatory elements of Foxp3 were shown to influence the

development of regulatory T cells.14,45 The sustained expression of

FOXP3 is critical for maintaining regulatory function,45 and a

demethylated pattern of the TSDR is a prerequisite for stable Foxp3

expression and their suppressive phenotype.15,46,47 The TSDR is the

region ensuring both a persistent expression and the suppressive

functions, through a positive feedback mechanism, during which

FOXP3 binds to its own gene. Our experiment suggests that EPIT

decreased the methylation level of the Foxp3 TSDR, which is linked

to the induction of Tregs observed during EPIT in a mouse model.10

A similar demethylation of the same region has previously been

reported after OIT in a small human cohort.16 Surprisingly,

hypomethylation of the Foxp3 TSDR was specifically identified in

only CD62L+ Tregs, shown to be specifically induced by EPIT com-

pared with other forms of immunotherapy.11,48 CD62L+ Tregs have

been associated with a more suppressive phenotype49 and pre-

vented severe tissue damage to the colon and protected recipients

from lethal GVHD,50 suggesting a broad range of action.

The ultimate goal for specific immunotherapy of food allergy is a

long-term effect. Discordant results have been published about the

sustained unresponsiveness following the termination of OIT (re-

viewed in51). Recently, it has been shown that 3 (of 23) patients with

sustained unresponsiveness for 3 months had persistent
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hypomethylation of FOXP3.16 Similarly, successful dual sublingual

immunotherapy (to timothy grass and dust mite) with possible long-

term tolerance was supported by epigenetic modifications of the

FOXP3 promoter and TSDR in memory regulatory T cells.12 Here, we

show the sustainability of epigenetic modifications at Foxp3, but also

at Gata3. Our data on the hypomethylation of the Foxp3 TSDR provide

one explanation for the long-lasting production and suppressive func-

tion of EPIT-induced Tregs obtained by our group in similar mouse

experiments.10 Interestingly, the alteration of the methylation status—

hypermethylation of the Gata3 promoter and hypomethylation of the

Foxp3 TSDR—persisted beyond 2 months and even appeared stable

despite exposure of animals to a protocol of further sensitization with

2 injections of OVA mixed with Alum. In addition, the large preventive

action of EPIT against further sensitization—the bystander effect—ob-

served in the mouse model6 might be supported by persistent DNA

methylation changes. Previously, we have shown that the transfer of

EPIT-induced Tregs, and not Tregs from sensitized, but nontreated

mice, conferred a protection against further sensitization to a different

allergen, independently of the antigen sequence used. Here, the role

of CD62L+ Tregs in this bystander effect is supported by adoptive

transfer of this cell population generated during milk-EPIT in naive

mice prior to initiating a protocol of sensitization to peanut. The pro-

tective effect against further sensitization could be clearly attributed

to CD62L+ Tregs. As the antigen sequence was not responsible for the

effect as previously demonstrated,6 we hypothesize that their higher

suppressive effect could be at least partly conferred by the

hypomethylation of Foxp3, observed in CD62L+ Tregs isolated after

peanut EPIT. A more detailed investigation on CD62L+ Tregs isolated

after milk-EPIT is required to confirm this hypothesis. These data sug-

gest that CD62L+ Tregs induced by EPIT can prevent sensitization to

new allergens, and our findings are consistent with previous results on

this Treg population.50,52,53

Finally, this work suggests a potential biomarker to identify

patients that have responded to EPIT. Martino et al54 suggested that

DNA methylation biomarkers could be a novel diagnostic test in

patients with food allergy. In our study, DNA methylation of two

key genes (Gata3 and Foxp3) was modulated by EPIT and could be

measured in the spleen and in blood from the 4th week of EPIT

onward, without analyzing antigen-specific cells.

Although we identified strong associations between DNA methy-

lation changes at the Gata3 promoter and in the TSDR of Foxp3 with

the efficacy and sustainability of EPIT, additional studies in ongoing

clinical trials are required to confirm that similar epigenetic changes

occur during EPIT in allergic patients and their relationship to ade-

quate immune responses.

Finally, this methylation pattern is specifically observed following

EPIT and not OIT in peanut-sensitized mice, supporting differences

in the mechanisms of actions between the two immunotherapies.7,11

Taken together, we demonstrate in a model of peanut-sensitized

mice that epigenetic regulation of Th2 cells and CD62L+ Tregs

induced by EPIT is strongly involved in its desensitization process,

marked by Th2 repression and Treg enhancement, in the sustainabil-

ity of those mechanisms and in the prevention of new sensitizations.
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