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Abstract
Objective  The purpose of this study was to define 
a new index the Robust Exponential Decreasing Index 
(REDI), which is capable of an improved analysis of the 
cumulative workload. This allows for precise control of 
the decreasing influence of load over time. Additionally, 
REDI is robust to missing data that are frequently 
present in sport.
Methods  200 cumulative workloads were simulated 
in two ways (Gaussian and uniform distributions) to test 
the robustness and flexibility of the REDI, as compared 
with classical methods (acute:chronic workload ratio 
and exponentially weighted moving average). Theoretical 
properties have been highlighted especially around the 
decreasing parameter.
Results  The REDI allows practitioners to consistently 
monitor load with missing data as it remains consistent 
even when a significant portion of the dataset is absent. 
Adjusting the decreasing parameter allows practitioners 
to choose the weight given to each daily workload.
Discussion  Computation of cumulative workload is 
not easy due to many factors (weekends, international 
training sessions, national selections and injuries). 
Several practical and theoretical drawbacks of the 
existing indices are discussed in the paper, especially 
in the context of missing data; the REDI aims to settle 
some of them. The decreasing parameter may be 
modified according to the studied sport. Further research 
should focus on methodology around setting this 
parameter.
Conclusion  The robust and adaptable nature of the 
REDI is a credible alternative for computing a cumulative 
workload with decreasing weight over time.

Introduction
Premises of workload analysis
One of the fundamental reasons that 
athletes are monitored is to measure their 
progress in response to their training.1 2 
Individual responses to training stress may 
vary,3 4 and an appropriate follow-up method 
could aid in identifying these.5 The moni-
toring of training also plays an important 
role in injury prevention.6 In particular, 
previous research has often focused on 

the relationship between training load and 
injury risk.7–10

Banister11 was one of the first people 
to introduce the notions of fitness and 
fatigue that correspond to the positive and 
negative adaptations from training. The 
largest difference between these adapta-
tions is obtained when athletes reach their 
highest performance level, that is, when 
the negative consequences of their training 
(injury, illness, fatigue and over-reaching) 
are limited and the positive ones are opti-
mised.12

Foster proposed the rating of perceived 
exertion (RPE) session assessment, an index 
that can be adapted to a large number of 
activities.12–14 The training load is subjec-
tively measured through the RPE in order 
to relatively quantify the burden imposed 
on athletes. This index can be computed by 
multiplying the perceived intensity of the 
training session by its duration.15 Correlations 
between RPE and other intensity measure-
ments, such as heart rate (r=0.89) or plasma 
lactate concentration (r=0.86), were demon-
strated.16 Several other methods have been 
proposed to quantify workload: the work 
endurance recovery takes into account objective 
and subjective parameters17 18 and estimates 
the level of fatigue induced by exercise using 

What are the new findings?

►► It is sometimes difficult to obtain regular long-term 
monitoring data. Training camps, injuries and time-
off periods may prevent close follow-up.

►► When longitudinal sports data are missing, a new 
method improves existing indices for monitoring 
load or fatigue.

►► The Robust Exponential Decreasing Index takes into 
account the decreasing effect of the past training; it 
remains meaningful even in the presence of many 
missing data points.

►► It is flexible for all situations by adjusting a specific 
coefficient for each discipline.
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a cumulative work:endurance limit ratio associated with 
the natural logarithm of the work:recovery ratio.

Acute:chronic workload ratio (ACWR) and its limitations
More recently, Gabbett19 has updated the ratio proposed 
by Allen and Coggan.20 They suggested comparing the 
current week of training to the previous four. The aim 
of their ratio was to ensure that the workload was kept 
within a ‘high-load, low-risk’ range of values. When the 
ratio (last week/previous four) was too low (<0.8) or too 
high (≥1.5), the risk of subsequent muscular and non-
contact injury was shown to initially increase.19

The ACWR is based on specific sport and injury data.21–25 
However, many criticisms have emerged concerning both 
the structure of the ratio and its interpretations. Despite 
some beliefs about training load, injury and perfor-
mance that ACWR and its derivative have generated, 
some methodological issues appear.24 The first problem 
is the requirement to wait 4 weeks before any ratio can 
be computed. Second, each time missing data appear in 
the collecting process, it leads to spurious values in the 
ratio until another 4-week period allows for stabilisation. 
This type of problem can be addressed with imputation 
methods,26 but it complicates the procedure.

Menaspà's paper, although presented in an editorial 
format (ie, the lowest level of evidence), puts forward 
another limit of the ACWR.27 First, the averaging of the 4 
weeks does not allow for variations within a given period 
and can only show the general trends in the training load 
while masking potential peaks and troughs in the load. 
For example, different workload levels (chronic and 
acute) can lead to identical ratios. Moreover, computing 
the average load does not take into account stimuli 
that may occur in the meantime, such as, the effect of 
a training intensity peak that decreases over time.28 The 
chronic load calculated with a moving average gives as 
much weight to a training session performed the day 
before as to one that took place 4 weeks before.

On top of the aforementioned limitations, Lolli et al29 
highlighted the problem of dependence between acute 
and chronic loads: when calculating the ACWR, the acute 
load also constitutes a substantial part of the chronic one. 
This inadequate mathematical coupling between the two 
variables,30 also called ‘connecting a part to the whole’,31 
raises the possibility that athlete monitoring may be 
compromised by spurious correlations. The proposed 
solution has been to exclude acute periods in the calcula-
tion of chronic load.29 However, this is an opinion piece, 
in that the strength of this paper remains limited.

More recently Gabbett et al32 have shown in elite cricket 
fast bowlers that the use of coupled and uncoupled 
ACWRs produces the same injury likelihoods. Although 
findings do not imply that injuries can be predicted from 
a single training variable, no evidence was found of the 
rejection of ACWRs coupled in a real practical context.32

ACWR is a useful method to analyse training load. 
However, like all tools, it has its limitations, which we 
have tried to address through our theoretical study.33

Exponentially weighted moving average (EWMA) and its 
limitation
Williams et al34 proposed EWMA to calculate a load ratio. 
Authors shared concerns regarding the use of moving aver-
ages to compute ‘acute’ and ‘chronic’ loads in the ACWR 
as these measurements do not account for the declining 
nature of fitness and fatigue effects over time, nor do they 
accurately represent variations about how loads cumulate.

The EWMA35 alleviates some of these problems by 
assigning a decreasing weight to older load values. Specif-
ically, the EWMA for a given day is calculated by

	﻿‍ EWMAtoday = Loadtoday × λa +
((

1 − λa

)
× EWMAyesterday

)
‍�

where ‍λa‍ is a value between 0 and 1 that represents the 
level of workload decrease. It is defined as

	﻿‍ λa= 2/
(
N + 1

)
‍�

where N represents the selected time constant of the 
decrease, generally 7 and 28 days, respectively, for acute 
and chronic loads. The time frames of 1 and 4 weeks are 
frequently used in the periodisation strategies used by 
many team sports, although other time constants may be 
more appropriate in different contexts.

A first limitation of the EWMA lies in the complexity 
of this recursive equation, which may complicate the 
interpretation, implementation and computation of the 
coefficients. Moreover, the way each workload is weighted 
only depends on the number (N) of days considered in 
the calculation.

In terms of a long-term follow-up, the EWMA weight 
coefficients of loads tend to be equivalent to the ACWR 
and very small (eg, with 100 days, the most recent load 
accounts for just 2/101 of the total average). Thus, in 
this context, the EWMA value merely approximates the 
unweighted average load over N days and decreases the 
importance of recent workloads in favour of historical 
cumulated ones.

Therefore, EWMA is more consistent and accurate 
than the ACWR with a small value for N and a rolling 
average. However, in this context, both the EWMA and 
ACWR become very sensitive to missing data and need a 
period of initialisation that cannot be computed.

On the other hand, the impact of acute load differs 
greatly according to various sports disciplines. Currently, 
none of the presented methods provide a parameter able 
to adjust the decreasing influence of load, depending on 
sport context.

Using what has already been proposed in the literature 
and taking into account the different limitations outlined 
earlier, the purpose of this study was to propose a new 
way to compute cumulative training loads.

Methods
Robust Exponential Decreasing Index (REDI)
We designed the REDI, a new measurement of cumu-
lated workload, adapted to each sport’s specificities, 
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Figure 1  The value of the EWMA (on the left) and ACWR 
(on the right) over 200 instant time period on a dataset with 
5% missing load. ACWR, acute:chronic workload ratio; 
EWMA, exponentially weighted moving average.

and allows us to address the issue of missing data. It is 
defined as

	﻿‍

REDIλtoday = 1
N∑

i=0
αλ

i

N∑
i=0

αλ
i × WLi

‍�

	﻿‍
and αλ

i =




0 if WLi is missing

e−λi otherwise ‍�

where:
►► ‍WLi‍is the workload of the past ‍ith‍ day before the 

current day.
►► ‍N‍is the total number of previous days before in our 

dataset.
►► ‍λ‍is a parameter that can be adjusted in order to 

decrease the weighting.
The main concept of this index is to introduce an 

explicit exponential weight that multiplies each work-
load. All of the weighted workloads are added together 
and subsequently divided by the sums of the weights in 
order to normalise the index. In this sense, the index is 
defined as a weighted mean of the workloads.

In our model, the values of the weights decrease as 
one moves away from the current day (as the value of ‍i‍ 
increases). Moreover, this weight equals 0 when the work-
load value is missing. This allows consideration of all days 
instead of ignoring some. However, even if the value of 
‍WLi‍ is missing, the coefficient ‍αλ

i ‍ continues to decrease 
each day. Therefore, the weight uniformly depends on 
the past, and the REDI is not sensitive to missing values. 
It is important to note that the weight equals 1 for the 
current day and decreases to values close to 0. Although 
this decrease remains exponential, the rate can be 
controlled by changing the value of parameter λ. The 
index can therefore be adapted to a wide range of sports 
by adjusting how much the past workloads are consid-
ered.

One advantage of this index is that the coefficients are 
completely explicit and easily computable for each past 
workload, through the definition of ‍αλ

i ‍ . Because of its 
weighted mean structure, the REDI remains meaningful, 
using the same unit that was used to measure the orig-
inal workload. Moreover, it can be computed from day 
1; it does not need any initialisation period and does not 
suffer from the problem of missing data. In addition, it 
can use all past available information. The decreasing 
weights of the past workloads can be computed on a 
potentially infinite number of previous days (since the 
exponential function is defined on the interval ‍−∞‍, +﻿‍∞
‍]).

Method comparison using simulated data
The ACWR, EWMA and REDI were studied and compared 
in different situations with simulated datasets. These 

simulated data were monitored, throughout a full season, 
using the same methods that would be implemented for 
real data, with features that assess workload over time.

In the first situation, 200 consecutive workload values 
were drawn from a Gaussian distribution N(500 100). 
This represents rather stable loads with slight perturba-
tions. The second dataset is composed of 200 consecutive 
workload values, drawn from a uniform distribution 
U([0,1000]). This situation depicts unstable loads that 
potentially change sharply over time. These datasets were 
used to enlighten several properties and behaviours of 
the different indices according to the context.

In both cases, a portion of the load values (5%, 30% 
and 50%) were randomly removed in order to simulate 
the issue of missing data. In this context, errors exist that 
differentiate the true values—values that result from the 
indices computed on complete datasets—from those that 
result from incomplete ones. In order to compare these 
errors, numerically as well as graphically, the percentage 
of relative difference was defined as such:

	﻿‍
Error =

200∑
i=0

|WLmissing−WLtotal|
WLtotal

× 100
‍�

The three methods (ACWR, EWMA and REDI) were 
applied on the eight series (0%, 5%, 30%, and 50% 
missing data for both the N(500 100) and U([0,1000] 
datasets), providing a fictional follow-up of 200 time 
instants in the different situations described previously.

Results
Comparison of index of dataset
REDI consistency
EWMA and ACWR could not be computed with 30% 
missing data, as it was impossible to build the indices 
due to the requirement of 28 consecutive days of load to 
compute an unbiased index (figure 1).

Figure 2 exhibits the robustness of the REDI that can 
be built even in the presence of missing data. In addition, 
curves with 5% and 30% missing data fit all data curve 
quite closely, while the 50% one shows a high variability. 
The same trend can be observed with both Gaussian data 
(left) and uniformly distributed data (right). Curves may 
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Figure 2  Comparison of REDI on a series of 200 consecutive workload values (simulated data according to a Gaussian 
distribution) with 0%, 5%, 30% and 50% missing data (left). Same comparison on a series of uniformly distributed loads (right). 
REDI, Robust Exponential Decreasing Index.

Table 1  Mean relative errors between REDI values from datasets with missing values, as compared with the complete one

% of missing data 5% 15% 30% 40% 50%

Gaussian data, mean error±SD 0.65%±0.19% 1.48%±0.28% 2.39%±0.43% 3.16%±0.60% 3.76%±0.69%
Uniform data, mean error±SD 2.13%±0.6% 4.69%±2.35% 7.48%±2.09% 9.65%±2.67% 11.57%±2.88%

The mean error and SD come from a REDI computation on 100 simulations of complete and incomplete datasets for each of the six 
configurations.
REDI, Robust Exponential Decreasing Index.

superimpose when a complete curve of REDI exactly 
equals the curve of missing data.

In order to test the consistency of the results in figure 2, 
comparison between the complete and incomplete data-
sets was simulated 100 times.

Table  1 shows the average error of REDI between 
workloads with 5%, 15%, 30% and 50% missing data 
compared with the complete dataset (all data). The 
mean and the SD increase with the amount of missing 
data, both for Gaussian data and for uniform data. In 
the Gaussian context, workloads are gathered around a 
central value, remain stable and thus lead to lower error. 
In the uniform case, values are scattered and yield to 
larger errors and variability.

For both distributions, the REDI curve precisely follows 
the trend of the EWMA curve (with a 0.65% mean error). 
In addition, REDI starts earlier than EWMA since it does 
not need the initial follow-up period for the index to be 
built (figure 3).

These simulated data were defined with a mean value 
of 500. In this case, the REDI better reflects the nature of 
the data than the EWMA; it dependably produces values 
around 500, while the EWMA sits slightly lower at about 

425 on average. Due to its definition, EWMA consistently 
underestimates the cumulative load. The REDI behaves 
similarly to the EWMA, only for the particular case when 
λ=0.1.

Weighting the past through λ
Table 2 expresses the value of the past workload decay, 
depending on the number of days, for each value of λ. 
As the λ value decreases, the weight given to the next 
day increases. For example, for a λ fixed at 1, at the third 
day, only 5% of the chronic workload impacts the REDI 
coefficient, whereas with a λ of 0.05 at 14 days, the impact 
of the past load weight is 50% in the REDI calculation.

Discussion
This study provides a new training load index including 
three improvements. First, the REDI is more robust to 
missing data than either the ACWR or EWMA as it can 
handle datasets with missing data, preserving the global 
tendency of the cumulated workload. Second, the REDI 
allows for better control of the decreasing influence 
of load over time, through a coefficient that can be 
computed according to the sport, the disciplines or the 
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Figure 3  Comparison between REDI (λ=0.1) and EWMA on a series of 200 consecutive workload values of simulated 
Gaussian data (left). Comparison between REDI and EWMA on a series of 200 uniformly distributed loads (right). EWMA, 
exponentially weighted moving average; REDI, Robust Exponential Decreasing Index.

Table 2  Different values of the λ coefficient in the function 
of the decreasing impact of chronic workload by time 
windows

λ 3 days 7 days 14 days 21 days 28 days

5 0 0 0 0 0

1 0.05 0 0 0 0

0.5 0.22 0.03 0 0 0

0.3 0.41 0.12 0.01 0 0

0.1 0.74 0.5 0.25 0.12 0.06

0.07 0.81 0.61 0.38 0.23 0.14

0.05 0.86 0.7 0.5 0.35 0.25

0.03 0.91 0.81 0.66 0.53 0.43

0.01 0.97 0.93 0.87 0.81 0.76

0.001 1 0.99 0.99 0.98 0.97

A λ of 0.1 is used as reference. It is close to EWMA behaviour. One 
can adjust the value of λ according to the table.

event. Third, the REDI can be calculated starting as soon 
as the second time point within a consecutive series.

Issues in long-term load follow-up
From a sporting point of view, the contributions of this 
work allow for some flexibility when it comes to the 
collection of data, which is a well-known difficulty in the 
monitoring of athletes, especially for those at high level. 
The REDI can facilitate load monitoring throughout the 
year, whereas the EWMA and ACWRs (which are usually 
computed over 28 days) lead to biases when missing work-
load values are not considered. The REDI is capable of 
considering periods of limited data, such as career duties, 
international breaks or the lack of monitoring during the 
off-season,36 without a major effect on the index compu-
tation. Even in the worst-case scenario put forward in 
Buchheit’s editorial,36 the REDI model is capable of 
stable monitoring.

The use of the REDI avoids the necessity to simulate or 
ignore the data that are missing in a monitoring context. 
This adaptive index stabilises the acute and chronic load 
variables. It is more robust and usable for contextualising 
the performance, injuries and readiness of athletes. To 
determine what percentage of missing data are accept-
able, REDI users can refer to table  2 for information 
about error rates.

Adapting the cumulative load index to the sports field
The choice of an exponential is explained by its flex-
ible nature. Moreover, the exponential reflects the laws 
of the body. In physiology, the phenomena of fatigue 
and overcompensation after an effort are exponentially 
expressed. One can also control the decay intensity of the 
exponential through a single parameter, λ.

As an example choice for practitioners, we proposed 
10 values of λ for five time windows (3, 7, 14, 21 and 28 
days) to illustrate the influence of λ on the decreasing 
weights assigned to each load. This choice was inspired 
by what was previously documented in the literature,19 37 
namely, a weekly cutting of the load. It should be noted 
that REDI does not aim to offer a new perspective about 
workload but merely a more appropriate way to compute 
the cumulative workload.

A λ value close to 0 provides a very slow decay to the 
weight of the past training load. In other words, the 
closer the coefficient λ is to 0, the greater the former load 
impact. The oldest training loads have as much weight as 
the most recent ones. Conversely, with an increasing λ 
value, the weight of the oldest loads is neglected. In other 
words, recent workload have a much higher impact.

The λ values in this work are only proposed as an 
example. At this point, one cannot state with certainty 
which λ should be used for each situation since its optimal 
value probably depends on discipline. Deciding on the 
appropriate value must take into account the character-
istics of the discipline, as well as the specific influence 
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of the load. We emphasise that this parameter should be 
tuned using experts’ knowledge and/or statistical optimi-
sation from data to suit the context at best.

In order to choose an appropriate and meaningful λ, 
several objective methods could be used. For example, 
λ could be optimised according to a criterion (eg, likeli-
hood maximisation) or via cross-validation. It could also 
be optimised in order to connect workload to several 
features (injury7 38 and performance14 39–41). The only 
obstacle that remains, in order to link the workload to the 
different parameters, will be to find the right λ adapted 
to the study context.

The REDI offers the possibility to manage the λ coef-
ficient for a specific decreasing weight load according to 
sport, even by position or athlete physiology.

Limits of the REDI
The present paper offers a theoretical study of a new index 
that can be implemented with simplicity and adaptability. 
Although REDI’s properties seem promising, the index 
must now prove its ability to link variables of interest, such 
as fatigue or injury, like the ACWR. Moreover, while the 
λ coefficient provides flexibility by decreasing the impor-
tance of the load over time and we are able to provide 
insights on its influence, it is a new parameter that must 
be justified with experimental data. Future studies, with 
real-world data, are needed to test the full potential of 
REDI and to prove its efficacy in practice.

Conclusion
The REDI is a cumulative load analysis tool. It is both 
robust to missing data and flexible according to the 
discipline. The robustness of REDI has been demon-
strated by its ability to analyse datasets with missing 
data while preserving the main trend. It is therefore 
consistent when periods without data (injury, interna-
tional duties and off-season) are numerous. Moreover, 
its single control parameter, λ, allows the practitioner 
to control for the decreasing impact of past training 
loads. Finally, the REDI can be computed after only 2 
days of monitoring and is adaptable by sport, position 
or level of performance.
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