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Forecasting Air Quality in Taiwan by 
Using Machine Learning
Mike Lee3, Larry Lin1,2, Chih-Yuan Chen4, Yu Tsao5, Ting-Hsuan Yao1,2, Min-Han Fei1,2 &  
Shih-Hau Fang1,2*

This study proposes a gradient-boosting-based machine learning approach for predicting the PM2.5 
concentration in Taiwan. The proposed mechanism is evaluated on a large-scale database built by the 
Environmental Protection Administration, and Central Weather Bureau, Taiwan, which includes data 
from 77 air monitoring stations and 580 weather stations performing hourly measurements over 1 year. 
By learning from past records of PM2.5 and neighboring weather stations’ climatic information, the 
forecasting model works well for 24-h prediction at most air stations. This study also investigates the 
geographical and meteorological divergence for the forecasting results of seven regional monitoring 
areas. We also compare the prediction performance between Taiwan, Taipei, and London; analyze the 
impact of industrial pollution; and propose an enhanced version of the prediction model to improve the 
prediction accuracy. The results indicate that Taipei and London have similar prediction results because 
these two cities have similar topography (basin) and are financial centers without domestic pollution 
sources. The results also suggest that after considering industrial impacts by incorporating additional 
features from the Taichung and Thong-Siau power plants, the proposed method achieves significant 
improvement in the coefficient of determination (R2) from 0.58 to 0.71. Moreover, for Taichung City the 
root-mean-square error decreases from 8.56 for the conventional approach to 7.06 for the proposed 
method.

The importance of air quality prediction has increased rapidly for providing citizens with superior quality of 
life and for enabling effective environmental sensing research. Numerous studies have linked PM2.5 (particulate 
matter) to health problems. For example, previous studies have indicated that poor air quality potentially causes 
various health problems, including stroke, ischemic heart disease, lung cancer, respiratory infection, and chronic 
obstructive pulmonary disease1,2. Thus, air quality has recently become one of the most important targets of 
national environmental monitoring and forecasting tasks for many countries in Europe, North America, and 
Asia3. For example, authorities in London cooperate with an environmental research group that provides data 
for independent scientific studies. The United States Environmental Protection Agency provides raw data, statis-
tics, and visualization for the same purpose4,5. In Asia, Taiwan’s Environmental Protection Administration (EPA) 
set up 19 weather stations and began to monitor the air quality in major cities in 1980. In 1993, the Taiwanese 
government developed the Taiwan Air Quality Monitoring Network, which includes a large-scale deployment 
of air monitoring stations, to record and forecast the air quality6. This network has been operating for over 25 
years and its data are open to the public. Apart from the Taiwanese government, the Taiwanese national research 
institution Academia Sinica partnered with private industry and civil communities to initiate the Air Box collab-
orative project to monitor the PM2.5 concentration3,7–9 by using a large number of small devices. This project has 
made collecting PM2.5 data more convenient and made independent research easier. However, PM2.5 values from 
the Air Box project have low correlation coefficients with the EPA data. Only a moderate positive relationship is 
observed between them10,11, and the reliability of these data is challenged owing to the lack of hardware calibra-
tion. Consequently, this study uses the reliable large-scale data collected from the EPA to develop an accurate air 
quality forecast model for citizens in Taiwan.

Physical models and machine learning models are two types of techniques to forecast the air quality. In the 
1990s, various atmospheric dynamics methods were applied to build a physical model with complicated equa-
tions12–17. These methods required high-speed computers with large memories to calculate a large number of 
iterations. They had limited accuracy and could not identify the importance of new and old data18. Artificial 
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intelligence has recently attracted considerable attention, and various machine learning approaches have been 
extensively implemented to model data in numerous applications. Air quality forecasting is one promising 
application. For example, an artificial neural network was applied to forecast air pollutants in Athens, Greece, 
in 199919. Another study applied a genetic algorithm to air quality prediction for extracting sufficient features 
and successfully predicted the air quality in Tianjin, China, in 201120. Previous studies have indicated that with 
the massive collection of data and development of machine learning techniques, a detailed air quality prediction 
model is worth further study7,8. Among various machine learning algorithms, tree-based methods have attracted 
interest for air quality prediction. A study conducted in 2010 indicated that a decision tree exhibits the best 
performance when predicting CO2 concentrations in Japan21. In 2016, a random forest model was applied to 
predict the air quality in Shenyang, China. A recent study successfully predicted the air quality index with high 
precision by combining urban sensing data including meteorology, road information, the real-time traffic status, 
and the points of interest distribution22. Specifically, the tree-based learning models generally provide the highest 
accuracy23,24. Besides, in recent years, the tree-based models are also applied for prediction of nitrogen oxides and 
ozone with high accuracy25,26. Therefore, this study selected a gradient boosting model (GBM) on decision trees 
to generate an air quality forecasting model in Taiwan.

This paper has three main contributions,
First, this study extracted the temporal sequences of highly dimensional and heterogeneous sensor data from 

both air monitoring and weather stations into a feature domain. The proposed mechanism based on the gradient 
boosting algorithm and extracted features efficiently predicted the air quality PM2.5 for the next 24 h at individual 
air monitoring stations. Through experiments conducted over 1 year, this study investigated the geographical 
and meteorological divergence of forecasting results and performed measurements at seven regional monitoring 
areas in Taiwan.

Second, the prediction performance between Taiwan, Taipei, and London was compared under the same 
methodology. The results indicate that Taiwan has a more complex environment than London does due to domes-
tic and overseas (mainly from China) sources of PM2.5 and the geographic topography of Taiwan. An interesting 
observation is that the performance for Taipei is similar to that for London, with a stationary prediction perfor-
mance of approximately 6 in terms of the root-mean-square error (RMSE) and 0.75 in terms of the coefficient 
of determination (R2). These results may be explained by the fact that these two cities have similar topography 
(basin) and are financial centers without domestic pollution sources. The results from an alternative London 
database successfully verified the proposed prediction mechanism.

Third, we focused on central Taiwan, especially Taichung City, because air pollution has worsened there in 
recent years. The main reason for this change is the fact that the second-largest coal-fired power station in the 
world (i.e., the Taichung Power Plant) is located in this region. This domestic industrial source makes prediction 
difficult. Thus, we propose an enhanced fusion version of the prediction model by incorporating additional fea-
tures from Continuous Emission Monitoring Systems (CEMS) to improve the prediction accuracy. After consid-
ering the industrial impact, the proposed method achieved significant improvement on average for R2 (0.58 to 
0.71) and reduced the RMSE (8.56 to 7.06) compared with the conventional approach followed in Taichung City. 
To the best of our knowledge, this study is the first to combining the use of both air station and industry records 
for air quality prediction in complex environments.

Geographical and Meteorological Divergence of PM2.5 Concentration Between Regional 
Monitoring Areas
In Taiwan, the PM2.5 concentration has been a severe environmental problem and has attracted considerable 
attention from researchers and the general public. Previous studies have focused on the source contributions of 
air pollution. Air pollution can be categorized as locally produced(mainly from motor vehicles and power plants) 
or long-range transported (LRT) pollution (mainly from China)27,28. Some studies have focused on the influ-
ence of meteorological conditions on the PM2.5 concentration and have indicated that the PM2.5 concentration 
is strongly influenced by the southwesterly monsoonal flow (SWM) and northeasterly monsoonal flow (NEM). 
Geographical divergence is an important factor when discussing the effects of meteorological conditions and 
synoptic weather on the air quality in Taiwan29. Thus, the following section discusses the geographical divergence 
and temporal variations of the measured PM2.5 concentration in Taiwan.

The large-scale database used in this study was built by the official EPA and Central Weather Bureau (CWB). 
The database contains more than 260,000 samples taken in 2017 from 77 air monitoring stations (from the EPA) 
and 580 weather stations (from the CWB) in Taiwan. Fig. 1(a) displays the geographical positions of the 77 air 
stations. The map indicates that Taiwan island is surrounded by the ocean and has the Central Mountain Range 
(CMR) running from the north to the south. The complex terrain and different meteorological conditions create 
spatial and seasonal variations in the PM2.5 concentration in Taiwan. Considering the different meteorological 
and geographical conditions, Taiwan has been divided into seven regions by the EAP for regional air quality 
monitoring. As illustrated in Fig. 1(a), the seven regions are northern Taiwan (NT), Chu-Miao (CM) area, central 
Taiwan (CT), Yun-Chia-Nan (YCN) area, Kao-Ping (KP) area, Hua-Dong (HD) area, and Yilan (YI)30. In addition 
to the geography, PM2.5 is also heavily influenced by the weather conditions. To offer accurate weather conditions 
and predictions, the CWB has set up 580 weather stations in Taiwan, as depicted in Fig. 1(b).

Figure 2 illustrates the monthly temporal variation of the mean PM2.5 concentration in the seven regions, 
where YI has missing data except for December. This figure indicates that the PM2.5 concentration reaches a peak 
in most regions during spring (February, March, and April), drops dramatically during summer (May, June, and 
July), and starts to go upwards during autumn (September, October, and November) and winter (November, 
December, and January).

Starting from autumn (September, October, and November), the prevailing wind (NEM) affects the north-
ern part of the island, thereby easily dispersing and diluting air pollutants. The NEM becomes strong during 
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the winter; however, it also brings LRT pollutants from China, which affect the air quality. Thus, air pollution is 
severe because the NEM is blocked by CMR; therefore, the southern part of Taiwan becomes a lee side region and 
forms stagnant wind conditions that increase the accumulation of air pollutants30,31. By contrast, during spring a 
stable weather system without strong winds is observed, especially in the northern part of the island29. Besides, 
the boundary layer height is also one of the factors for decreasing PM2.5 during summer. On the contrary, during 
autumn and winter, temperature inversion limits the boundary layer height and results in increasing PM2.5 con-
centration. Figure 2 also indicates that Taiwan has superior air quality during the summer because the prevailing 
wind (SWM) easily disperses and dilutes air pollutants. Moreover, the subtropical high pressure over the Pacific 
Ocean in the summer causes high convection of air mass, which leads to the vertical dispersion of pollutants.

Figure 1.  The (a) 77 air quality monitoring stations and (b) 580 weather stations set up across the seven air 
quality regions in Taiwan.

Figure 2.  (a) Monthly variations of the mean PM2.5 concentration in the seven air monitoring regions and (b) 
their topography.

https://doi.org/10.1038/s41598-020-61151-7


4Scientific Reports |         (2020) 10:4153  | https://doi.org/10.1038/s41598-020-61151-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

After examining the temporal variations, we investigate the geographical divergence. Fig. 2 indicates that YCN 
and KP have the worst air quality. According to the EPA standards, when the PM2.5 concentration is larger than 
35.4 μg/m3, the air quality could cause health problems to citizens. From Fig. 2, the YCN and KP regions exceed 
the threshold values for 2 and 5 months, respectively. By contrast, NT and HD have the best air quality because 
NT is a financial and business center and HD is an undeveloped green space. As expected, these two regions have 
only minor industrial pollution. In Taiwan, HD is the most livable place with good air quality because the mean 
PM2.5 concentration is below 15.4 μg/m3 for several months.

An interesting region is CT, where the mean PM2.5 concentration is lower than that in only KP and YCN. The 
central part of Taiwan is subject to both meteorological conditions and topographic effects because most residents 
live in the basin area surrounded by hills and mountains. Furthermore, the second-largest coal-fired power sta-
tion in the world, that is, the Taichung Power Plant, is located in this region. The power plant accounts for 15% of 
Taichung City’s PM2.5 concentration32.

  Figure 3 shows the estimate of the PM2.5 concentration of Taiwan in December using IDW (inverse distance 
weighted) technique, which is a interpolation method via spatial average for unseen locations33,34. This figure 
shows that NEM is strong in December, resulting in better air quality in the northern Taiwan. However, the NEM 
is blocked by CMR. This results in weak wind in the southern Taiwan and bad atmospheric diffusion condition.

Results
The data provided by the EPA and CWB for 2017 were collected and processed. These data contained more than 
260,000 samples covering 264,799 h and 36 attributes. In this study, 81 independent parameters were selected 
from each air station and its four nearest weather stations as features, and gradient boosting with regression was 
used as the learning model to forecast the PM2.5 concentration for the next 24 h. The feature extraction process 
and learning algorithm are described in detail in the following sections. This study used five-fold cross validation 
to justify the prediction results. The entire data were randomly split into five folds, of which four were used for 
training and one was used for testing.

PM2.5 Prediction Results
The RMSE, normalized RMSE (NRMSE), and R2 were used as prediction performance metrics in the experi-
ments. The RMSE indicates the mean fluctuation between the observed and predicted values. A smaller RMSE 
and NRMSE indicate a superior forecasting performance. R2 measures the proportion of the variance of observed 
values that is predictable in the case of multiple regression. When R2 = 1, the observed values are perfectly pre-
dicted. Fig. 4 displays the annual average results of forecasting performance of 77 air stations in the seven regions 
of Taiwan. The results in Fig. 4(a) generally agree with the geographical divergence. Most stations in the YCN, 
KP, and CT regions are distributed in the upper left. Furthermore, we can observe that the similarity between 
Fig. 4(a,b) lies in some boundary stations including stations 34, 68, and 76. Although the station 61 shows the 
highest NRMSE instead of station 69, both stations show the similar RMSE, as shown in Fig. 4(a). In addition, 

Figure 3.  Estimate of the PM2.5 concentration of Taiwan in December.
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some trend is consistent in Fig. 4(a,b) such as the distribution of HD regions (the lower right), CT regions (the 
upper left), and NT regions (middle). Next, the separation between regions obviously reduced due to the normal-
ization. For example, YCN and NT are clearly separated in Fig. 4(a) whereas they are mixed in Fig. 4(b). Using 
NRMSE, it is also difficult to distinguish the KP regions among the middle ranges. Thus, each performance metric 
has its own advantage and dis-advantages. NRMSE provides fair prediction performance comparison among 
each monitoring stations while RMSE makes the comparison of air quality regions easily due to higher separation 
ability. In addition to the large RMSE and NRMSE, the small R2 values imply that these regions may contain an 
increased number of hidden factors that may influence the prediction model. Thus, an interesting observation is 
that although YCN and KP have worse air quality than CT, the R2 value of CT is lower than that of YCN and KP. 
The R2 value for station 34 (Fengyuan station in CT) is only 0.41, and is the worst among all stations. This issue 
is discussed in detail in the following paragraph. By contrast, most stations in the HD, YI, and NT regions are 
distributed in the lower right. For stations 20, 21, 76, and 77, R2 is approximately equal to 0.9, which indicates that 
the forecasting model works nearly perfectly for these stations. At some stations, the RMSE values are smaller 
than 4 and the NRMSE values are smaller than 0.2, which indicates that the prediction value approaches the 
ground truth. Among these stations, we observe that although station 68 (Hengchuen) belongs to the KP region, 
its performance is completely different from that of other stations in this region. The reason for this observation 
may be that station 68 is located in a national park in south Taiwan, where few anthropic activities occur, which 
results in a low RMSE and NRMSE.

  Figure 5 shows the standard deviations (STD) of RMSE and R2 across 5-folds validations. Besides, we can 
observe that the maximum STD of RMSE is less than 1 and that of R2 is less than 0.1. In addition, this figure also 
indicates that almost all monitoring stations show the similar and stable STD, while there are only minor stations 
show relatively higher STD in the NT regions. Thus, the forecast models are not overfitting for the air monitoring 
stations in Taiwan during the experiments.

  Figure 6 displays calendar heat maps of predicted, observed, and residual values at station 68 (Hengchuen) 
and 69 (Chaozhou). In Fig. 6(a), Hengchuen exhibits small residuals in the PM2.5 concentration over the year, a 
low PM2.5 concentration (maximum is only approximately 30 μg∕m3), and minor differences between the observed 
and predicted PM2.5 values. By contrast, as displayed in Fig. 6(b), Chaozhou exhibits large residuals in the PM2.5 
concentration over the year, a high PM2.5 concentration (maximum is approximately 100 μg∕m3), and significant 
differences between the observed and predicted PM2.5 values. Besides, Fig. 6(b) illustrates the higher observed 
values in winter (November, December, and January) and spring (February, March, and April) at Chaozhou. The 
results indicate that although both Hengchuen and Chaozhou are in the KP region, their forecasting performance 
is significantly different. Hengchuen is located in a national park, where Chaozhou is very close to the Linyuan 
industrial area. Therefore, in addition to the between-region divergence, the in-region difference is also an impor-
tant issue when considering the prediction performance of individual air monitoring stations.

Comparison Between Taiwan and London
We applied another public air quality database to validate the aforementioned study results. Recently, the air 
quality data for London and southeast England was made available for independent scientific measurements 
and assessment35,36. Therefore, we selected London as a benchmark region for comparison. By using the same 
analysis procedure as that for Taiwan, experiments were conducted to collect hourly data from air and weather 
stations for 6 years (2012–2018) in London to provide a fair comparison of air quality prediction between differ-
ent countries37.

  Figure 7 illustrates the comparison results, where the empty blue circles and solid gray circles represent 
air stations in Taiwan and London, respectively. The subfigure depicts the index abbreviations of air stations in 

Figure 4.  Annual average results of PM2.5 prediction performance for the 77 air stations in Taiwan.
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London35. Taiwan has 77 air stations for detecting PM2.5 concentration, whereas London has only 11 ones. The full 
names, acronyms, and environments of London stations are shown in Table 1. whereas that in Taiwan is 0.4–0.9. 
The RMSE results exhibit the same tendency. The RMSE in London is 5–7, whereas that in Taiwan is 3–13. These 
results indicate that the air quality forecasting performance in London is significantly superior to that in Taiwan 
even when using the same algorithm. This may be attributed to three main factors. First, from the perspective of 
geography, London is located in a basin, whereas Taiwan has considerably complicated terrain. Second, London 
is a financial center without domestic pollution sources. By contrast, most pollution in Taiwan originates from 
domestic sources, such as in KP and YCN. Third, Taiwan has transboundary issues because air pollution may be 
transported from China. These factors explain why London significantly outperforms Taiwan and also indicate 
that dedicated air quality forecasting in Taiwan is challenging.

Next, we selected stations in the Taipei region in Taiwan (solid blue circles in Fig. 7) for comparing with sta-
tions in London for two reasons. First, most northern stations are located in Taipei, which lies in a basin. In addi-
tion, Taipei is a financial center without domestic pollution sources. Thus, Taipei is similar to London in terms of 
the topography, pollution sources, and number of air stations. The comparison in Fig. 7 indicates that Taipei has 
similar prediction accuracy compared with that of London from the viewpoint of both the RMSE and R2 values. 
Fig. 7 indicates that the RMSE in Taiwan is 3–13 and that in Taipei is 5–8. In other words, PM2.5 prediction in 
Taipei is more accurate than that at other stations in Taiwan. The results obtained from an alternative database 
for London verified the advantages of the proposed prediction mechanism. If a city has a pure topography (basin) 
and zero domestic pollution sources (e.g., Taipei and London), the PM2.5 prediction performance is expected to 
be stationary and reliable with a RMSE of approximately 6 and an R2 value of 0.75.

Effect of Adding Industry-Related CEMS Features
In recent years, air pollution has worsened in CT, especially in Taichung City, for reasons that remain unclear. 
Domestic pollution could be one of the reasons because the coal-fired power station in Taichung increased power 
generation in 2017. The power generation was increased at the directive of the Taiwan government to satisfy 
future energy requirement and to promote the nuclear-free homeland policy. The results indicate that the fore-
casting performance is poor in CT, as displayed in Fig. 4. In particular, station 34 has the lowest R2 value. This 
result is consistent with the coal-fired power station’s policy for increasing power generation. We explored the 
possibility of using additional industry-related features to achieve an enhanced prediction performance. The 
effect of adding industry-related features may also provide some scientific evidence for the distribution of pollu-
tion sources.

The question is whether improving the prediction accuracy is possible when considering industry-related 
information. To answer this question, we used the alternative CEMS database to investigate the effect of adding 
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industry-related features on the PM2.5 prediction. The emission of factory gas through chimneys has been man-
aged and monitored by the CEMS of the EPA since 1993. CEMS detects several parameters, including the CO, 
SO2, O2, nitrogen oxides, and hydrogen chloride concentrations; temperature; opacity, and emission flow rate38. 
Besides, wind speed and direction are applied for considering diffusion of the detected items. CEMS has collab-
orated with the EPA since 2003, and the data has recently been made publicly available for academic research.

  Figure 8 displays the geographical positions of Taichung’s coal-fired power plants and air stations 30-34 in 
Taichung City, which are indicated by the yellow area in the map. In addition to the large coal-fired power station, 
Fig. 8 also shows the geographical position of the Thong-Siau gas-fired power plants, which is the second-largest 
station in CT and is close to the air stations in Taichung City. Therefore, considering these two thermal power 
plants when making PM2.5 predictions in Taichung is reasonable.

  Figure 9 illustrates the effect of adding industry-related features in Taichung, in which all the CEMS data 
were included as features in the training model. The figure indicates that after considering the CEMS, the forecast 
performance significantly improves in terms of the RMSE and R2 values. In general, the highest improvement is 
observed when adding Taichung Power Plant’s attributes. Upon also adding Thong-Siau power plant’s features, 
stations 34 and 32 exhibit a similar performance, stations 31 and 33 exhibit marginal improvement in the perfor-
mance, and station 30 exhibit a marginal decrease in the performance.

An interesting observation is that the improvement in the forecast performance is highly related to the dis-
tance between the power plants and the air stations. For example, stations 30-33 are closer to Taichung Power 
Plant than station 34, as shown in Fig 8. This may explain why the improvement upon adding Taichung Power 

Figure 6.  Comparison between the observed and predicted PM2.5 values for 2017 between (a) station 68 
(Hengchuen) and (b) station 69 (Chaozhou).
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Plant is the most insignificant at station 34 compared with the other air stations. Besides, station 34 is located near 
CMR and has higher altitude than nearby stations. It has been influenced by both the Taichung and Thong-Siau 
power plants and suffers from high PM2.5 value due to bad atmospheric diffusion conditions. Furthermore, station 
34 is close to Thong-Siau power station plant, and the improvement upon adding Thong-Siau power plant’s fea-
tures is the largest among all the air stations. Similarly, station 30 is the farthest from the Thong-Siau power plant. 
This may explain why the forecast performance decreases marginally after considering the features of Thong-Siau 
power plant. In summary, the R2 values increase by 0.13, whereas the RMSE decreases by 1.50 on average (Fig. 9). 
These results indicate that the PM2.5 prediction performance in Taichung improves significantly on considering 
the neighboring coal-fired power plants.

Next, we follow the same procedure to determine whether the same trend can be obtained in Taipei City. 
Although no industrial power plants exist in Taipei, the CEMS data, including data from garbage incinerators at 
Mucha, Neihu, and Beitou, were applied as alternative industry-related features to determine the performance 
improvement for air stations in Taipei. Figure 10 depicts the comparison between Taichung and Taipei. This fig-
ure indicates that although adding CEMS features still provides a marginal performance improvement in Taipei, 
the degree of improvement is not comparable to that in Taichung. Industrial pollution appears to have a stronger 
impact in Taichung than in Taipei, especially in terms of the PM2.5 prediction. This observation fits recent devel-
opments of Taipei and Taichung. Taipei City is a financial and business center in Taiwan with minor industrial 
impact, whereas Taichung City experiences increased air pollution due to coal-fired power plants.

Discussion
The air quality forecast has aroused attention from governments and scientists for improving environmental 
quality of citizens and upgrading environmental sensing studies. Because numerous scientific studies have linked 
PM2.5 (particulate matter) to health problems, this study proposes a machine learning approach based on GBM to 
predict the PM2.5 concentration in Taiwan.

Index SiteCode SiteName SiteType DataOwner

1 CD1 Camden - Swiss Cottage Kerbside Camden

2 CT3 City of London - Sir John Cass School Urban Background City of London

3 GN0 Greenwich - A206 Burrage Grove Roadside Greenwich

4 GN3 Greenwich - Plumstead High Street Roadside Greenwich

5 GR4 Greenwich - Eltham Suburban Greenwich

6 GR9 Greenwich - Westhorne Avenue Roadside Greenwich

7 HV1 Havering - Rainham Roadside Havering

8 LW2 Lewisham - New Cross Roadside Lewisham

9 RB7 Redbridge - Ley Street Urban Background Redbridge

10 TD5 Richmond Upon Thames - Bushy Park Suburban Richmond

11 TH4 Tower Hamlets - Blackwall Roadside Tower

Table 1.  The acronyms for the London stations.

Figure 8.  Geographical positions of the air stations and power plants in Taichung.
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By extracting temporal sequences from air monitoring and weather stations into features, the proposed mech-
anism efficiently predicts the air quality in terms of the PM2.5 concentration for the next 24 h at individual air 
monitoring stations. By performing experiments over 1 year, this study investigated the geographical and mete-
orological divergence of forecasting results and measurements at seven regional monitoring areas in Taiwan. 
The results from the alternative London database verified the proposed prediction mechanism. We observe that 
Taiwan has a more complex environment than London due to domestic pollution sources, overseas pollution 
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Figure 10.  Comparison of the CEMS impact between Taichung and Taipei. The prediction results of Taipei 
with and without CEMS are represented by blue solid circles and diamonds, respectively. The prediction results 
of Taichung (shown in Fig. 9) with and without CEMS are represented by green solid circles and squares, 
respectively, for a comparison.
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sources (mainly from China), and geographic topography; however, Taipei exhibits a similar prediction perfor-
mance to London. This may be because these two cities have similar topography (basin) and are financial centers 
without domestic pollution sources. Finally, because domestic industrial pollution makes prediction difficult, this 
study proposes an enhanced fusion version of the prediction model by incorporating additional features from 
the CEMS to improve the prediction accuracy. After considering the industrial impact, the proposed method 
achieves significant improvement in the R2 values (0.58–0.71 on average) and considerably decreases the RMSE 
(8.56–7.06 on average)compared with the conventional approach for Taichung City. In the future, we will try to 
use recent advanced dynamic neural networks to improve the performance. We will also investigate deeper and 
more complex model structure when more training data become available for air quality prediction.

Methods
Data collection.  The EPA, CWB, and CEMS databases are the main data sources used to forecast air qual-
ity. EPA uses an automatic continuous monitoring system to immediately identify and respond to uncommom 
emerging signals. This system collects air quality data every hour39,40. EPA provided more than 260,000 samples 
from 77 air stations in 2017. The measured attributes include the index, city, county, station name, date, detected 
items, and time in hours. The detected items include PM2.5, NO2, PM10, NO, NOX, SO2, CO, O3, THC, NMHC, 
and CH4. Specifically, PM2.5 represents particulate matter with a diameter less than 2.5 μm, and NO2 is one of a 
group of highly reactive gases. These substances are primarily released into the air from the burning of fuel in cars, 
trucks buses, and power plants.

Taiwan’s EPA has strict regulations and guidelines in regards to quality assurance operations for air qual-
ity monitoring to achieve the EPA’s data quality objectives (DQO). Every year the EPA has to perform quality 
assurance operations for the air quality monitoring system in order to evaluate the accuracy of air quality meas-
urements. Those data were recorded in EPA’s quality assurance (QA) operations annual report of air quality mon-
itoring system. For our PM25 data (2017), the accuracy was 96.3%. The annual report from 2001 to 2017 can be 
downloaded at the EPA website41. In Taiwan, the stations are categorized by the EPA as 6 types, which may give a 
general idea about the location of the stations:

•	 60 general stations. Most of the stations are located in urban and suburban area.
•	 5 industrial stations. All of the stations are close to industrial factories.
•	 5 traffic stations. These stations are located aside the main roads and have lower sampling altitude.
•	 4 background stations (2 stations simultaneous as the general station). These stations are away from pollution 

sources and provide the baseline monitoring data.
•	 2 national park stations (1 station simultaneous as the general station).
•	 2 other air quality monitoring stations. These two stations are located in rural area.

CWB has set up 580 weather stations to monitor and report weather conditions in Taiwan42. The attributes of 
weather information include longitude, latitude, station name, city, county, wind speed, wind direction, temper-
ature, and pressure. The number and date of datasets from the CWB and EPA must be synchronized for model 
training. The CEMS was established by the EPA to monitor the gases emitted from chimneys of industries since 
1993. The detected items include the CO, SO2, O2, nitrogen oxides, and hydrogen chloride concentrations; tem-
perature; opacity; and total emission flow rate. Specifically, emission flow rate indicates total emission materials 
from a chimney and its unit is cubic meter per hour38. The data has been recently made publicly available for 
academic research, and we used this data for training to study the influence of the CEMS on Taichung and Taipei.

Feature extraction.  We derived and extracted features from the EPA and CWB hourly data for model train-
ing. There exist 81 features from each air station and its four nearest weather stations. Specifically, 21 features were 
identified from individual air stations and 15 were identified from a weather station. Tables 2 and 3 list the details 
of the 81 features for generating the GBM-based PM2.5 prediction model.

When we forecast air pollution on a given day, the previous two days are also considered due to the memory 
effect. Furthermore, the difference between these two days’ PM2.5 concentration is defined as “concentration dif-
ference” In addition, because traffic flow strongly influences the air quality, the features consider whether a given 
day is regular day, weekend, or holiday. An air station’s weather conditions are represented by the mean pressure 
and mean temperature of nearby weather stations. Features in the training model also include the hour of day, day 
of week, and year to learn the trend and period of the temporal index. In summary, 21 features are extracted from 
an air station, as presented in Table 2.

We derived weather stations’ pressure, temperature, and wind speed from the features to represent the weather 
conditions at nearby air stations. Because wind can blow from any direction, the wind was split into the north-
ern and eastern directions for simplicity. In summary, 15 features were inferred from each weather station, as 
presented in Table 3. Because the 580 weather stations are uniform distributed in Taiwan, neighboring weather 
stations should be enough for representing weather condition of each air quality station. However, number of 
weather stations may be varying according to the environments and validation tests. To provide a fair com-
parison among stations, we fixed the number as 4 in the experimental setup. Therefore, we used one air station 
and four neighboring weather stations to generate 81-dimensional feature vectors for model learning and PM2.5 
forecasting.

GBM.  GBM combines fitting functions, loss functions, a decision tree, and gradient descent analysis24. The 
decision tree produces initial values for the fitting function with multiple regression, which deals with the many 
input variables considered in this study. Then, errors between the observed data sets and output values are 
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calculated using a loss function. The frequently used loss functions include square-error, absolute-error, and 
negative binomial log-likelihood functions43,44. Thereafter, gradient descent analysis is applied to find the fit-
ting function whose expected value of loss function is minimized. The aforementioned procedure is repeated to 
acquire the optimized fitting function.

The one-year data were randomly split into five folds, of which four were used for training models and one was 
used for testing models. Besides, the period of training data is chosen to cover a whole year to reduce seasonal 
changes when training prediction models. For training models, 31 features of the predicting day, 25 features of 
one day before predicting day, and 25 features of two days before predicting day comprise 81-dimensional input 
vector xt, as shown in Tables 2 and 3, where t is the time index in hour. Specifically, the predicting day’s meteoro-
logical features are collected form weather forecast of the CWB. Because the target is to predict the next-24 hours 
PM2.5, the output is one-dimensional variable denoted as yt+24.

After N pairs of the input vector xt and the output variable yt+24 are given, a fitting function F(xt) is selected 
from unknown functions xF( , )t β′  produced by the decision tree. In addition, β′ is a gradient decent step size and 
( )x y,t

i
t
i

24+
 is the i-th training sample pair. When the value of the loss function β′+( )xL y F, ( , )t t24  is minimized as 

( )xL y Farg min , ( , ) , (1)i

N
t
i

t
i

1 24∑β β= ′β′ = +

the target function F(xt) is chosen to be F(xt, β). Note that in this study, N is 211840 since we collected one-year 
data and 80% of them were selected for training model. Besides, the gradient descent analysis is applied for opti-
mized fitting function F(xt). The detailed process is described as follows. At the first step, initial guess function 

xF ( , )t0 β′  is generated and initial gradient descent step size β0 is 
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 Then, we take gradient of loss function as a first-step base learner function f1(xt) as 
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 After M iterations, the target function F(xt) is expressed as 
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 where fm(xt) and βm are expressed as follows 

= − ∇ + −− ( )x y xf L F( ) , ( ) (7)m t F t m t24 1m 1

Day

Air Monitoring Station

DimensionsFeatures

Predicting day
Holiday or not, weekend or not, Saturday or not, Sunday or not, 
concentration difference, extrapolation of concentration, average pressure, 
average temperature, hour of the day, day of the week, and which year

11

Day before the predicting day 
Days before the predicting day

Holiday or not, weekend or not, Saturday or not, and Sunday or not, 
Concentration of air pollutant 5 × 2

Table 2.  Input features obtained from an air monitoring station.

Day

Weather Station

DimensionsFeatures

Predicting day Day before the predicting 
day Two days before the predicting day

pressure, temperature, wind speed, eastern 
wind speed, northern wind speed 5 × 3

Table 3.  Input features from a weather station. The features from four weather stations and one air station are 
required for model training.
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m t
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Finally, F(xt) is the GB-based prediction model. Then, during the online stage, the testing samples are put into the 
model to calculate the forecasting results. The entire GBM procedure is described in Algorithm 1.

Data availability
The air quality data and the weather condition data are available in the websites of https://taqm.epa.gov.tw/taqm/
tw/YearlyDataDownload.aspx/EPA and http://farmer.iyard.org/cwb/cwb.htmCWB.

Received: 9 August 2019; Accepted: 20 February 2020;
Published: xx xx xxxx

References
	 1.	 Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient pm2.5. Environ. Sci. Technol. 49, 

8057–8066 (2015).
	 2.	 Conibear, L., Butt, E. W., Knote, C., Arnold, S. R. & Spracklen, D. V. Residential energy use emissions dominate health impacts from 

exposure to ambient particulate matter in india. Nat. Commun. 9, 617 (2018).
	 3.	 Chen, L. et al. Adf: An anomaly detection framework for large-scale pm2.5 sensing systems. IEEE Internet 363 Things J. 5, 559–570 (2018).
	 4.	  US Environmental Protection Agency. Air Quality System Data Mart [internet database] available via https://www.epa.gov/airdata. 

Accessed August 01, 2018.
	 5.	 Hu, X. et al. Estimating pm2.5 concentrations in the conterminous united states using the random forest approach. Environ. Sci. & 

Technol. 51, 6936–6944 (2017).
	 6.	  Chu, Y.-C. A multi-layered system architecture for environmental monitoring data management-taiwan’s experience. In EnviroInfo 

2007 Conference (2007).
	 7.	  Huang, G., Chen, L.-J., Hwang, W.-H., Tzeng, S. & Huang, H.-C. Real-time pm2.5 mapping and anomaly detection from airboxes 

in taiwan. Environmetrics  0, e2537 E2537 env.2537 (2018).
	 8.	  Mahajan, S., Chen, L.-J. & Tsai, T.-C. Short-term pm2.5 forecasting using exponential smoothing method: A comparative analysis. 

Sensors  18 (2018).
	 9.	 Mahajan, S., Liu, H., Tsai, T. & Chen, L. Improving the accuracy and efficiency of pm2.5 forecast service using cluster-based hybrid 

neural network model. IEEE Access 6, 19193–19204 (2018).
	10.	  Chang, Y. S., Lin, K.-M., Tsai, Y.-T., Zeng, Y.-R. & Hung, C.-X. Big data platform for air quality analysis and prediction. In 2018 27th 

Wireless and Optical Communication Conference (WOCC), 1–3 (IEEE, 2018).
	11.	  Environmental Protection Administration Executive in Taiwan. Questions and answers of air box. Retrieved from, https://taqm.epa.

gov.tw/taqm/tw/b0905.aspx. Accessed August 01, (2018).
	12.	  Zannetti, P. Numerical simulation modeling of air pollution: An overview. Transactions on Ecol. Environ.  1 (1993).
	13.	 M. Lee, A., Carver, G., Chipperfield, M. & McQuaid, J. Three-dimensional chemical forecasting: A methodology. J. Geophys. Res. 

102, 3905–3919 (1997).
	14.	 Dabberdt, W. F. et al. Meteorological research needs for improved air quality forecasting: Report of the 11th prospectus development 

team of the u.s. weather research program*. Bull. Am. Meteorol. Soc. 85, 563–586 (2004).
	15.	  Carmichael, G. R. et al. Predicting air quality: Improvements through advanced methods to integrate models and measurements. J. 

Comput. Phys. Predicting weather, climate and extreme events 227, 3540–3571 (2008).
	16.	 Makar, P. A. et al. Dynamic adjustment of climatological ozone boundary conditions for air-quality forecasts. Atmospheric Chem. 

Phys. 10, 8997–9015 (2010).
	17.	 Sportisse, B. A review of current issues in air pollution modeling and simulation. Comput. Geosci. 11, 159–181 (2007).
	18.	 Niharika, Venkatadri & Rao, P. S. B. A survey on air quality forecasting techniques. IN. International Journal of Computer Science and 

Information Technologies 5(1), 103–107 (2014).
	19.	  Kalapanidas, E. & Avouris, N. Applying machine learning techniques in air quality prediction. Res. (1999).
	20.	  Zhao, H., Zhang, J., Wang, K., Bai, Z. & Liu, A. A ga-ann model for air quality predicting. In 2010 International Computer 

Symposium (ICS2010), 693–699 (2010).
	21.	 Deleawe, S., Kusznir, J., Lamb, B. & Cook, D. Predicting air quality in smart environments. J. ambient 398 intelligence smart 

environments 2, 145–152 (2010).

Algorithm 1.  GBM.

https://doi.org/10.1038/s41598-020-61151-7
https://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx/
https://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx/
http://farmer.iyard.org/cwb/cwb.htm
https://www.epa.gov/airdata
https://taqm.epa.gov.tw/taqm/tw/b0905.aspx
https://taqm.epa.gov.tw/taqm/tw/b0905.aspx


13Scientific Reports |         (2020) 10:4153  | https://doi.org/10.1038/s41598-020-61151-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

	22.	  Yu, R., Yang, Y., Yang, L., Han, G. & Move, O. A. Raq-a random forest approach for predicting air quality in urban sensing systems. 
Sensors  16 (2016).

	23.	 Kaur, G., Gao, J., Chiao, S., Lu, S. & Xie, G. Air quality prediction: Big data and machine learning approaches. Int. J. Environ. Sci. Dev. 
9, 8–16 (2018).

	24.	 Friedman, J. H. Greedy function approximation: A gradient boosting machine. The Annals Stat. 29, 1189–1232 (2001).
	25.	 Nowack, P. et al. Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. 

Environ. Res. Lett. 13, 104016 (2018).
	26.	 Keller, C. A. & Evans, M. J. Application of random forest regression to the calculation of gas-phase chemistry within the geos-chem 

chemistry model v10. Geosci. Model. Dev. 12, 1209–1225 (2019).
	27.	 Chuang, M.-T. et al. Simulation of long-range transport aerosols from the asian continent to taiwan by a southward asian high-

pressure system. Sci. total environment 406, 168–179 (2008).
	28.	  Keoni Everington. China is single largest source of PM2.5 pollution in Taiwan, Taiwan News https://www.taiwannews.com.tw/en/

news/3342478 (2018).
	29.	 Yang, K.-L. Spatial and seasonal variation of pm10 mass concentrations in taiwan. Atmospheric Environ. 36, 3403–3411 (2002).
	30.	 Cheng, F.-Y. & Hsu, C.-H. Long-term variations in pm 2.5 concentrations under changing meteorological conditions in taiwan. Sci. 

reports 9, 6635 (2019).
	31.	 Hsu, C.-H. & Cheng, F.-Y. Classification of weather patterns to study the influence of meteorological characteristics on pm2.5 

concentrations in yunlin county, taiwan. Atmospheric Environ. 144, 397–408 (2016).
	32.	 Chen, T.-L. Air pollution caused by coal-fired power plant in middle taiwan. Int. J. Energy Power Eng. 6, 121 (2017).
	33.	 Lu, G. Y. & Wong, D. W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. 423 Geosci. 34, 1044–1055 

(2008).
	34.	 Tai-Yi, Y. Characterization of ambient air quality during a rice straw burning episode. J. Environ. Monit. 14, 817–829 (2012).
	35.	  King’s College London. Data Feeds for London air quality [web APIs] available via, https://www.londonair.org.uk/Londonair/API/. 

Accessed August 01, 2018.
	36.	 Buccolieri, R., Jeanjean, A. P., Gatto, E. & Leigh, R. J. The impact of trees on street ventilation, nox and pm2.5 concentrations across 

heights in marylebone rd street canyon, central london. Sustain. Cities Soc. 41, 227–241 (2018).
	37.	  Raspisaniye Pogodi Ltd. Weather archive in London [data files] available via, http://rp5.co.uk/Weather_archive_in_London. 

Accessed August 01, 2018.
	38.	  Environmental Protection Administration in Taiwan. Data sets of continuous emission monitoring system [internet database] 

available via, https://erdb.epa.gov.tw/DataRepository/Air/Flue_CEMS_DATA.aspx. Accessed August 01, 2018.
	39.	  Environmental Protection Administration in Taiwan. Data sets of air quality monitoring stations [data files] available via, https://

taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx/. Accessed August 01, 2018.
	40.	 Jung, C.-R., Hwang, B.-F. & Chen, W.-T. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and 

meteorological variables to estimate ground-level pm2.5 concentrations in taiwan from 2005 to 2015. Environ. Pollut. 237, 
1000–1010 (2018).

	41.	  Environmental Protection Administration in Taiwan. Quality assurance of air quality monitoring. Retrieved from, https://taqm.epa.
gov.tw/taqm/en/b0801.aspx. Accessed August 01, 2018.

	42.	  Central Weather Bureau in Taiwan. Data sets of weather station [data files] available via, http://farmer.iyard.org/cwb/cwb.htm. 
Accessed August 01, 2018.

	43.	 Matheson, I. A critical comparison of least absolute deviation fitting (robust) and least squares fitting: The importance of error 
distributions. Comput. Chem. 14, 49–57 (1990).

	44.	 White, G. C. & Bennetts, R. E. Analysis of frequency count data using the negative binomial distribution. Ecol. 77, 2549–2557 (1996).

Acknowledgements
The authors would like to acknowledge the financial support provided by Ministry of Science and Technology, 
Taiwan (MOST 109-2634-F-155-001).

Author contributions
Mike Lee conceived and conducted the experiments, and analyzed the results. Larry Lin organized the layout of 
article, figures, and tables. Chin-Yuan Chen was responsible for geographical and meteorological elucidation and 
figures. Ting-Hsuan Yao and Min-Han Fei made clear and understandable figures. Yu Tsao and Shih-Hau Fang 
wrote and corrected the article and figures. All the authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.-H.F.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-61151-7
https://www.taiwannews.com.tw/en/news/3342478
https://www.taiwannews.com.tw/en/news/3342478
https://www.londonair.org.uk/Londonair/API/
http://rp5.co.uk/Weather_archive_in_London
https://erdb.epa.gov.tw/DataRepository/Air/Flue_CEMS_DATA.aspx
https://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx/
https://taqm.epa.gov.tw/taqm/tw/YearlyDataDownload.aspx/
https://taqm.epa.gov.tw/taqm/en/b0801.aspx
https://taqm.epa.gov.tw/taqm/en/b0801.aspx
http://farmer.iyard.org/cwb/cwb.htm
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Forecasting Air Quality in Taiwan by Using Machine Learning

	Geographical and Meteorological Divergence of PM2.5 Concentration Between Regional Monitoring Areas

	Results

	PM2.5 Prediction Results

	Comparison Between Taiwan and London

	Effect of Adding Industry-Related CEMS Features

	Discussion

	Methods

	Data collection. 
	Feature extraction. 
	GBM. 

	Acknowledgements

	Figure 1 The (a) 77 air quality monitoring stations and (b) 580 weather stations set up across the seven air quality regions in Taiwan.
	Figure 2 (a) Monthly variations of the mean PM2.
	Figure 3 Estimate of the PM2.
	Figure 4 Annual average results of PM2.
	Figure 5 STD of (a) RMSE and (b) R2 across 5-folds validations in seven regions.
	Figure 6 Comparison between the observed and predicted PM2.
	Figure 7 Comparison of the forecasting performance between Taiwan, Taipei, and London.
	Figure 8 Geographical positions of the air stations and power plants in Taichung.
	Figure 9 CEMS impact of the Taichung and Thong-Siau power plants on five air monitoring stations in Taichung City, where the circles represent the performance without CEMS, triangles represent the impact of adding Taichung Power Plant’s attributes, and sq
	Figure 10 Comparison of the CEMS impact between Taichung and Taipei.
	Algorithm 1 GBM.
	Table 1 The acronyms for the London stations.
	Table 2 Input features obtained from an air monitoring station.
	Table 3 Input features from a weather station.




