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Abstract

Plastid genomes (plastomes) of parasitic plants undergo dramatic reductions as the need for photosynthesis relaxes. Here, we report

the plastome of the only known heterotrophic gymnosperm Parasitaxus usta (Podocarpaceae). With 68 unique genes, of which 33

encode proteins, 31 tRNAs, and four rRNAs in a plastome of 85.3-kb length, Parasitaxus has both the smallest and the functionally

least capable plastid genome of gymnosperms. Although the heterotroph retains chlorophyll, all genes for photosynthesis are

physically or functionally lost, making photosynthetic energy gain impossible. The pseudogenization of the three plastome-

encoded light-independent chlorophyll biosynthesis genes chlB, chlL, and chlN implies that Parasitaxus relies on either only the

light-dependent chlorophyll biosynthesis pathway or another regulation system. Nesting within a group of gymnosperms known for

theabsenceof the large inverted repeat regions (IRs), anotherunusual featureof the Parasitaxus plastome is the existence ofa9,256-

bp long IR. Its short length and a gene composition that completely differs from those of IR-containing gymnosperms together

suggest a regain of this critical, plastome structure-stabilizing feature. In sum, our findings highlight the particular path of lifestyle-

associated reductive plastome evolution, where structural features might provide additional cues of a continued selection for

plastome maintenance.
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Introduction

The plastid’s principal function in photosynthesis is reflected in

its semiautonomous genome (plastome) that encodes many

components for the photosynthetic machinery (Palmer 1985;

Wicke et al. 2011). Seed plant plastomes often exhibit a quad-

ripartite structure with a conserved pair of large inverted

repeats (IRs; 10–30 kb) separated by a large and a small sin-

gle-copy (LSC and SSC) region, respectively (Jansen and

Ruhlman 2012). Because of the selection pressure on

photosynthesis-related elements, plastomes usually have a

highly conserved gene content (115–160 genes) and gene

order (Ruhlman and Jansen 2014), although notable excep-

tions are known (e.g., Guisinger et al. 2011; Chaw et al.

2018).

The most aberrant plastid genome structures pertain to

heterotrophic (parasitic) plants, which have experienced par-

allel gene losses as they independently transitioned into a

nonphotosynthetic lifestyle (Wicke and Naumann 2018).

Plants can abandon photosynthesis as they have gained the

ability to feed on other plants (Westwood et al. 2010). To

obtain nutrients, so-called haustorial parasites develop a spe-

cialized feeding organ to tap into another plant’s vascular

� The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 11(10):2789–2796. doi:10.1093/gbe/evz187 Advance Access publication August 27, 2019 2789

GBE

http://orcid.org/0000-0001-5785-9500
Deleted Text: -
Deleted Text: -
Deleted Text:  
Deleted Text: region 
Deleted Text: ;
Deleted Text: -
http://creativecommons.org/licenses/by/4.0/


system, whereas mycoheterotrophic plants epiparasitize fun-

gal networks. However, our knowledge of the progression of

the heterotrophy-associated reductive plastome evolution is

limited to flowering plants.

Podocarpaceae is the largest family of cupressophytes

(Farjon 2001; Christenhusz and Byng 2016) and the only

one in which a heterotrophic gymnosperm has evolved.

Parasitaxus usta from New Caledonia establishes an obligate

and direct fusion with the roots of one of its family members,

Falcatifolium taxoides, which, as host, supplies the parasite

with nutrients (Delaubenfels 1959). The plastids of

Parasitaxus contain high contents of chlorophyll a and b but

perform no photosynthetic electron transport (Feild and

Brodribb 2005). The heterotrophic gymnosperm lacks roots,

and it has no haustorium that usually characterizes haustorial

parasitic flowering plants. Together, the presence of fungal

hyphae at the parasite–host junction, the direct plant–plant

connection, and carbon isotope ratios indicative of additional

nutrient uptake from a fungus suggest that Parasitaxus

“presents a unique physiological chimera” of haustorial para-

sites and mycoheterotrophic plants (Feild and Brodribb 2005,

p. 1316). The heterotroph’s physiological uniqueness, there-

fore, might also exhibit uniqueness in reductive plastome

evolution.

Here, we sequenced, assembled, and annotated the com-

plete plastomes of Parasitaxus usta and its photosynthetic rel-

ative Manoao colensoi. It was the aim of our study to infer

whether the heterotrophic mode of Parasitaxus follows the

predicted course of heterotrophy-associated plastome reduc-

tion that is characteristic of nonphotosynthetic land plants.

We focused our analyses on changes of the plastid coding

capacity of Parasitaxus and found that its degree of physical

and functional reduction, as well as its structural evolution, is

exceptionally different from those of other heterotrophs.

Materials and Methods

For plastid genome reconstruction via genome-skimming, we

isolated total genomic DNA from fresh leaves of Manoao (de-

posited at Herbarium at the Royal Botanic Garden, Edinburgh,

voucher no. 19842513) using the CTAB method (Doyle and

Doyle 1987) and obtained a DNA sample of Parasitaxus from

the DNA Bank of the Royal Botanical Gardens Kew (DNA Bank

ID: 37534). Approximately, 1lg of total DNA each was sub-

jected to library construction with the NEBNext DNA Library

Prep Kit and Covaris-based fragmentation to 650 bp before

sequencing in 150-bp paired-end mode was carried out on an

Illumina MiSeq. To obtain a sufficient postlibrary quantity for

sequencing, 14 PCR cycles with the Q5 High-Fidelity DNA

polymerase were necessary for Parasitaxus compared with

eight for Manoao.

We assembled the plastomes using both the Organelle

Genome Assembler (OGA) pipeline (Qu 2019) and Spades

v3.13.0 (Bankevich et al. 2012), the latter with the

“careful”-option and k-mers of 61, 81, 101, and 121. To

validate the plastome assembly, we mapped all paired reads

to the assembled plastomes with Bowtie v2.3.2 (Langmead

and Salzberg 2012) with the local-sensitive option (-D 15 -R 2

-N 0 -L 20 -i S,1,0.75). We paid particular attention to the

boundaries of inverted repeat to single-copy regions. For this,

we checked read stacks by eye in Geneious v8.0.2 (https://

www.geneious.com). An initial annotation by the Plastid

Genome Annotator (PGA) (Qu et al. 2019) was refined by

manual corrections in Geneious v8.0.2. We classified a gene

as a pseudogene if its reading frame was truncated (incl. due

to a premature stop codon) or frameshifted compared with

nonparasitic Podocarpaceae (Wicke et al. 2016; Wicke and

Naumann 2018). To verify whether genes not detected dur-

ing initial annotation were really absent from the Parasitaxus

plastome, we mapped again all its read data to the finished

assembly of its close relative Manoao using Bowtie v2.3.2.

Additionally, we used BlastN and intact orthologs from

Manoao as queries to search the contig pool of Parasitaxus.

Pseudogene candidates of Parasitaxus were double checked

by aligning them with their functional equivalents of Manoao.

Physical plastome maps were drawn with OGDRAW v1.2

(Lohse et al. 2013). The annotated plastomes are deposited

in GenBank under accession numbers MN016935 and

MN016936.

For a comparative phylogenomic analysis, we downloaded

the plastomes of all previously sequenced Podocarpaceae spe-

cies from GenBank plus Zamia furfuraceae as an outgroup

(supplementary table S1, Supplementary Material online).

We extracted their coding sequences and merged these

data with those of the newly sequenced species. After build-

ing an alignment consisting of 82 protein-coding, 31 tRNA,

and 4 rRNA genes with MAFFT v7.313 (Katoh and Standley

2013) under the FFT-NS-i x1000 option, we reconstructed

phylogenetic relationships under the maximum likelihood

(ML) paradigm with RAxML v8.2.10 (Stamatakis 2014), using

the GTR-C substitution model and assessed tree robustness by

1,000 rapid bootstrap replicates. To assure that the ML infer-

ences were not affected by long gaps caused by missing

genes in Parasitaxus, we repeated this phylogenetic analysis

on a reduced data set consisting of only the commonly pre-

sent genes.

To determine plastome rearrangements, we determined

the set of locally collinear blocks (LCBs) and inferred potential

breakpoints through whole-plastome alignments of all 15

Podocarpaceae species and Zamia using progressiveMAUVE

with default settings (Darling et al. 2010). Before genome

alignment, we removed one IR copy from plastomes with

large inverted repeats because such large duplicated regions

hamper plastome alignments (Wicke et al. 2013).

Additionally, plastid genomic repeat content was inferred

from the number and length of forward, reverse, comple-

ment, and inverted repeats in a REPuter analysis (Kurtz et al.

2001), using a minimum length of 20 bp, a Hamming distance
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of 3, and a maximum e-value of 10�3. Tandem repeats in the

plastome of Parasitaxus were identified using Phobos v3.3.12

(http://www.rub.de/ecoevo/cm/cm_phobos.htm; last

accessed May 1, 2019), with a minimum length of 10 bp

for perfect repeats and a repeat unit length of 2–50 bp. We

used BayesTraits v3.0.1 and random walk models to analyze

the plastid repeat history (Pagel et al. 2004). Testing for cor-

relations between repeat density, the presence of an IR, num-

ber of rearrangements, and the transition to a

nonphotosynthetic lifestyle were based on likelihood ratio

tests (LRTs) between a free model that estimates the correla-

tion between any two traits and one with no correlation as-

sumed (Wicke et al. 2013). The number of rearrangements

was reconstructed by a permutation analysis of locally collin-

ear blocks over the fixed phylogenetic tree using MGR v2.01

(Tesler 2002; Röschenbleck et al. 2017).

Possible heterotrophy-associated changes of molecular

evolution were evaluated from the distribution of selection

regimes in Podocarpaceae. To this end, we analyzed a com-

bined data set of all commonly present 33 protein-coding

genes using a genetic algorithm approach (Kosakovsky

Pond and Frost 2005) with the MPI-enabled HyPhy suite v2

(Kosakovsky Pond et al. 2005). This analysis models classes of

nonsynonymous to synonymous rates (x-regimes) without a

priori-categorization of the lineage(s) of interest. Additionally,

we tested for episodic changes of selection using aBSREL

(Smith et al. 2015) in all-to-all branch testing mode.

Results and Discussion

Our two assemblies (Spades, OGA) of the 12 and 74 millions

of reads obtained for Parasitaxus and Manoao, respectively,

produced identical results for each of these species’ plastome

structures. Coverages above 195� for both species allowed

us to build high-quality annotations based on DNA evidence

and comparisons with previously sequenced gymnosperms

(Chaw et al. 2018; Sudianto et al. 2019). With a length of

85,318 bp (fig. 1A and supplementary fig. S1 and supple-

mentary table S1, Supplementary Material online), Parasitaxus

has the smallest plastome among all sequenced gymno-

sperms. Unlike other cupressophytes, the plastome of the

heterotroph shows a quadripartite structure with an LSC of

38,859 bp, SSC of 27,947 bp, and IRs of 9,256 bp length

each. We identified the latter by coverage plots (fig. 1A and

supplementary fig. S1, Supplementary Material online) and a

thorough inspection of read-pair splits, anchoring in the IR on

one end but to different single-copy regions on the other.

Parasitaxus has lost nearly 60% of the typical gymnosperm

plastome coding capacity. Although most Podocarpaceae

plastomes, including that of the newly sequenced Manoao,

encode 82 proteins, 32 tRNAs and 4 rRNAs (Sudianto et al.

2019), Parasitaxus retains only 33 intact protein-coding, 31

tRNA and four rRNA genes (supplementary fig. S1 and sup-

plementary table S1, Supplementary Material online). We

detected fragments of missing plastid genes (ndhB/D/E/K,

petB, psaA/B, and psbB) on contigs with extremely low (<1)

k-mer coverage. This finding suggests that Parasitaxus retains

(fragmented) copies of these genes in other genomic com-

partments as nuclear or mitochondrial plastid inserts, similar

to parasitic Orobanchaceae (supplementary fig. S4,

Supplementary Material online; Cusimano and Wicke 2016).

Notably, gene losses affect almost exclusively photosyn-

thesis genes (49 genes). Only a single tRNA gene (trnR-CCG)

is undetectable. Thus, the pattern of plastid gene losses in

Parasitaxus differs from other nonphotosynthetic plants

(fig. 2), which even in early stages of genome degradation

exhibit functional losses also in plastid ribosomal protein

genes or subunits of the plastid-encoded polymerase

(Wolfe et al. 1992; Funk et al. 2007; McNeal et al. 2007;

Petersen et al. 2015; Logacheva et al. 2016; Naumann et al.

2016; Wicke et al. 2016; Barrett et al. 2018; Su et al. 2019).

Of the plastid-encoded components for photosynthesis,

only three (atpA/B/E) of six ATP synthase genes remain in

the plastome as intact genes. Their prolonged survival might

relate to their proximity to functionally essential plastid genes

(Wicke et al. 2013). Sequence comparisons provide circum-

stantial evidence that 18 other retained photosynthesis genes

are nonfunctional (supplementary fig. S2, Supplementary

Material online). Of particular interest is the presence of pseu-

dogenes for the light-independent chlorophyll biosynthesis

genes chlB, chlL, and chlN. These three genes are typically

missing from angiosperm plastomes and have been indepen-

dently lost in gnetophytes (McCoy et al. 2008; Wu et al.

2009). In contrast, all other gymnosperms (Wu et al. 2007)

and nonseed plants, with the exception of a nonphoto-

synthetic liverwort (Wickett et al. 2008), retain chl genes.

These results imply that the chlorophyll in Parasitaxus

(Feild and Brodribb 2005) is a product of the light-

dependent chlorophyll biosynthesis pathway or an as yet

unknown regulatory system. Trace amounts of chlorophyll

and low expression of nuclear-encoded chlorophyll bio-

synthesis genes were also detected in holoparasitic

broomrape (Orobanchaceae) (Wickett et al. 2011) and

some orchids (Barrett et al. 2014). Investigating the phys-

iological role of chlorophyll in nonphotosynthetic plants,

therefore, may represent a new route of heterotrophic

plant research.

All but one plastid gene losses in Parasitaxus can be attrib-

uted to its transition to heterotrophy. Although genes for the

dehydrogenase complex (ndh genes) are functionally lost in

some gymnosperms (Chaw et al. 2018), all ndh genes are

intact in photosynthetic cupressophytes. Parasitaxus has func-

tionally or physically lost all ndh genes (fig. 2 and supplemen-

tary table S1, Supplementary Material online). The

pseudogenization of all genes for the cytochrome b6/f com-

plex, the photosystems I and II, and genes directly or indirectly

involved in photosynthetic energy conversion explains the

Plastome Reduction in Parasitaxus GBE
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where white boxes correspond to protein genes, red to rRNA, and green to tRNA. All plastomes are drawn to scale.
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observation that Parasitaxus plastids lack photoelectron trans-

fer (Feild and Brodribb 2005).

The set of functionally retained protein genes of

Parasitaxus evolve under purifying selection (fig. 1B). We in-

ferred five different x-regimes for Podocarpaceae, all of

which <1. Parasitaxus belongs to the predominant x-regime

(x ¼ 0.382), which describes 48% of the analyzed phyloge-

netic tree. We found no evidence for episodic changes of

selection in the heterotroph or other gymnosperms (all

P values > 0.55 after alpha error-correction). Together, these

data suggest that the transition to heterotrophy might have

had a rather mild effect on functionally still relevant plastid
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FIG. 2.—Plastid coding capacities of Parasitaxus and other heterotrophic land plants. The presence and absence of plastid genes across all currently

studied plastomes of heterotrophic plants compiled by Wicke and Naumann (2018) and all data published since (full list of included data: supplementary

table S4, Supplementary Material online) is depicted for all plastid gene classes. Not included here are the chl genes, which have been lost ancestrally in

angiosperms, unrelated to heterotrophy (Wicke et al. 2011). Parasitaxus is highlighted in blue. Offwhite and light gray indicate the presence of specific genes

as intact or pseudogene, whereas the absence of a gene from a plastome is marked in dark gray. Heterotrophic plant species are sorted by decreasing

plastome size (from top to bottom).
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genes in Parasitaxus. A possible lifestyle effect on the selec-

tional regimes of single genes remains to be investigated.

Our reconstruction of a quadripartite plastome structure

for Parasitaxus is surprising, given that all studied autotrophic

cupressophytes (Wu and Chaw 2014; Qu et al. 2017) have

lost their large IRs (fig. 1B and supplementary table S1,

Supplementary Material online). However, the IRs of

Parasitaxus differ from the canonical IRs of cycads, ginkgo,

and gnetophytes by both their size and gene composition

(Guo et al. 2014). Besides being less than half the size of other

gymnosperm IRs, the heterotroph’s large repeats contain trnI-

CAU, trnH-GUG, matK, trnK-UUU, trnQ-UUG, rpl23, rpl2, and

rps19 (fig. 1A); all typically located in the LSC. We also

detected coverage spikes higher than those of the novel IR

in the 16S and 23S rRNA genes, which normally reside in

canonical IR regions. Typically, these genes are GC-richer

than the rest of the plastome. So, compositional-related ge-

nomic fragmentation biases might have caused uneven se-

quencing. We also cannot exclude the possibility that

mitochondrial reads cross-mapped to the plastome despite

high-stringency mapping. However, no even coverage spans

the plastid rDNA region and no read-pair splits to different

single-copy regions exist. Thus, we interpret the coverage

spikes as technical artifacts and not as evidence for canonical

IRs.

An IR pair is thought to be essential for stabilizing plastome

structure (Marechal and Brisson 2010). Inversions often char-

acterize IR-lacking plastomes (fig. 1B), as seen in

Podocarpaceae (Sudianto et al. 2019). As Parasitaxus is nested

within the latter (supplementary fig. S3, Supplementary

Material online), we conclude that the heterotroph must

have gained novel IRs after its divergence from the IR-

lacking rest. To us, secondary IR gain is the most parsimonious

explanation, more likely than independent losses. Regaining a

large IR is exceptional, reported to date only once before in

the legume Medicago minima (Choi et al. 2019). Choi et al.

(2019) hypothesize that IR reemergence could occur through

synthesis-dependent strand annealing or the formation and

resolution of Holiday junctions during recombination-

dependent DNA repair.

Achlorophyllous plants exhibit structural rearrangements

beyond gene loss-related syntenic changes (e.g., Delannoy

et al. 2011; Bellot and Renner 2015; Feng et al. 2016). We

observe an abundance of simple sequence repeats and

repeats in the plastome of Parasitaxus (supplementary tables

S2 and S3, Supplementary Material online), potentially rele-

vant for the development of simple sequence repeat markers

to study the evolutionary history of this vulnerable parasitic

gymnosperm. Parasitaxus also shows unique rearrangements

compared with its close relatives (fig. 1B). However, in the

heterotroph’s plastome, the association between changes in

genomic structure and its lifestyle is coincidental (LRT P value:

0.862). Rearrangements are prominent in plastomes of

Podocarpaceae (fig. 1) and might relate primarily to other

lineage-specific factors. Phylostatistical testing cannot support

the hypothesis that IR absence and the number of rearrange-

ments are linked in Podocarpaceae (LRT P value: 0.531).

Similarly, neither an association between the absence of an

IR and repeat density (LRT P value: 0.935) nor correlations

between the latter and the transition to heterotrophy (LRT P

value: 0.936) or with rearrangements (LRT P value: 0.411)

exist in Podocarpaceae (supplementary table S3,

Supplementary Material online). Typically, these factors are

associated with one another in nonparasitic as well as in par-

asitic plant plastomes (Ruhlman and Jansen 2014; Wicke and

Naumann 2018). Thus, our results suggest that plastome evo-

lution in Podocarpaceae and Parasitaxus follows unparalleled

routes, worthy of further study.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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