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Deep learning‑based 
histopathological segmentation 
for whole slide images of colorectal 
cancer in a compressed domain
Hyeongsub Kim1,2, Hongjoon Yoon2, Nishant Thakur3, Gyoyeon Hwang4, Eun Jung Lee4,5, 
Chulhong Kim1* & Yosep Chong3*

Automatic pattern recognition using deep learning techniques has become increasingly important. 
Unfortunately, due to limited system memory, general preprocessing methods for high-resolution 
images in the spatial domain can lose important data information such as high-frequency information 
and the region of interest. To overcome these limitations, we propose an image segmentation 
approach in the compressed domain based on principal component analysis (PCA) and discrete 
wavelet transform (DWT). After inference for each tile using neural networks, a whole prediction 
image was reconstructed by wavelet weighted ensemble (WWE) based on inverse discrete wavelet 
transform (IDWT). The training and validation were performed using 351 colorectal biopsy specimens, 
which were pathologically confirmed by two pathologists. For 39 test datasets, the average Dice 
score, the pixel accuracy, and the Jaccard score were 0.804 ± 0.125, 0.957 ± 0.025, and 0.690 ± 0.174, 
respectively. We can train the networks for the high-resolution image with the large region of interest 
compared to the result in the low-resolution and the small region of interest in the spatial domain. The 
average Dice score, pixel accuracy, and Jaccard score are significantly increased by 2.7%, 0.9%, and 
2.7%, respectively. We believe that our approach has great potential for accurate diagnosis.

The large number of inspections for pathologists is exposed to the risk of misdiagnosis. This leads to a rapid 
increase in medical expenses, an increase in the false diagnosis rate, a decrease in medical productivity, and the 
risk of a cancer diagnosis. Automatic analyses of pathological images can mitigate human effort, save time, and 
provide a confident foundation for surgery and treatment. Convolutional neural networks (CNNs) are especially 
popular for the automatic diagnosis of many diseases in pathology1–19. However, despite the continued increase 
in the speed and memory capacity of central processing units (CPUs) and graphical processing units (GPUs), 
technological advances in pathological image analysis are still hampered by large image sizes20.

For high-resolution and large-scale images, a general preprocessing method to relieve memory limitation 
can induce important information loss. Several methods have been explored to reduce image sizes, such as 
decimation, cropping, and compression21–23. Decimation is the major process for down sampling large images, 
and it can also reduce noise power and improve signal-to-noise ratios (SNRs), thanks to an anti-aliasing filter. 
However, decimation can cause a loss of high-frequency information, resulting in low resolution due to the 
reduced signal bandwidth24,25. As another widely used method, cropping extracts the wanted areas from whole 
slide images (WSIs) into tiles. Although no information is missed with respect to a single tile, the spatial rela-
tionships between tiles may be lose, which is critical because object judgments depend on the relative size and 
color of each cell in the pathological image.

Compression is widely used both to minimize the size of an image file without degradation in the image 
quality and to reduce irrelevance and redundancy of data in the image. Thus, compression is mostly preferred 
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to process large-scale images. For example, detecting ships in satellite images is difficult due to their high resolu-
tion and correspondingly large data volume. A compression technique called discrete wavelet transform (DWT) 
resolves the difficulty in high-resolution ship detection and performs better than conventional computer vision 
algorithms26. In addition, DWT is also useful for texture classification, because its finite duration provides both 
the frequency and spatial locality. In pathology, DWT analysis has been applied to classify tumors by using 
texture analysis27.

In this work, we propose a pathological image segmentation method in the compressed domain. To compress 
large pathological images, we utilized not only DWT but also principal component analysis (PCA) according 
to hematoxylin and eosin (H&E) staining characteristics to reduce 3-channel RGB data to one channel28. We 
tested this inference method in the compressed domain on colorectal cancer pathologic images from the Catholic 
University of Korea Yeouido St. Mary’s Hospital.

Our results imply that the method using the compressed domain is more useful for pathologic segmentation 
than the method using the spatial domain, for three reasons: (1) The average Dice score, pixel accuracy, and 
Jaccard score are significantly improved, by 2.7%, 0.9%, and 2.7%, respectively. (2) Using DWT, neural networks 
can be trained not only by spatial information but also by texture information. (3) The performance can be more 
robust because of the large ROI in training after compression; the size of the input image is reduced by 8%. This 
new segmentation technique in the compressed domain can be potentially useful in applications where large-
scale data and texture information are important, such as remote sensing29 and microscopy30–32.

Results
Data distribution.  We used 390 WSIs of colorectal biopsy specimens. The average size of WSIs was 43,443 
by 28,645 pixels. We split the dataset into two groups: 351 train and validation data, and 39 test data (Supple-
mentary Table 1). We used this dataset to implement a pipeline to achieve binary segmentation of normal and 
abnormal areas in colorectal cancer (CRC) tissue images.

Overall result according to each method.  Table 1 compares the average the Dice score (Dice), pixel 
accuracy (Acc), and Jaccard score (Jac) according to each method. As it shows, for the model using information 
loss data (Small ROI, low resolution), the average Dice, Acc, and Jac results decreased by 1.1% , 0.2%, and 1.2% 
for the small ROI data (Tile size: 256 by 256, 20× magnification) and 4%, 1%, and 4.4% for the low resolution 
data (Tile size: 512 by 512, 10× magnification) respectively, compared to those of the model using standard data 
(Tile size: 512 by 512, 20× magnification). For the model using compressed data, the average Dice, Acc, and Jac 
results for the LL sub-band increased by 4%, 0.6%, and 4.3%, respectively, compared to those of the model using 
low resolution data in spatial domain whose magnification equal to LL sub-band’s magnification. The reason 
why LL’s results improve is the impact of PCA. Channels are reduced and background is removed, reducing input 
complexity and improving performance. However, the average Dice and Acc results of the LH (0.1% for Dice, 
-0.7% for Acc, and − 0.5% for Jac), HL (− 1.8% for Dice, − 0.3% for Acc, and − 3.6% for Jac), and HH (− 1.3% for 
Dice, − 0.8% for Acc, and − 2.5% for Jac) sub-bands carrying high-frequency information decreased compared 
to those before compression. For the result of ensemble method, the average Dice, Acc, and Jac results for wavelet 
weighted ensemble (WWE) result for wavelet sub-band after principal component analysis (PCA) increased by 
2.7%, 0.9%, and 2.7%, respectively, compared to those of the model using standard data in spatial domain. It is 
best performance among our ensemble method.

Table 1.   Average Dice, Acc, and Jac values for the result of standard input in spatial domain (Tile size: 512 by 
512, ×20 magnification, standard), the result of small ROI input in spatial domain (Tile size: 256 by 256, ×20 
magnification, Small ROI), the result of low resolution input in spatial domain (Tile size: 512 by 512, ×10 
magnification, low resolution), the result of weighted average ensemble (WAE) result for wavelet sub-band 
after grayscale conversion (GRAY-DWT (WAE)), the result of wavelet weighted ensemble (WWE) result for 
wavelet sub-band after grayscale conversion (GRAY-DWT (WWE)), the result of weighted average ensemble 
(WAE) result for wavelet sub-band after principle component analysis (PCA) (PCA-DWT (WAE)), and the 
result of wavelet weighted ensemble (WWE) result for wavelet sub-band after principal component analysis 
(PCA) (PCA-DWT (WWE)).

Method Dice Acc Jac

Spatial domain

Standard 0.777 ± 0.133 0.948 ± 0.030 0.663 ± 0.186

Small ROI 0.766 ± 0.146 0.946 ± 0.032 0.651 ± 0.199

Low resolution 0.737 ± 0.164 0.938 ± 0.019 0.619 ± 0.197

Compressed domain

LL sub-band 0.777 ± 0.157 0.944 ± 0.037 0.662 ± 0.206

LH sub-band 0.738 ± 0.172 0.931 ± 0.040 0.614 ± 0.218

HL sub-band 0.719 ± 0.153 0.935 ± 0.030 0.583 ± 0.184

HH sub-band 0.724 ± 0.167 0.929 ± 0.038 0.594 ± 0.206

Ensemble

GRAY-DWT (WAE) 0.782 ± 0.155 0.944 ± 0.042 0.668 ± 0.207

GRAY-DWT (WWE) 0.790 ± 0.131 0.949 ± 0.027 0.671 ± 0.177

PCA-DWT (WAE) 0.785 ± 0.159 0.947 ± 0.040 0.674 ± 0.208

PCA-DWT (WWE) 0.804 ± 0.125 0.957 ± 0.025 0.690 ± 0.174
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The trend for dice according to each class.  Figure 1 shows distribution Dice according to all classes. 
In the case of all tumor classes, the average results for the LL sub-band are relatively high. Further, the average 
results of the LH, HL, HH sub-bands carrying high-frequency components are relatively high in ADENOCA, 
TAH, CARCINOID, and HYPERP (Fig. 1). ADENOCA (malignant tumors occurring in the mucosa), TAH 
(relatively high advanced), CARCINOID (malignant tumors but occurring in the submucosa), and HYPERP 
(benign tumors) (Fig. 1), which are relatively easy to detect due to advanced disease progression and conse-
quent pathological modifications. However, the results of the LH, HL, HH sub-bands are less predictive for TAL 
(Fig. 1). TAL (relatively less advanced) are difficult to accurately predict with only high-frequency components. 
Based on these results, we propose an ensemble method that can improve the results using both low-frequency 

Figure 1.   Comparison of Dice for each class between the result of standard input in spatial domain (Tile 
size: 512 by 512, ×20 magnification, standard), the result of small ROI input in spatial domain (Tile size: 256 
by 256, ×20 magnification, Small ROI), the result of low resolution input in spatial domain (Tile size: 512 by 
512, ×10 magnification, low resolution), the result of weighted average ensemble (WAE) result for wavelet sub-
band after grayscale conversion (GRAY-DWT (WAE)), the result of wavelet weighted ensemble (WWE) result 
for wavelet sub-band after grayscale conversion (GRAY-DWT (WWE)), the result of weighted average ensemble 
(WAE) result for wavelet sub-band after principle component analysis (PCA) (PCA-DWT (WAE)), and the 
result of wavelet weighted ensemble (WWE) result for wavelet sub-band after principal component analysis 
(PCA) (PCA-DWT (WWE)).
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and high-frequency information. Compared to the no compression results, ADENOCA, TAH, CARCINOID, 
and HYPERP show good performance after WAE because the Dice in the high-frequency sub-bands such as LH, 
HL, and HH sub-band are higher than these of the no compression case (ADENOCA: + 3.3% for Dice at PCA-
DWT(WAE); TAH: + 1.9% for Dice at PCA-DWT(WAE); CARCINOID: + 1.8% for Dice at PCA-DWT(WAE); 
HYPERP: + 1.4% for Dice at PCA-DWT(WAE)). However, in TAL, which show low performance in the high-
frequency sub-bands, the Dice after PCA-DWT(WAE) are lower than those of no compression (TAL: − 1.5% 
for Dice at PCA-DWT(WAE)). On the other hand, after PCA-DWT(WWE), the average Dice increase by about 
2.7%, respectively, compared to LL. For each class, the results of ADENOCA (− 1.0% for Dice), TAH (+ 1.3% for 
Dice), TAL (+ 4.3% for Dice), CARCINOID (+ 0.9% for Dice), and HYPER (− 0.1% for Dice) gradually increase.

Change in dice in all classes according to low‑ ( W
1
 ) and high‑frequency weight ( W

2
 , W

3
 , and W

4
). 

  We checked change of Dice score in all classes according to low-frequency weight ( W1 ) and high-frequency 
weight ( W2 , W3 , and W4 ) to optimize each weight by conducting the empirical test. The best weights in the 
WWE are determined by the average Dice scores, as shown in Supplementary Table 2. Figure 2 describes the 
change in Dice score with respect to various low-frequency weights ( W1 ) in all tumor classes (ADENOCA, TAH, 
TAL, CARCINOID, and HYPERP). From 0.3 to 0.9, the Dice scores of all the classes increase relatively steeply. 
Particularly, the increasing rates in the Dice scores of HYPERP and ADENOCA are relatively high. Beyond the 
W1 value of 1.5, the Dice scores start being saturated in all classes. Further, we changed the values of the high-
frequency weights ( W2 , W3 , and W4 ), but the changes in Dice scores are negligible as shown in Supplementary 
Fig. 1.

Comparison of the heat map and line profiles between annotation, the result in the spatial 
domain and compressed domain.  Using a heat map and line profiles for tumor probability, we com-
pared the segmentation prediction for annotation, the result in spatial domain, and the result in compressed 
domain (Fig. 3a–h). The color bar indicates the tumor probability for each pixel. The heat map is overlaid on the 
original histology image, and a magnified image of the area in the colored border is located on top of the main 
image. The line profiles of the tumor probability cut along the red dotted dashed lines are located below the main 
image. Figure 3a is the ground truth, annotated by a pathologist. The pixel value in the annotation is 1, and the 
value in the other regions is 0. Figure 3b shows the segmentation result of the model using small ROI input data 
in spatial domain (Tile size: 256 by 256, 20× magnification). There is a slight loss of spatial information after 
small size tile extraction for efficient training, but the magnification is the same as for the standard methods. 
Figure 3c shows the segmentation result of the model using low resolution input data in spatial domain (Tile size: 
512 by 512, 10× magnification). There is a slight loss of high-frequency information after decimation for efficient 
training, but the ROI used in single training is the same as for the other methods. Figure 3d shows the segmenta-
tion result of the model using standard input data in spatial domain (Tile size: 512 by 512, 20× magnification). 
Figure 3e shows the segmentation result of weighted average ensemble (WAE) result for wavelet sub-band after 
grayscale conversion (initial tile size: 1024 by 1024, 20× magnification). Figure 3f shows the segmentation result 
of wavelet weighted ensemble (WWE) result for wavelet sub-band after grayscale conversion (initial tile size: 
1024 by 1024, 20× magnification). Figure 3g shows the segmentation result of weighted average ensemble (WAE) 
result for wavelet sub-band after PCA (initial tile size: 1024 by 1024, 20× magnification). Figure 3h shows the 
segmentation result of wavelet weighted ensemble (WWE) result for wavelet sub-band after PCA (initial tile size: 
1024 by 1024, 20× magnification). The magnified image in Fig. 3b–g. predicts a broader region than in the anno-
tation, and the tumor probability in each pixel is relatively low. The segmentation result for PCA-DWT(WAE), 
shown in Fig. 3h, clearly is qualitatively better than that in spatial domain. The final segmentation result with 
WWE has accurate edges as well as a high probability in each pixel, compared to the other methods. The tumor 

Figure 2.   Change in Dice in all tumor classes according to the low-frequency weight ( W
1
 ) in the WWE.
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probability line profile processed with PCA-DWT (WWE) is most similar to the original annotation profile, 
proving the accuracy of our method.

Average dice for each method according to the threshold.  The Dice scores for the result in spatial 
domain are compared across a range of threshold tumor probability values (Fig. 4a), and WWE for the wavelet 
sub-bands after PCA or grayscale conversion, WAE for the wavelet sub-bands after PCA or grayscale conver-
sion (Fig. 4b). Between threshold values of 0.1 and 0.6, the Dice score of the result in spatial domain is relatively 
stable. However, beyond a threshold of 0.7, the Dice score for this method drops sharply, compared to those of 
the other methods. WAE and WWE continue perform robustly for all thresholds, and the Dice score of WWE is 
consistently higher than that of WAE, thanks to the high-frequency information.

Final prediction result of five different tumor classes using PCA‑DWT (WWE).  Finally, we com-
pared our PCA-DWT (WWE) predicted image with the image annotated by a pathologist. Figure 5a–e shows 
tissue histology images from five different tumor categories. The pathologist’s annotations are shown in Fig. 5f–j. 
The corresponding predicted probability map using PCA-DWT (WWE) are shown in Fig. 5k–o and final over-
laid tissue images are shown in Fig. 5p–t. The proposed PCA-DWT (WWE) method generally segmented an 

Figure 3.   (a) Annotation: Annotated image, corresponding magnified image (above), and Dashed red line 
profiles (below). (b) Small ROI: The result of small ROI input in spatial domain (Tile size: 256 by 256, ×20 
magnification). (c) Low resolution: The result of low-resolution input in spatial domain (Tile size: 512 by 
512, ×10 magnification). (d) Standard: The result of standard input in spatial domain (Tile size: 512 by 512, ×20 
magnification). (e) GRAY-DWT (WAE): The result of weighted average ensemble (WAE) result for wavelet 
sub-band after grayscale conversion. (f) GRAY-DWT (WWE): The result of wavelet weighted ensemble (WWE) 
result for wavelet sub-band after grayscale conversion. (g) PCA-DWT (WAE): The result of weighted average 
ensemble (WAE) result for wavelet sub-band after principle component analysis (PCA). (f) PCA-DWT (WWE): 
The result of wavelet weighted ensemble (WWE) result for wavelet sub-band after principal component analysis 
(PCA).
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afflicted area that corresponded well to the ground truth images. The average Dice, Acc, and Jac of the PCA-DWT 
(WWE) are 0.802 ± 0.125, 0.957 ± 0.025, and 0.690 ± 0.174 respectively. The best Dice (0.867 ± 0.144) is achieved 
in TAH, where the high-frequency information is important. On the other hand, the worst Dice (0.652 ± 0.119) 
is in HYPERP, where the low-frequency information is important. As shown in the yellow dotted boxes in the 
case of HYPERP (Fig. 5o,t), we often observed that the normal region where dead nuclei are gathered is abnor-
mally predicted. Possibly, these abnormal predictions are caused by artifacts, such as tissue folds, ink, dust, and 
air bubbles, and further artifact removal may be required. Despite these abnormalities, the overall prediction of 
colorectal cancer using PCA-DWT(WWE) was not biased to any one class: it performed well for all.

Discussion
The goal of this study is to increase diagnostic accuracy (e.g., Dice, Acc, and Jac) by using a compressed domain 
to reduce high-frequency information loss. The compressed domain approach was employed in previous 
studies26,33,34 showing good performance in pathology classification not segmentation because there was no 
appropriate ensemble method for results for each sub-band (e.g., LL, LH, HL, HH sub-bands results)27,35–38. 
In this paper, we proposed the PCA-DWT(WWE) method, which learns each low-frequency component and 
high-frequency component in the compression domain and then combines them. With the NVIDIA TITAN X 
12 Gb GPU used in this experiment, the U-net++ model can be trained on a maximum tile size of 512 by 512 at 
once. Therefore, in order to learn our experimental ROI size of 6.25 × 10−2 μm2 without compression, the resolu-
tion of the standard image (20× magnification) would have to be lowered (10× magnification) (Table 2). In this 
process, the loss of high-frequency components cannot be avoided. On the other hand, our proposed method 

Figure 4.   Comparative Dice of wavelet weighted ensemble (WWE) for wavelet sub-bands, weighted average 
ensemble (WAE) for wavelet sub-bands, and the result in spatial domain according to the threshold for tumor 
probability (95% confidence interval).
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can handle a tile size of 1024 by 1024 before compression The main reason why WWE is better than WAE could 
be WWE gives weights in units of pixels based on wavelet transform, a compression method, according to the 
characteristics of input data while WAE gives weight in units of images. Thus, it is not necessary to lower the 
resolution to learn the same ROI size, and learning is possible with 20× magnification. In addition, compared 
to the result in spatial domain, our proposed method can learn a tile that is four times larger than the limit of 
the hardware. However, our method requires four times more the number of GPUs (Table 2) at the same time. 
From the perspective of time resources, in the case of a general CNN based on 2D convolution, the amount of 

Figure 5.   Prediction results of the five different tumor classes. (a)–(e) are tissue histology images. (f)–(j) are 
annotation by a pathologist (i.e., ground truth). (k)–(o) are predicted probability map (WWE). (p)–(t) are 
overlaid tissue histology image and prediction heatmap. Yellow dotted boxes in (o) and (t) show misprediction 
due to dead nuclei.

Table 2.   The conditions of input image such as magnification, initial tile size, ROI size, and the number of 
GPUs. Drawbacks in each domain are in bold. Significance values are in bold.

Spatial domain

Compressed domainLow resolution Standard Small ROI

Magnification  ×10  ×20  ×20  ×20

Initial tile size 512 by 512 512 by 512 256 by 256 1024 by 1024

ROI size 6.25 × 10–2 µm2 1.56 × 10–2 µm2 3.91 × 10–3 µm2 6.25 × 10–2 µm2

Number of GPUs 1 1 1 4
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computation increases exponentially as the input size increases. Therefore, it is faster to learn by separating one 
image into four images than to learn an image that is 4 times larger at a single time. This case is similar to the 
principle of the Cooley–Tukey FFT algorithm39,40, and we believe that subsequent studies will also meaningfully 
to reduce time consuming.

We have conducted a study to prevent the loss of high-frequency information that occurs in the process of 
having to resize the image due to the limitation of the hardware and to increase the accuracy of the final result by 
using protected high-frequency information. Using a wavelet-weighted ensemble method, we found that accuracy 
was improved over that of images in spatial domain. The overall accuracy was determined by the low-frequency 
component, and the high-frequency component affected the margin. The disadvantage is that it requires a rela-
tively large amount of GPU resources. However, we expect to reduce time-consuming compared to the result in 
spatial domain when the same as the initial tile size. As for the possible shortcomings of the proposed work, the 
weights for each frequency should be changed from experimental parameter to trainable parameter. Furthermore, 
it is difficult to implement explainable AI because our approaches are based on the pre-processing and modi-
fied ensemble. To the best of our knowledge, this is the first study to do WWE in the compressed domain. We 
applied this processing method to colorectal cancer pathology images, and we believe that it can also be applied 
in general pathology images and show a similar increase in accuracy. Our proposed wavelet-weighted ensemble 
method can also be applied in other fields that process large-scale images (e.g., astronomy and satellite imagery) 
and that is important to margin (e.g., radiation therapy).

Methods
Data preparation.  This study was reviewed and approved by the Institutional Review Board of the Catholic 
University of Korea College of Medicine (SC18RNSI0116). All experiments were conducted in accordance with 
relevant guidelines/regulations in the Catholic University of Korea College of Medicine. Informed consent prior 
to the surgical procedures, all patients had given their informed consent to use tissue samples and pathological 
diagnostic reports for research purposes. We used a dataset using H&E stained-WSIs of colorectal biopsy speci-
mens at the Yeouido St. Mary’s Hospital.

First, the reason why colorectal cancer (CRC) was chosen is, it is second leading cause of mortality throughout 
the globe41,42. Due to the rapid adaptation of urban lifestyle, it is expected to increase the CRC cases in Asian 
countries43. Early diagnosis is a critical step to minimize the CRC causing death and colonoscopy is one of the 
powerful screening methods44. Moreover, according to Korean health policy, it is recommended that every citizen 
should undergo a colonoscopy and that leads to higher number of colonoscopy cases. In our hospital, we had 
higher sample availability of CRC as compared to other cancer.

Another reason is that the histological staining and pathological examination are more time-consuming 
and labor-intensive work45. The pathological diagnosis of CRC samples can be easily influenced by independent 
pathologists’, their knowledge and experience. It may cause inter-observer and intra-observer variations among 
pathologists45. Currently, there are two types of pathological diagnosis of CRC such as Vienna classification 
(followed by Western countries) and Japanese classification (followed by Eastern countries)46,47. Hence, there is 
a high urge for a standardized system that can mitigate the confusion among specialists.

The WSIs were 20× magnified images taken using a digital whole-slide camera (Aperio AT2, Leica biosystems, 
USA). The Whole slide images (WSIs) were manually annotated by the three trained pathologists supervised by 
the expert and performed routine histopathological examination by drawing the region of interest in the slides 
that corresponded to one of the five labels: adenocarcinoma (ADENOCA), high-grade adenoma with dyspla-
sia (TAH), and low-grade adenoma with dysplasia (TAL), carcinoid (CARCINOID), and hyperplastic polyp 
(HYPERP). The average annotation time per WSI took 5–10 min. Next, annotations carried out by the trained 
pathologists were reviewed by the three senior pathologists and if necessary then modified and verified with the 
final checking verification by the one senior professors. Cases that had discrepancies in the annotation labels 
resolved the issue through further discussions. The images were excluded, when it was not possible to reach 
a consensus on a lesion type for an image. Most of the WSI contained multiple annotation labels. Therefore, a 
single WSI label of major diagnosis was assigned to a given WSI.

Compressed image analysis.  In this study, we applied a compressed domain based on the wavelet trans-
form used in JPEG2000 for the segmentation of pathologic images. The pipeline is as follows: tile extraction, 
z-axis compression, training and prediction in the compressed-domain using CNNs, prediction from one tile 
to the whole image, and wavelet-weighted ensemble (WWE) (Fig. 6). Each process is detailed in the following 
subsections.

Tile extraction based on a sliding window algorithm (Fig. 6a and Supplementary Fig. 2).  When 
the tiles are extracted from one WSI, the information about location and adjacent tiles is lost due to the limited 
fields-of-view. However, morphological information between adjacent areas is crucial for diagnostic decisions. 
Two typical tile extraction methods, the multiple ROI and sliding window methods, have been widely used to 
overcome this problem9. Although the multiple ROI method is faster than the sliding window because of its 
low redundancy, the sliding window method has the following advantages. First, the redundancy in the sliding 
window method assists data augmentation, an essential pre-processing step in a deep learning approach. Second, 
this method can overcome the limited field-of-view problem indirectly because the overlapping area depends on 
adjacent tiles. Finally, the overall accuracy can increase because the probability in the overlapping area is aver-
aged during summation from the tile to the whole image. In this work, we choose the sliding window manner as 
the tile extraction method. Although the receptable maximum tile size is 512 × 512 pixels due to the limitation 



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22520  | https://doi.org/10.1038/s41598-021-01905-z

www.nature.com/scientificreports/

of our GPU memory size, we extracted a tile that is 1024 × 1024 pixels in size before the compression step. The 
stride is set to 256 pixels, horizontally and vertically.

Z‑axis compression based on principal component analysis (PCA).  Pathologic images have three 
red (R), green (G), and blue (B) channels (Fig. 7a). The correlation is high among each color (Fig. 7c). Color vari-
ation in the pathologic image is given by H&E staining, which dyes the cell nuclei blue, and dyes the extracellular 
matrix and cytoplasm pink. Therefore, z-axis compression was applied only to the R and B channels in the tissue 
region. First, Otsu algorithm were applied to extract the RGB values at tissue region, and then the G values were 
removed48. PCA was applied to maximize the variation between the R and B values and to minimize the mean 
squared error (Fig. 7d)28. This process reduces the image dimensionality and results in background reduction, 
widely used in histopathology (Fig. 7b). The PCA algorithm is described in detail in Supplementary Table 3.

Training neural networks in the compressed‑domain (x‑ and y‑axis compression).  After the 
image depth compression (z-axis), discrete wavelet transform (DWT) was performed on each tile to compress 
the information along the x- and y-axis49. Haar wavelet is usually used to extract texture feature36,38,50. So, we 
decided 2D DWT based on Haar wavelet and its sub-band was calculated using the following Eqs. (1)–(4):

(1)WA
�
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Figure 6.   Overall flow chart of the proposed method. (a) Tile extraction based on a sliding window. (b) Image 
depth compression. (c) Forward transform to the compressed domain. (d) Training and prediction using 
convolutional neural networks. (e) Prediction from one tile to the whole image. (f) Wavelet-weighted ensemble 
(WWE).
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where 
(

x, y
)

 is the coordinate of the input tile, (m, n) is the coordinate of the output sub-band, �A
j,m,n

(

x, y
)

 and 
�i
j,m,n

(

x, y
)

 represent the 2D wavelet basis function of level j, WA
�

 describes an approximation of the original image 
called the LL (low-low) sub-band, and WV

�
,WH

�
 , and WD

�
 are high-frequency components whose directions are 

vertical, horizontal, and diagonal. We call this transformed domain a compressed domain26. These components 
are called the LH (low–high) sub-band, HL (high-low) sub-band, and HH (high-high) sub-band, respectively. 
Our proposed method using these compressed domain analyses has the following benefits. First, the image size 
is reduced (e.g., from 1024 × 1024 pixels to 512 × 512 pixels), but all needed information is retained to perfectly 
reconstruct the original image. After reconstruction, the ROI can be increased without losing information, 
which is proportional to the generalization performance. Second, the method is useful for classifying texture 
because the result of the 2D grey-level co-occurrence matrix (GLCM) in the wavelet domain can capture texture 
information from the wavelet sub-band according to the cancer grading36. We input all four DWT sub-bands 
in parallel to each separate segmentation model, U-Net++51. We used the DiceCE loss function combined the 
Dice coefficients and the cross-entropies 52. Each sub-band model took two NVidia Titan X GPUs. The total 
batch size was six for each GPU.

Prediction from tiles to whole images using wavelet weighted ensemble (WWE).  The recon-
struction process is described here. After producing a whole probability map for each sub-band, as shown in 
Fig. 6e, we applied ensemble learning based on wavelet weighted ensemble (WWE) to four trained neural net-

Figure 7.   The principal component analysis (PCA) for z-axis compression. (a) The original tile composed of 
RGB-channels. (b) The resulting tile composed of single channel. (c) RGB value distribution in a tissue region. 
(d) The PCA for the R and B channels.
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works for each sub-band (Fig. 8). Initially, a binary mask image (Fig. 8b) is obtained from the original image by 
using an Otsu algorithm (Fig. 8a)48. After a 2D wavelet transform based on the Haar wavelet, four wavelet sub-
bands for the binary tissue mask were generated (Fig. 8c). We defined them as the wavelet weights, namely the 
LL weight, LH weight, HL weight, and HH weight. We added a small value, ε, to each wavelet weight, then mul-
tiplied it by their assigned weights (Fig. 8d). Lastly, we multiplied the weights by the corresponding probability 
map (Fig. 8e), and then applied an inverse discrete wavelet transform that also used the Haar wavelet to obtain 
a final probability map and overlay image (Fig. 8f,g). Parameters such as W1,W2,W3, and W4 were empirically 
determined. Ideally, if the same region of each sub-band has a probability of 1, the reconstruction probability of 
that region should also be 1 without those parameters. However, we gave the LL sub-band more weight (i.e., 1.8) 
because the LL sub-band has a basic characteristic of the original image. Then, ε was added to remove the zero 
terms. The ensemble method is expressed by the following Eq. (5):

where �A
1,m,n

(

x, y
)

 and �i
1,m,n

(

x, y
)

 represent 2D wavelet basis functions of level 1, YA
�

 describes an approximation 
of the binary tissue mask (LL sub-band weight), and  Yi

�
 are high-frequency components (LH, HL, and HH sub-

band weights) for the binary tissue mask whose directions are horizontal, vertical, and diagonal, respectively. RA 
and Ri describe the probability map for each sub-band. RWWE is the final prediction result after wavelet weighted 
ensemble (WWE).
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Figure 8.   Schematic of wavelet weighted ensemble (WWE) for one low pass sub-band (LL sub-band) and 
three high pass sub-bands (LH, HL, and HH) based on discrete wavelet transform (DWT) and inverse 
discrete wavelet transform (IDWT). (a) Original image. (b) Binary tissue mask. (c) Initial wavelet weights. (d) 
Additional parameters. ε = 0.1, W1 = 2.1, W2 = 1.8, W3 = 1.8, and W4 = 3.0. (e) Raw probability map for each sub-
band. (f) Final probability map. (g) Overlaid image.
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To optimize the weight parameters such as W1 , W2 , W3 , and W4 , we applied optimization that satisfied Eq. (6), 
where W = (W1 , W2 , W3 , W4 ) and fd(x) is the function that decides the average Dice score of x. The range of each 
parameter is from 0.3 to 3.0, with a step size of 0.3. For comparison, Supplementary Table 2 shows the average 
Dice scores for W1 , W2 , W3 , and W4 . We chose the parameter values as W1 = 2.1, W2 = 1.8 , W3 = 1.8 , and W4 = 3.0.

Experimental setup.  The qualities of the predictions were quantified by using the Dice score (Dice), pixel 
accuracy (Acc), and Jaccard score (Jac) as follows:

where NTP ,NTN ,NFP , andNFN are the number of pixels for true-positive, false-positive, true-negative, and 
false-negative.

For the 39 WSIs test dataset, our proposed method was compared with the model in three ways: (1) Three 
condition of input image in spatial domain: standard (Tile size, 512 by 512 pixels; magnification, 20×), low 
resolution (Tile size, 512 by 512 pixels; magnification, 10×), and small ROI (Tile size, 256 by 256 pixels; magni-
fication, 20×), (2) Four compressed data such as the LL, LH, HL, and HH sub-bands after PCA, and (3) using 
the weighted average ensemble (WAE) for each sub-band result after grayscale conversion and PCA and WWE 
for each sub-band result after grayscale conversion. The WAE is expressed as follows:

where RA, RH , RV , and RD describe the probability maps for each sub-band, and RWAE is the final prediction 
result after the weighted average ensemble. RA , RH , RV , and RD describe probability the maps for the LL, LH, HL, 
and HH sub-bands, respectively. We set the same weight values in WAE as those in WWE ( W1 = 2.1 , W2 = 1.8 , 
W3 = 1.8 , and W4 = 3.0).

In order to verify the excellence of the proposed method, we progressed experiments after fivefold cross-
validtaions as follows: (1) To compare average Dice, Jac and Acc according to each method, (2) To observe 
distribution of Dice, Jac and Acc according to all classes, (3) Check dice change of all classes according to low-
frequency weight ( W1 ) and high-frequency weight ( W2 , W3 , and W4 ), (4) To compare sample images and its line 
profiles according to each method, (5) To compare with Dice of WWE, WAE, and the result in spatial domain 
according to threshold for tumor probability.
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