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ABSTRACT Chaperone-usher (CU) fimbriae are the most abundant Gram-negative
bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli
alone. Some E. coli CU fimbriae have been well characterized and bind to specific
glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to a-D-
mannosylated glycoproteins such as uroplakins in the bladder via their tip-located
FimH adhesin, leading to colonization and invasion of the bladder epithelium.
Despite this, the receptor-binding affinity of many other E. coli CU fimbria types
remains poorly characterized. Here, we used a recombinant E. coli strain expressing
different CU fimbriae, in conjunction with glycan array analysis comprising .300 gly-
cans, to dissect CU fimbria receptor specificity. We initially validated the approach by
demonstrating the purified FimH lectin-binding domain and recombinant E. coli
expressing type 1 fimbriae bound to a similar set of glycans. This technique was
then used to map the glycan binding affinity of six additional CU fimbriae, namely,
P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined
using whole-bacterial-cell surface plasmon resonance. This work describes new infor-
mation in fimbrial specificity and a rapid and scalable system to define novel adhe-
sin-glycan interactions that underpin bacterial colonization and disease.

IMPORTANCE Understanding the tropism of pathogens for host and tissue requires
a complete understanding of the host receptors targeted by fimbrial adhesins.
Furthermore, blocking adhesion is a promising strategy to counter increasing antibi-
otic resistance and is enabled by the identification of host receptors. Here, we use a
defined E. coli heterologous expression system to identify glycan receptors for six
chaperone-usher fimbriae and identify novel receptors that are consistent with their
known function. The same system was used to measure the kinetics of binding to
the identified glycan, wherein bacterial cells were immobilized onto a biosensor chip
and the interactions with glycans were quantified by surface plasmon resonance.
This novel, dual-level analysis, where screening for the repertoire of glycan binding
and the hierarchy of affinity of the identified ligands is determined directly from a
natively expressed fimbrial structure on the bacterial cell surface, is superior in both
throughput and biological relevance.
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Fimbriae (also known as pili) are proteinaceous structures that extend from the sur-
face of many bacteria. These organelles mediate diverse functions associated with

the colonization of surfaces and virulence, including adherence and biofilm formation.
Most bacterial fimbriae are comprised of a major repeating protein that makes up the
bulk of the organelle as well as a tip-located adhesin. The adhesin typically recognizes
specific receptor targets in a lock-and-key fashion, thereby determining tissue tropism.
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Many different types of fimbriae have been described in Gram-positive and Gram-
negative bacteria (1, 2). In Gram-negative bacteria, fimbriae assembled by the chaper-
one-usher (CU) system are the most abundant, with CU fimbriae of Escherichia coli
being the best characterized (3). The prototypical CU fimbriae are type 1 and P fimbriae
from uropathogenic E. coli (UPEC), and their regulation, biogenesis, structure, and func-
tion have been extensively studied (3–7). Type 1 fimbriae extend ;1.0mm from the
cell surface and are composed of a major subunit (FimA) as well as a tip fibrillum com-
prising several minor components, including the FimH adhesin (8–10). FimH binds to
a-D-mannosylated glycoproteins, such as uroplakins, that are abundant in the bladder
(11), thereby facilitating UPEC colonization and invasion of the bladder epithelium (12,
13). P fimbriae adopt a similar overall structure, comprising a major structural protein
(PapA), which makes up the bulk of the organelle that is connected to a tip fibrillum
composed of major (PapE) and minor (PapF, PapK, and PapG) subunits (14). The PapG
adhesin is located at the distal tip of the fibrillum and binds to Gala(1-4)Gal-containing
glycolipids (15). Three classes of PapG adhesin have been described with respect to
binding affinity. The class I adhesin binds to globotriaosyl ceramide (GbO3), the class II
adhesin binds to globotetraosyl ceramide (GbO4), and the class III adhesin binds to the
Forssman glycolipid with a terminal GalNAc (GbO5) (15, 16). The class II PapG allele is
the most common type of adhesin found in UPEC strains that cause pyelonephritis and
is essential for colonization of the upper urinary tract in a nonhuman primate infection
model (17).

The analysis of whole-genome sequence data has revealed extraordinary diversity
in CU fimbriae at the genetic level (18). Indeed, 38 distinct CU fimbrial types have been
identified in E. coli alone based on the phylogeny of the conserved usher protein and
genome locus position (19). This variation is also reflected in the receptor specificity of
the tip-adhesin (or lectin) to specific glycans (20) and dictates targeted adherence
properties associated with different E. coli pathotypes. For example, CU fimbriae,
including P, F1C, and S, are frequently associated with UPEC and meningitis-associated
E. coli (NMEC) (17, 21, 22), aggregative adherence fimbriae (AAF) are associated with
enteroaggregative E. coli (EAEC) (23), long polar fimbriae (LPF) are associated with
enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) (24), CS1-CFA/I
are associated with human-enterotoxigenic E. coli (ETEC) (25), and K88 (F4) and K99
(F5) fimbriae are associated with porcine, bovine, and ovine ETEC (26, 27). Most E. coli
strains also contain various combinations of CU fimbrial genes (19, 28), and these fim-
briae can work in concert to dictate tropism to specific infection sites. Recent work has
shown that the expression of Ucl fimbriae (also known as F17-like fimbriae) (29) con-
tributes to UPEC colonization of the gut, enabling the formation of a reservoir for sub-
sequent infection of the urinary tract due to the expression of type 1 fimbriae (30).
Furthermore, understanding these interactions at the molecular level represents an
exciting approach for the development of new anti-adhesion molecules as alternative
treatments to disrupt colonization by multidrug-resistant pathogens (30–34).

Despite our knowledge of CU fimbria diversity and the contribution of selected fim-
briae to pathogenesis, many CU fimbriae remain to be properly characterized. In addi-
tion, a comprehensive understanding of their receptor specificity is lacking. In this
study, we developed a new approach to dissect CU fimbria binding using a glycan
array. First, we showed that the glycan binding profile of the purified FimH adhesin lec-
tin-binding domain (FimHLD) and a recombinant E. coli strain expressing type 1 fim-
briae are similar, demonstrating that rapid screening of bacteria expressing a single
type of CU fimbriae can be employed to dissect receptor specificity. Next, a series of
plasmids containing genes encoding additional 12 CU fimbriae, including P (represent-
ing the three PapG allelic variants), F1C, Afa, F9, Yqi, Mat (also known as Ecp), type 3,
K88 (AB and AC types), and K99, were transformed into the E. coli K-12 fim-negative
strain MS428, and these recombinant strains were screened for binding to specific gly-
cans. Overall, we were able to define a set of receptor-binding phenotypes for each CU
fimbria, many of which matched their specific pathotype association.
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RESULTS AND DISCUSSION
The purified FimH lectin-binding domain and recombinant cells expressing

type 1 fimbriae interact with similar glycans based on glycan array screening.
Methods to elucidate and define protein-glycan interactions often start with the use of
recombinant purified proteins to screen glycan targets on arrays. However, such
approaches are not amenable to high-throughput investigation due to the require-
ment for purified protein. Furthermore, recombinant purified protein domains may
not correspond to natively expressed fimbrial protein on the bacterial cell surface.
Therefore, we began by examining the glycan binding repertoire of type 1 fimbriae as
a model, well-characterized system using two parallel approaches: (i) purified func-
tional FimHLD protein fused at the C terminus to a 6� histidine tag (35) and (ii) a
recombinant E. coli K-12 fim deletion strain (MS428) (36) transformed with a plasmid
containing the fimAICDFGH gene cluster (pPKL4) (37). In general, purified FimHLD and
the recombinant type 1 fimbria-expressing MS428(pPKL4) strain bound to a very simi-
lar group of related and overlapping glycans on the array (Fig. 1; see also Data Set S1
in the supplemental material). This encompassed a broad range of mannose-containing
glycans, including a-mannose monosaccharide, a1-2-, 3-, 4-, and 6-linked mannobiose,

FIG 1 Glycan array analysis of a range of fimbrial proteins from E. coli. This figure provides a graphical representation
of the pattern of binding of fimbrial proteins to the 375 glycans present on the Institute for Glycomics glycan
microarray to identify similarities and differences in binding patterns between these proteins. Full data showing the
identity of each glycan bound is shown in Data Set S1 and is discussed in detail in the text. Red indicates binding
above background; white indicates no binding. Mono, monosaccharides; Gal, terminal galactose; GalNAc, terminal N-
acetylgalactosamine; Fuc, fucose-containing glycans; Sia, sialylated glycans; Man, mannose-containing glycans; GlcNAc:
terminal N-acetylglucosamine; Glc, repeating glucose; LMW GAGs, low-molecular-weight glycosaminoglycans; HMW
GAGs, high-molecular-weight GAGs.
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and branched mannose structures, such as Man5 (Fig. 1 and Data Set S1). Several glycan
structures not terminating in mannose were also bound by either FimHLD or MS428
(pPKL4), suggesting that there are minor conformational differences that could explain
the small variance in binding between the purified FimHLD protein and natively
expressed FimH integrated at the tip of the type 1 fimbria structure. Indeed, FimH has
been shown to adopt both low- and high-affinity binding conformations that could
explain this phenomenon (38). No binding to the glycan array was observed by MS428
harboring the empty vector (Data Set S1), demonstrating that the glycan interactions
were type 1 fimbria dependent. Overall, the binding to mannose terminating structures
by FimHLD and MS428(pPKL4) agrees strongly with the published binding profile of the
FimH adhesin (39), supporting an approach employing recombinant whole cells to deter-
mine the glycan binding profile of a specific type of fimbriae.

SPR can be used to accurately measure whole-cell–glycan interactions. To
extend our comparative analysis of FimHLD and MS428(pPKL4) binding to glycans, we
used surface plasmon resonance (SPR) to quantitate their binding affinity to both
Man5 and Man5GlcNAc (Fig. 2). In these experiments, FimHLD bound to both mannosy-
lated glycans with high affinity (Table 1), and the dissociation constant (KD) values
were consistent with previously published affinity data for FimH and these two glycan
structures (110 to 127 nM for Man5 and 12 to 20 nM for Man5NAc) (39). Next, we
adapted a previously described method that employed SPR to measure toxin-mamma-
lian cell receptor binding (40) to quantitate the interaction between MS428(pPKL4)
cells and both glycans (Table 1). These data were congruent with the affinity data
obtained using FimHLD, further supporting the use of recombinant whole cells express-
ing a specific fimbria type to precisely quantitate individual glycan interactions.

Glycan binding analysis of fimbriae associated with colonization of the upper
urinary tract. P fimbriae are strongly associated with E. coli strains that cause pyelo-
nephritis (17) due to their capacity to bind to the a-D-galactopyranosyl-(1-4)–b-D-galac-
topyranoside receptor epitope in the globoseries of glycolipids found in human kidneys
and on erythrocytes (15, 41). P fimbriae recognize their receptors via the tip-located

FIG 2 Workflow of the comparison between purified FimHLD and type 1 fimbria-expressing E. coli. From left to
right, glycan array analysis compares the purified protein detected with fluorescent antibodies (red) to
fluorescent dye-labeled bacteria (red). This provides fluorescent signals on the array that can be detected and
presented as a yes/no binding across 400 glycans. Surface plasmon resonance analysis takes the positive
binding and allows for the determination of the affinity (KD) using either the purified protein (CM5 chip, high-
density dextran layer) or the whole bacteria (C1 chip, no dextran layer, binding very close to the gold surface).
Each analysis requires a blank flow cell (FC1) with an ethanolamine-blocked dextran layer used for protein and
immobilized MS428 (fim negative) for the type 1 fimbria-expressing strain.
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PapG adhesin, which exists as three distinct alleles (PapGI, PapGII, and PapGIII) that bind
with different affinity to Gala[1-4]Galb epitopes; PapGI, PapGII, and PapGIII bind prefer-
entially to membrane-associated GbO3, GbO4, and GbO5, respectively (15), while the
three variants exhibit similar binding specificity when these glycosphingolipids are
affixed to an artificial surface (41). Here, MS428 was used as a host strain and trans-
formed with plasmids harboring P-fimbria genes containing either the papGI (pRHU845)
or papGII (pPIL110-35) allele. Glycan array analysis of PapGI and PapGII demonstrated
binding to terminal galactose, including a1-3Gal, a1-4Gal, and b1-3Gal structures (Fig. 1
and Data Set S1), although not as many as previously described (15, 17, 41). Based on
the published studies (15, 17, 41), we could have expected up to 50 structures on the
array to have showed binding rather than the fewer than 10 that were observed.
Recently, it was demonstrated that glycan arrays are an imperfect tool for the analysis of
glycan binding by proteins owing to the importance of glycan presentation (42). Grant
et al. demonstrated that different chemical attachments to the array alter the recognition
of the presented glycan (42). It is important to note that previous studies of PapG used
ceramide-linked glycans, with many of the glycans on the array utilized here mimicking
glycoprotein/extended glycan presentation rather than lipid-linked glycoconjugates. In
fact, Stromberg et al. previously noted that the presentation of the same glycoconju-
gates in different membrane environments can alter the recognition of PapG fimbriae to
saccharide structures (41). We also attempted to characterize the binding properties of
the PapGIII adhesin by transforming MS428 with the papGIII-containing pJFK102 plasmid;
however, the recombinant strain exhibited nonspecific binding to the ethanolamine-
blocked glass surface of the array, preventing the precise elucidation of specific glycan
interactions.

F1C fimbriae are expressed by 14 to 30% of extraintestinal E. coli (ExPEC) strains of
urinary tract infection (UTI) origin (43, 44) and mediate binding via a tip-located FocH
adhesin to galactosylceramide receptors on epithelial cells in the kidneys, ureters, and
bladder as well as globotriaosylceramide receptors in the kidneys (21, 45). MS428 was
transformed with plasmid pPKL143 (encoding the F1C fimbria cluster), and binding
was examined using the glycan array. Binding to nine structures on the array was
observed, six terminal a/bGal/GalNAc structures (glycan identifiers [IDs] 2C, 85, 262,
382, and 504; Data Set S1), two a2-6 sialylated structures [glycan ID 10O, Neu5Aca2-
6Galb1-4GlcNAcb1-3Galb1-4Glc, and glycan ID 627, Neu5Aca2-6Galb1-4GlcNAcb1-
2Man)2-b1-3,6-Manb1-4GNb1-4GNb-sp4], and two glycosylaminoglycan fragments,
one from hyaluronan (glycan ID 13G) and the other from heparin (glycan ID 12L).
Although the set of interacting glycans for fimbria F1C does not perfectly overlap the
ganglioside and lactoceramide binding previously identified in the literature (21, 45),
due likely to the same presentation issues observed for PapG fimbriae, binding to sev-
eral previously identified structures, including the high-affinity structure asialoGM1,
was observed. SPR analysis revealed MS428(pPKL143) cells bound strongly to
asialoGM1, with a KD of 109 nM (Table 1).

Glycan binding analysis of other E. coli CU fimbriae. A further four CU fimbriae
were examined to define their specific interacting glycan receptors. The meningitis-
associated and temperature-regulated (Mat) fimbriae were first identified in the O18:

TABLE 1 Surface plasmon analysis of fimbrial proteins

Compound

Disassociation constanta:

FimH (protein) FimH (E. coli) F1C (E. coli) K88 (E. coli)
Man5 6076 142 nM 2.06 0.842mM NCDI NCDI
Man5NAc 25.96 8.9 nM 27.46 16.8 nM NCDI NCDI
Gala1-3Gal NCDI NCDI NCDI 160.36 30.0 nM
AsialoGM1 NCDI NCDI 109.16 45.6 nM 11.026 3.9mM
Maltose NCDI NCDI NCDI NCDI
aNCDI, no concentration-dependent interaction up to 100mMmaximum concentration.
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K1:H7 clonal group (ST95) of NMEC (46). Subsequent work showed these fimbriae are
also produced by other types of E. coli, including diarrheagenic strains, leading to their
renaming as the E. coli common pilus, or ECP (47). Here, the Mat/ECP genes were PCR
amplified from the UPEC reference strain CFT073 (ST73), cloned into plasmid pUC19,
and transformed into MS428 to generate the strain MS428(pMAT). Whole MS428(pMat)
cells expressing Mat/ECP fimbriae bound to four very different glycans on the array,
Gala1-6Glc (glycan ID 83), Asialo-GM1 (Galb1-3GalNAcb1-4Galb1-4Glc; glycan ID 1F),
blood group B (Fuca1-2(Gala1-3)Gal; glycan ID 226), and GlcNAcb1-6Galb1-4GlcNAc
(glycan ID 253). In the literature, the only other glycan targets identified for Mat/ECP
fimbriae are plant (1!5)-a-linked L-arabinosyl residues and longer chains of arabinan
(48). These structures are not on the glycan array used in this study and not present in
animal hosts, suggesting further work is required to properly understand the receptor
specificity of Mat/ECP fimbriae.

Yqi fimbriae (also referred to as ExPEC adhesin I; EA/I) are an uncharacterized CU
fimbria type found predominantly in E. coli isolates from phylogroup B2 (49), which
comprises extraintestinal E. coli associated with urinary tract, bloodstream, central
nervous system, and avian origins. In avian-pathogenic E. coli (APEC), Yqi fimbriae are
associated with adhesion and colonization of the lungs of chickens during infection
(49, 50). Here, the yqi fimbrial gene cluster was amplified by PCR from UPEC strain
CFT073, cloned into the expression vector pBAD/Myc-HisA, and transformed into
MS428 to generate the strain MS428(pYqi). In the glycan array analysis, whole MS428
(pYqi) cells expressing Yqi fimbriae bound to an asymmetrical biantennary glycan
structure (Data Set S1; glycan ID 490) with a terminal b-galactose on one arm and a
b-N-acetylglucosamine on the second, a terminal b-GlcNAc (Data Set S1; glycan ID
250), indicating some preference for terminal b-GlcNAc structures. Binding was also
observed to three fucosylated structures; including Lewis A (Data Set S1; glycan ID
233), a blood group B glycan (Data Set S1; glycan ID 360), and a-Gal-Lewis X (Data Set
S1; glycan ID 364). All of the structures recognized by Yqi are broadly expressed across
tissue types and host species (51–53), with blood groups and Lewis antigens a com-
mon target of pathogens (54).

The receptor binding profile of two CU fimbriae from enterotoxigenic E. coli (ETEC)
that mediate adhesion to porcine intestinal epithelial cells and contribute to ETEC diar-
rhea in neonatal and postweaning in piglets was examined using our whole-cell
recombinant expression–glycan array system, namely, F4ac (K88ac) and F5 (K99) fim-
briae (55, 56). Whole MS428(pK88-AC) cells expressing F4ac fimbriae bound to a range
of a- and b-linked terminal galactose glycans with a preference for glycans containing
a Galb1-3GlcNAc core (Fig. 1 and Data Set S1). The binding to terminal Gala1-3 glycans
by F4ac fimbriae indicates the recognition of nonhuman glycans, consistent with their
disease association (26, 27). These Gala1-3Galb1-3GlcNAc glycans are commonly
expressed in the cells of all mammals except humans and old world monkeys (57). SPR
analysis determined a binding affinity of 160 nM to a1-3-galactose and 11.2mM to
asialoGM1, supporting the observation that F4ac fimbriae interact with high affinity to
terminal a1-3-galactose structures. Unfortunately, a direct comparison between the
binding of F4ac and another F4 variant fimbriae, F4ab, could not be made, as MS428
(pK88-AB) cells bound nonspecifically to the ethanolamine-blocked glass surface of the
array, thereby preventing the precise elucidation of its glycan affinity profile. Whole
MS428(pK99) cells expressing F5 fimbriae only bound to one glycan on the array,
Neu5Aca2-3Galb1-3GlcNAc (Fig. 1 and Data Set S1). This is a common glycan found in
the gastrointestinal tract and lungs of pigs (58, 59) and is similar to the previously
defined F5-interacting glycan Neu5Gca2-3Galb1-4Glc-ceramide (27, 60), which was
not present on the glycan array. No binding was detected to the terminal disaccharide
Neu5Gca2-3Galb (glycan number 206) (Fig. 1 and Data Set S1). Taken together, the
data presented here, together with previous data in the literature, suggest these fim-
briae bind with a preference to sialic acids containing a2-3 linkages but can also bind
to N-acetyl- and N-glycyl-neuraminic acids, both of which are present in pigs (58, 59).
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Conclusions. The capacity to rapidly screen and measure adhesin-glycan interactions
provides new opportunities to understand bacterium-host tissue tropism and creates a
platform for the development of new therapeutics to prevent bacterial colonization and
disease. Indeed, given the current scenario of rapidly increasing antibiotic resistance, to-
gether with the dearth of new antibiotics in the developmental pipeline, such alternative
treatment approaches are urgently required. The best examples of anti-adhesive thera-
peutics are mannosides, high-affinity mannose analogues that bind to the FimH adhesin
of type 1 fimbriae, and reduce E. coli colonization of the bladder and colon (30, 33, 61,
62). Atomic detail describing the binding of mannoside derivatives to FimH has led to
their optimization for enhanced activity, potency, and oral bioavailability and demon-
strated their therapeutic efficacy in animal models of experimental UTI (34, 63). Other
small-molecule receptor analogues have also been developed, with high-affinity galacto-
sides that block E. coli Fml fimbria-mediated binding to GalNAc-containing receptors in
the urinary tract also showing promise for the treatment of bladder and kidney infection
in experimental mice (64, 65). The work described here presents a flexible, rapid, and
scalable system to define novel adhesin-glycan interactions that underpin bacterial colo-
nization and could be used to identify lead glycan structures for the development of
new therapeutics.

MATERIALS ANDMETHODS
Strains, plasmids, and culture conditions. E. coli strains and plasmids used in this study are listed

in Table 2. The heterologous expression of specific fimbriae was achieved by transformation of the fim-
negative MS428 strain with plasmids containing genes encoding type 1, P, F1C, Mat/ECP, Yqi, F4ac
(K88ac), or F5 (K99) fimbriae. E. coli strains were routinely cultured at 37°C on solid or in liquid lysogeny
broth (LB) medium (66) or liquid M9 minimal medium (42mM Na2HPO4, 22mM KH2PO4, 9mM NaCl,
18mM NH4Cl, 1mM MgSO4, 0.1mM CaCl2, and 0.2% [wt/vol] glucose). Where appropriate, media were
supplemented with ampicillin (100mg ml21), kanamycin (100mg ml21), or chloramphenicol (25mg
ml21). FimHLD was expressed and purified as previously described (35).

Glycan array analysis of purified FimH protein. Glycan array slides were printed using SuperEpoxy
3-activated substrates as previously described in Waespy et al. (67). The glycan arrays were preblocked
with 1% bovine serum albumin in phosphate-buffered saline (PBS) for 15 min. The glycan array binding
experiments were performed using 1mg of FimHLD protein in 65ml and analyzed as previously described
in Shewell et al. (68).

Glycan array analysis of recombinant E. coli strains expressing different fimbriae. E. coli MS428
strains harboring plasmids encoding different CU fimbriae were grown in M9 minimal media at 37°C to
an optical density at 600 nm (OD600) of 0.5 to 0.6, at which time Bodipy methyl ester TR fluorescent label
was added at a final concentration of 20mM. Labeling was carried out by incubating the cells at 37°C in
the dark with gentle shaking for 60 min.

Glycan arrays were produced as previously described (67, 69) and applied to the arrays as described
in Wurpel et al. (70). A total of 500ml of the labeled bacterial mix was added to a 65-ml gene frame as a
bubble and left to incubate in the dark for 20 min. Slides were washed three times with PBS and fixed
with 4% formaldehyde prior to being spun dry. Slides were scanned and analyzed as previously
described (68) and as outlined in the MIRAGE compliance table (see Table S1 in the supplemental
material).

TABLE 2 E. coli strains and plasmids used in this study

Strain/
plasmid Description Reference or source
Strain
MS428 MG1655 Dfim 36

Plasmids
pPKL4 Type 1 fimbria gene cluster from E. coli PC31 in pBR322 71
pPKL143 F1C fimbria gene cluster from E. coli AD110 in pBR322 72
pRHU845 P fimbria gene cluster (PapGI) from E. coli J96 in pACYC184 73
pPIL110-35 P fimbria gene cluster (PapGII) from E. coli AD110 in pACYC184 74
pJFK102 P fimbria gene cluster (PapGIII) from E. coli J96 in pBR322 73
pK88-AC F4ac (K88ac) gene cluster in pBR322 Gift from Per Klemm
pK99 F5 (K99) gene cluster in pBR322 Gift from Per Klemm
pMAT Mat gene cluster from CFT073 in pBR322 This study
pYqi Yqi gene cluster from CFT073 in pBR322 This study
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SPR analysis of bacterial fimbrial proteins. The interactions between the FimHLD protein and man-
nose glycans were analyzed using surface plasmon resonance (SPR) as described by Shewell et al. (68),
with the following modifications. Proteins were immobilized onto a CM5 chip at pH 4.0 and flow rate of
5 ml/min for 600 s, with an ethanolamine blank flow cell as a control. Glycans were tested between
1.6 nM and 1mM. All data were double reference subtracted. SPR of whole bacteria was performed using
a Biacore T200 system and C1 series S sensor chips (GE Healthcare Life Sciences) as previously described
(40). All flow cells (1 to 4) were prepared for immobilization per the manufacturer's instructions, and bac-
teria were flowed at an OD600 of 0.2 in a pH 5.0 acetate buffer and immobilized at a flow rate of 5 ml/
min for 720 s. MS428 was immobilized onto flow cell 1 as the negative control. Glycan was flowed over
between 1.6 nM and 100 mM glycans using single-cycle kinetics. The dissociation constant (KD) of the
interactions was obtained using the Biacore T200 evaluation software package (GE Healthcare Life
Sciences).
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