
Brain connectivity at rest predicts individual differences in 
normative activity during movie watching

David C. Gruskina,*, Gaurav H. Patelb,c

aMedical Scientist Training Program, Columbia University Irving Medical Center, NY 10032, USA

bNew York State Psychiatric Institute, NY 10032, USA

cDepartment of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA

Abstract

When exposed to the same sensory event, some individuals are bound to have less typical 

experiences than others. Previous research has investigated this phenomenon by showing that 

the typicality of one’s sensory experience is associated with the typicality of their stimulus-evoked 

brain activity (as measured by intersubject correlation, or ISC). Individual differences in ISC 

have recently been attributed to variability in focal neural processing. However, the extent to 

which these differences reflect purely intra-regional variability versus variation in the brain’s 

baseline ability to transmit information between regions has yet to be established. Here, we show 

that an individual’s degree and spatial distribution of ISC are closely related to their brain’s 

functional organization at rest. Using resting state and movie watching fMRI data from the Human 

Connectome Project, we reveal that resting state functional connectivity (RSFC) profiles can be 

used to predict cortex-wide ISC. Similar region-level analyses demonstrate that the levels of ISC 

exhibited by brain regions during movie watching are associated with their connectivity to other 

regions at rest, and that the nature of these connectivity-activity relationships varies as a function 

of regional roles in sensory information processing. Finally, we show that an individual’s unique 

spatial distribution of ISC, independent of its magnitude, is also related to their RSFC profile. 

These findings contextualize reports of localized individual differences in ISC as potentially 

reflecting larger, network-level alterations in resting brain function and detail how the brain’s 

ability to process complex sensory information is linked to its baseline functional organization.
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1. Introduction

The ability to interpret information from the outside world in a manner similar to one’s 

conspecifics is critical to healthy human behavior. Recent work on the neural substrates of 

sensory information processing has accordingly focused on the processing of naturalistic 

stimuli that reflect the complex and continuous nature of everyday experiences. One key 

finding from this line of research is that rich, time-locked stimuli such as movies elicit 

strongly conserved brain responses across individuals (Hasson et al., 2004). The extent of 

this stimulus-evoked brain activity is most frequently indexed by intersubject correlation 

(ISC), a measure of how similar one’s activity time course in a given brain region is to that 

of another individual or group average (Hasson et al., 2004; Nastase et al., 2019).

Early research using naturalistic stimuli focused on aspects of stimulus-evoked activity 

that are shared across subjects, but more recent work has sought to understand individual 

differences in ISC, or why some individuals exhibit less typical brain responses to 

naturalistic stimuli than others (Campbell et al., 2015; Finn et al., 2018; Finn et al., 

2020; Gruskin et al., 2020; Guo et al., 2015; Salmi et al., 2013). Across these studies, 

atypical brain responses have on several occasions been attributed to two general causes: 

failure to encode stimulus-specific information (e.g., a lapse in attention causes a subject’s 

gaze to deviate from the visual display) and/or idiosyncratic intra-regional processing of 

the stimulus (e.g., a lesioned brain region processes information in a unique manner). 

Importantly, recent studies using demanding cognitive tasks have shown that atypical task 

activations reflect aberrant inter-regional communication, rather than purely intra-regional 

deficits (Hearne et al., 2021; Mill et al., 2020). These findings suggest that atypical 

brain responses to naturalistic sensory information might similarly be linked to individual 

differences in intrinsic functional brain organization. The aims of the present manuscript are 

to test this hypothesis and identify general patterns in how the brain’s intrinsic functional 

organization is associated with normative stimulus-evoked activity.

Just as brain responses to naturalistic stimuli reflect individual-specific variations on a 

population-general theme, the brain’s resting functional architecture is organized into 

networks whose general structures are conserved from person to person but whose fine-

grained topologies and strengths serve as stable identifiers of individuals (Finn et al., 2015; 

Gordon et al., 2017). These networks are classically derived from resting state functional 

connectivity (RSFC), which is defined as the correlation between activity time courses 

from any two regions measured while the brain is not performing an explicit task. A 

growing literature has shown that RSFC can be used to predict both normal and pathological 

variation in model-based measures of brain activity during challenging experimental tasks, 

providing compelling evidence for the idea that RSFC describes the routes along which 

task-relevant information travels (Cole et al., 2016; Hearne et al., 2021; Ito et al., 2017; Mill 

et al., 2020; van den Heuvel and Hulshoff Pol, 2010). However, the extent to which RSFC 

can predict individual differences in model-free neural responses to naturalistic stimuli and 

shed light on how inter-regional communication facilitates localized processing of such 

stimuli is still unclear.
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To characterize how RSFC is associated with normative stimulus-evoked activity during 

movie watching, we analyzed fMRI data acquired across multiple days from healthy Human 

Connectome Project participants. First, we show that RSFC can be used to predict cortex-

wide ISC in new subjects and using data from held-out stimuli. Next, we demonstrate 

that the resting state functional connections most associated with ISC in a specific region 

vary systematically across the brain and quantify how greater intrinsic connectivity to one 

region is associated with more or less typical activity in others. Finally, we show that 

individual-specific RSFC patterns are related to the spatial distribution of ISC across cortex. 

Taken together, these results provide important context for interpreting atypical responses 

to naturalistic stimuli and detail new relationships between intrinsic and task-driven brain 

function.

2. Materials and methods

2.1. Participants

Data used for this project come from the Human Connectome Project (HCP) Young Adult 

7T release (Van Essen et al., 2013). Of the 184 subjects who underwent 7T fMRI scanning, 

eight participants did not complete every resting state and movie watching run. These 

subjects were excluded from all analyses for a sample size of n = 176 (106 females, 70 

males). All participants were healthy individuals between the ages of 22 and 36 (mean age 

= 29.4 years, standard deviation = 3.3) and provided informed written consent as part of 

their participation in the study. Self-reported racial identity in this sample was 87.5% White, 

7.4% Black or African American, 4% Asian/Native Hawaiian/Other Pacific Islander, and 1% 

unknown/not reported, and 1.7% of the sample identified as Hispanic/Latino.

2.2. fMRI data

FMRI data for the HCP 7T release were collected at the University of Minnesota on a 7T 

Siemens Magnetom scanner during four sessions spread across two or three days. Each 

day of data collection involved two resting state and two movie-watching runs across two 

sessions, with one rest run and both movie runs taking place during the same scan session 

and the second rest run taking place during another. The same echo-planar imaging sequence 

was used for all rest and movie scans and its key parameters are as follows: time of 

repetition (TR) = 1000 ms, echo time (TE) = 22.2 ms, number of slices = 85, flip angle = 

45°, spatial resolution = 1.6 mm3.

All four rest runs had duration of 900 TRs/15:00 min, whereas the four movie runs had 

variable durations (921, 918, 915, and 901 TRs). Subjects were instructed to fixate on a 

projected bright crosshair on a dark background during the rest runs and passively viewed 

a series of video clips (with sound) during each movie run. Movie runs one and three each 

consisted of four unique clips from independent films, and movie runs two and four were 

each composed of three unique clips from major motion pictures. The same montage of 

brief (1–4 s) videos was included at the end of every run for test-retest purposes. Clip 

durations varied between 83 and 259 s. More information on these clips can be found in 

Finn and Bandettini (2021) and at https://db.humanconnectome.org. Each video clip was 

preceded by 20 s of rest (during which the word “REST” was projected against a dark 
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background). Any TR that took place during one of these rest blocks was discarded from 

all analyses. The first 20 TRs after each rest block (corresponding to the start of each video 

clip) were also discarded to prevent onset transients from biasing our intersubject correlation 

(ISC) measurements (Dosenbach et al., 2006; Fox et al., 2005), leaving four movie runs of 

697, 735, 691, and 718 TRs, respectively. Finally, rest and movie runs from the same day 

were normalized and concatenated, yielding one rest run (1800 TRs) and one movie run 

(1432/1409 TRs) for each of the two days of data collection.

2.3. Preprocessing and parcellation

ICA-FIX denoised CIFTI files (e.g., 

rfMRI_REST1_7T_PA_Atlas_hp2000_clean.dtseries.nii) at 2 mm resolution were 

downloaded from ConnectomeDB. Briefly, these data were pre-processed using motion 

and distortion correction, high-pass temporal filtering, and MNI alignment, followed by 

regression of 24 motion parameters as well as a set of independent component analysis-

derived confound time courses (Glasser et al., 2013; Griffanti et al., 2014). Because head 

motion-related and other artifacts may persist in fMRI data even after ICA-FIX, additional 

denoising was performed. Following recent work with HCP data (Finn and Bandettini, 2021; 

Li et al., 2019), the average time course of all grayordinates and its temporal derivative 

was regressed from each scan. Additionally, high-motion frames were censored from all rest 

scans. To identify these frames, a 0.2 Hz (12 breaths per minute) low pass filter was first 

applied to each scan’s framewise displacement (FD) trace to account for respiratory artifacts 

found in fMRI data (Fair et al., 2020; Gratton et al., 2020). Any volume exceeding 0.2 

mm FD post-filtering was flagged, as were all runs of fewer than five contiguous volumes. 

Finally, delta functions corresponding to each of the censored volumes were included along 

with the two global signal time courses for each rest scan’s denoising design matrix. Frame 

censoring was not performed on the movie scans to ensure that ISC would be calculated 

with the same TRs across individuals.

Following denoising, functional data were parcellated into 360 cortical regions of interest 

using the Glasser HCP-MMP parcellation (Glasser et al., 2016). The Glasser parcellation 

was chosen for its anatomically specific labels, association with the HCP dataset and CIFTI 

format, and compatibility with the Cole-Anticevic Brain-wide Network Partition (Ji et al., 

2019), whose granular and interpretable network definitions (e.g., separate language and 

auditory networks) are especially suitable for the analysis of BOLD signals evoked by 

complex audiovisual stimuli.

2.4. Resting state functional connectivity

Using data from the two concatenated rest scans, time courses from all possible pairs 

of the 360 parcels were (Pearson) correlated to create two symmetric 360 × 360 resting 

state functional connectivity (RSFC) matrices for each subject, one for each day of data 

collection. Frames flagged as having high motion as per Section 2.3 were excluded from the 

correlation calculations.
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2.5. Intersubject correlation

ISC analysis was used to quantify the typicality of each individual’s BOLD responses to the 

Day 1 and Day 2 movie stimuli. For each of the 360 cortical parcels, each participant’s 

BOLD signal time course was normalized and (Pearson) correlated with that parcel’s 

average BOLD signal time course across all other participants to yield a 360 parcels × 176 

subjects intersubject correlation matrix. This was repeated separately for both concatenated 

movie scans such that every participant had two independent ISC values for each of the 

360 parcels, each reflecting the typicality of that individual’s BOLD responses to that day’s 

movie stimuli in that parcel.

2.6. Ridge connectome-based predictive modeling

Overview: Ridge connectome-based predictive modeling (rCPM) was used to relate RSFC 

to global ISC (gISC), defined as the average of each participant’s 360 parcel-level ISC 

values. Our use of this measure as a cortex-wide indicator of brain activity typicality 

is motivated by its simplicity as well as by previous work showing global relationships 

between ISC and behavior (Gruskin et al., 2020). CPM is an established technique for 

predicting behavior (e.g., fluid intelligence, symptom severity) from RSFC (Finn et al., 

2015; Rosenberg et al., 2016; Shen et al., 2017). Here, we use a variant of CPM, rCPM (Gao 

et al., 2019), to predict gISC from RSFC. Although the prediction of gISC is conceptually 

similar to the prediction of any other measure, gISC’s derivation from BOLD data leaves 

it susceptible to motion and other fMRI acquisition artifacts. More importantly, individual 

differences in these artifacts are likely consistent across rest and movie scans such that 

relationships between RSFC and gISC may be driven by artifacts rather than neural signals 

of interest. Therefore, in addition to the conservative preprocessing approach out-lined in 

Section 2.3, all correlations between RSFC and (g)ISC performed in this paper included 

head motion (mean FD; calculated as the average of the filtered and uncensored FD traces) 

and temporal signal-to-noise ratio (tSNR; calculated as the whole-brain average of the 

means of all grayordinate time series divided by their standard deviations for a given subject/

scan) measures as covariates, as both of these variables were found to be correlated with 

gISC (mean FD: Day 1 ρ = −0.24, P = 1.2 × 10−3; Day 2 ρ = −0.20, P = 8.8 × 10−3; 

tSNR: Day 1 ρ = 0.27, P = 3.3 × 10−4; Day 2 ρ = 0.28, P = 2.1 × 10−4). Although 

detailed descriptions of CPM can be found elsewhere (Shen et al., 2017), provided below is 

a summary of the specific approach used in this paper.

Generating the cross-validated models: Because the HCP 7T dataset is composed of 

data from individuals of varying degrees of genetic relatedness (monozygotic and dizygotic 

twins, non-twin siblings, and un-related individuals; 93 unique families), all individuals 

from the same family were randomly assigned to one of two groups of 88 (i.e., split-half 

cross-validation), with one group being used to train a model that would then be tested on 

the other (and vice versa). The following approach was then applied to 100 of these random 

splits of the data to assess the performance of rCPM across different training/testing sets and 

to build a bagged model that is more robust to overfitting (O’Connor et al., 2021).

1. Calculate leave-one-out ISC according to the method described in Section 2.4 

separately for each group of 88 subjects. Re-calculation of ISC is necessary 
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within each randomly assigned group because calculating an individual’s ISC 

using data from the 175 subjects across both groups would compromise the 

independence of the test set by using training subject data to calculate test 

subjects’ ISC values (Scheinost et al., 2019). We note that ISC estimates have 

been shown to stabilize at samples of around ~30 subjects (Pajula and Tohka, 

2016), so the magnitudes of the ISC values calculated using either the average of 

data from 87 or 175 other subjects would not be expected to differ significantly. 

Next, gISC is calculated for each individual by taking the average of their Fisher 

z-transformed parcel-level ISC values.

2. Identify FC edges whose connectivity strength is most associated with gISC 

in the 88 subject training group. Spearman partial correlations are performed 

between each of the 64,620 unique FC edges and gISC, controlling for tSNR 

and mean FD in both the concatenated rest and movie day 1 scans. Spearman 

rank correlations are used here and throughout the rest of the paper because the 

distribution of gISC values exhibited a significant left skew (as did ISC values 

in general; gISC skewness Day 1 = −1.2, Day 2 = −1.7). All edges whose 

strengths were correlated with gISC at P < .01 were retained, although this 

feature selection step is not strictly necessary for rCPM and exists largely to 

reduce computational demands (Gao et al., 2019).

3. Fit a regularized linear model using the features (RSFC edges and mean FD 

measures) identified in the previous step as predictors and gISC as the response. 

Hyperparameters for this model include alpha (the ridge coefficient), whose 

optimal value has been shown to be near-zero for true ridge regression, and 

lambda, which is calculated in an inner fold using the method and code of (Gao 

et al., 2019).

4. Predict gISC for each participant in the test set by multiplying that participant’s 

RSFC edge strengths for the edges that passed the feature selection step by 

each edge’s ridge coefficient and adding the intercept. The ridge coefficients, 

intercept, and optimal lambda value for the present linear model are saved to 

allow for future bootstrap aggregation (described in the next section).

5. Flip the training and testing groups and repeat steps 1–4.

6. Evaluate model performance by calculating the Spearman partial correlation 

between the predicted and observed ISC values across participants in the test set, 

controlling for mean FD and tSNR from the rest and movie scans.

Significance testing the cross-validated models: A permutation scheme was used to 

assess the statistical significance of the prediction coefficients generated in the 100 split-half 

iterations. First, the order of the gISC and movie watching tSNR and mean FD matrices 

was shuffled such that one participant’s resting state FC, tSNR, and mean FD values were 

associated with the movie BOLD time courses, tSNR values, and mean FD values from a 

random participant. Steps 1 through 6 from the previous section were then performed and 

the whole process was repeated 10,000 times. The resulting 10,000 correlation coefficients 

serve as a null distribution with which the following permutation p-value was calculated 
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(Finn and Bandettini, 2021): p = sum(rnull > x̃) + 1/10,001, where x̃ is the median of the 100 

correlation coefficients obtained through the true (unshuffled) models.

Building and testing the bagged model: The cross-validation paradigm described in 

the previous two sections was used to ask whether a model trained on data from one group 

of subjects can predict gISC from RSFC in a novel group of subjects. Importantly, the gISC 

values used here all come from the same set of stimuli (the Day 1 movie clips). It could then 

be the case that the CV models rely on stimulus-specific signals and may fail to predict gISC 

during viewing of a different movie. A bootstrap aggregating, or “bagging,” approach was 

used to test whether the 200 linear models trained on Day 1 movie watching and resting state 

data could predict Day 2 gISC (derived from a different set of stimuli) from Day 2 RSFC, as 

previous work has shown bagged CPM models to be more accurate and more generalizable 

than their non-bagged counterparts (O’Connor et al., 2021). To construct the bagged model, 

RSFC edges that passed the P < .01 feature selection step in at least 10% (20/200, reflecting 

the 100 iterations of split-half cross-validation) of iterations were identified, yielding 1437 

edges total. Next, for each of these edges, the ridge coefficients for a given edge across all 

iterations in which that edge was selected were averaged. The average intercept across the 

200 bootstraps was then combined with the average ridge coefficients to yield a singular 

composite linear model. Each subject’s Day 2 RSFC matrix was then submitted to this 

model (by multiplying the correlation coefficients of selected RSFC edges by the ridge 

coefficients and adding the intercept) to generate 176 predicted gISC values, which were 

then Spearman correlated with the “true” gISC values (calculated through leave-one-out ISC 

using the full sample), controlling for mean FD and tSNR in the Day 2 rest and movie scans. 

To characterize network-level contributions of edges to the bagged model, the 1437 ridge 

coefficients were averaged according to their corresponding edge’s network memberships 

separately for positive and negative weights.

To further evaluate possible relationships between nuisance variables and gISC prediction, 

we divided our subjects into low- and high-motion groups (n = 88 each) using a median split 

of mean FD over all four scans (median mean FD = 0.038) and repeated the above rCPM 

analysis independently in each group (still controlling for mean FD and tSNR). Finally, 

global intrasubject correlation (gIntraSC), measured by correlating one subject’s BOLD 

time courses from two viewings of the same stimulus and averaging correlation coefficients 

across parcels, could also be considered as a measure of data quality. Taking advantage of 

the 83 s test-retest clip, we calculated gIntraSC values for each subject and each day of data 

collection and repeated the above analysis with this new covariate. Code for these rCPM 

analyses was adapted from https://github.com/YaleMRRC/CPM (Greene et al., 2020).

2.7. Inbound and outbound analyses

To investigate relationships between RSFC and ISC in each of the 360 Glasser parcels, we 

used two related partial correlation analyses. First, we (Spearman) correlated ISC values 

for a given parcel with the RSFC coefficients for each edge involving that parcel across 

participants, controlling for mean FD and tSNR in the rest and movie scans. This “inbound” 

analysis describes how ISC in a given parcel is related to that parcel’s resting state 

functional connections to every other parcel. Next, the “outbound” analysis involves finding 
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the Spearman partial correlation between the RSFC coefficients for each connection between 

a given parcel and every other parcel and ISC in those other parcels, again controlling for 

rest and movie scan mean FD and tSNR. This analysis shows how a given parcel’s resting 

state functional connections to other parcels are associated with ISC in those parcels. Both 

the inbound and outbound analyses yield a 360×1 map (with one undefined value for the 

reference parcel) across the brain for every parcel and for each day of data collection, 

allowing for the visualization of results on the cortical surface.

To identify parcels in which ISC was most positively/negatively associated with RSFC 

across the brain, the inbound and outbound maps were Fisher z-transformed, averaged, 

and converted back to units of Spearman’s ρ. Next, these inbound/outbound averages 

were grouped by resting state network (RSN) membership according to the Cole-Anticevic 

Brain-wide Network Partition (Ji et al., 2019) to facilitate visualization of network-level 

trends. Finally, mean outbound values from both days were Spearman-correlated with 

rankings along a sensorimotor-association axis, where low ranks correspond to low-level 

sensory regions (e.g., V1, A1) and high ranks correspond to high-level association areas 

(e.g., dmPFC, PCC; developed by Sydnor et al. (2021) and downloaded from https://

pennlinc.github.io/S-A_ArchetypalAxis/). Only left hemisphere parcels were used for this 

analysis, as the sensorimotor-hierarchy ranking created by Sydnor et al., did not include the 

Glasser parcellation’s right hemisphere.

Because the number of parcels belonging to each Cole-Anticevic RSN is an arbitrary 

value based on the resolution of the Glasser parcellation, we used bootstrap confidence 

intervals (CIs) to test whether the averages of the mean inbound and outbound maps 

within RSN were significantly different from zero. Non-parametric bootstrap CIs were 

constructed by randomly sampling 176 subjects with replacement, repeating the inbound and 

outbound analyses, and recalculating the RSN averages 1000 times. To account for multiple 

comparisons across the twelve RSNs, 95% CIs were Bonferroni corrected using the formula 

1 – (alpha/number of RSNs), leading to an effective CI of 99.6% for each RSN average on 

each day.

The inbound analysis introduced earlier in this section addresses how connectivity from 

parcel A to parcels B-Z is associated with ISC in parcel A. Although this analysis neatly 

parallels the dimensionality of the outbound analysis, it ignores how resting state functional 

connections that don’t involve parcel A (i.e., connectivity between parcels B-Z) might be 

associated with ISC in that parcel. To address this limitation, we used a “full” inbound 

analysis that correlates all edges of the RSFC matrix with ISC in the reference parcel.

2.8. Spatial permutation tests

Similarity between the Day 1 and Day 2 inbound/outbound maps was quantified using 

Spearman correlation. Because (1) the number of samples in these correlations is determined 

by parcellation resolution and (2) spatial autocorrelation is present among adjacent parcels, 

a spatial permutation test was used to assess the significance of these correlations (and 

all other spatial correlations performed here) following the method and code of Váša 

et al. (2018). Briefly, this test works by inflating one of the spatial maps from each 

correlation to a sphere, randomly rotating this projection, and calculating the Spearman 
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correlation between the empirical map and the randomly rotated projection. This procedure 

is repeated until a desired number (here, 10,000) of permutations have been performed, 

and the final permutation P value reflects the number of null permutations for which the 

resulting Spearman correlation is greater than the observed correlation divided by the total 

number of permutations. Although recent work has identified that this approach relies upon 

often unrealistic statistical assumptions (Weinstein et al., 2021), we note that no alternative 

method is compatible with our effect maps which are undefined at the individual subject 

level. As such, the present spin method can be seen as the best available significance test for 

the day-to-day consistency of our observed effects.

2.9. Principal component analysis

Principal component analysis (PCA) was performed separately for outbound and (full) 

inbound matrices from both days of data collection to simplify the matrices into a small 

number of orthogonal factors. Only the first two PCs of the outbound PCA are visualized 

in Fig. 4 as these components were sufficient to account for > 50% of the variance in the 

outbound maps on both days.

2.10. RSFC and ISC topological similarity

One pairwise RSFC similarity matrix was generated for each day of data collection by 

(Spearman) correlating RSFC profiles (i.e., each subject’s set of 64,620 unique FC edge 

strengths) from all possible pairs of subjects, leaving two 176 subjects x 176 subjects 

matrices in which higher values correspond to greater RSFC profile similarity for those 

two individuals. The same procedure was repeated using each subject’s ISC topologies, 

again yielding two 176 subjects x 176 subjects matrices. Here, we noted that four subjects, 

two different subjects on each day, had markedly different ISC topologies from the rest of 

the sample. These individuals also had the lowest gISC values for their respective movie 

scans, suggesting minimal engagement with the stimulus. Data from these outlier scans were 

discarded from the rest of the analyses described in this section for a sample size of 174 

subjects, although we note that including these subjects does not change the interpretation of 

our results. These subjects were not excluded from the previous analyses as they were not 

identified as outliers in the Figs. 2D and 3 scatter plots.

Pairwise motion, tSNR, and gISC similarity matrices were also generated by calculating the 

negative absolute value of the difference between every pair of subjects’ mean framewise 

displacement for each day’s rest and movie scans as well as their (Fisher z-transformed) 

gISC values. Finally, a Spearman partial correlation was performed between each day’s 

RSFC and ISC similarity matrices, controlling for pairwise similarity in motion, tSNR, and 

gISC. A permutation test was used to evaluate the significance of the RSFC-ISC topological 

similarity relationships. Specifically, the subject-level ISC, gISC, and movie watching 

FD and tSNR matrices were shuffled using the same randomly generated order across 

subjects and pairwise ISC/gISC/tSNR/FD similarities were recalculated. The Spearman 

partial correlation described above was then performed using the shuffled movie vectors and 

the original resting state vectors such that each pair’s mean movie watching FD and tSNR, 

gISC, and ISC pattern similarity values were associated with the mean resting state FD and 
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tSNR and RSFC pattern similarity values from a random pair. This process was repeated 

10,000 times to generate the null distributions shown in Fig. 6B.

2.11. Replication with Schaefer 400 subject-specific parcellations

To probe the sensitivity of our results to parcellation choice and individual differences 

in parcel boundaries, we repeated several of our analyses after re-parcellating our 

data with individual-specific versions of the Schaefer 400 parcellation generated by 

Kong et al. (2021) (downloaded from https://github.com/ThomasYeoLab/CBIG/tree/master/

stable_projects/brain_parcellation/Kong2). Parcellations were not available for eight of our 

176 subjects, leaving us with a sample size of 168 for these analyses (and 167/166 for the 

topological similarity analysis due to the excluded subjects).

3. Results

3.1. Functional connectivity at rest predicts a global measure of normative movie-evoked 
activity

Ridge connectome-based predictive modeling (rCPM) was used to predict each participant’s 

average ISC across all parcels (Fig. 1). This cortex-wide measure, which we refer to as 

global ISC (gISC), serves as a low-dimensional marker of brain synchronization, or how 

similar an individual’s temporal patterns of neural activity during movie watching are to the 

rest of the group’s. We used rCPM to ask two related questions: to what extent can a model 

trained on data from one set of subjects watching one set of movie clips predict gISC in 

(1) a different set of subjects watching the same clips, and (2) the same subjects watching a 

different set of clips.

Using only the Day 1 rest and movie data, we performed 100 iterations of rCPM with split-

half cross-validation (CV) to predict gISC from RSFC in unseen subjects. Parcel-level ISC 

(averaged across individuals; Fig. 2A) and individual-level gISC (averaged across parcels; 

Fig. 2B) were consistent across the two days, as reflected by Spearman correlations of ρ = 

0.97 (Pspin < 1 × 10−4 ) and ρ = 0.68 (P = 2.2 × 10−24 ) respectively. We note that the ρ = 

0.68 test-retest reliability value serves as a sort of upper bound on prediction performance 

as it represents how well gISC can predict itself across the different stimuli. Because the 

reliability of gISC was calculated while controlling for tSNR and head motion (quantified 

by mean framewise displacement; mean FD) from both movie scans, rank residuals were 

used to create the scatterplots shown in Fig. 2 and elsewhere in the paper when appropriate 

(although plots showing raw values can be found in Supplementary Fig. S1).

The bagged model was able to predict Day 2 gISC from Day 2 RSFC with significant 

accuracy (ρ = 0.51, P = 1.4 × 10−12; Fig. 2C) indicating that an individual’s ability to exhibit 

normative stimulus-evoked activity is closely related to their brain’s intrinsic functional 

architecture. To visualize the functional distribution of RSFC edges that contributed to 

the model’s predictive performance, we averaged positive and negative edges separately 

according to resting state network (RSN) membership as defined by the Cole-Anticevic 

Brain-wide Network Partition (Ji et al., 2019). Predictive edges were widely distributed 

across RSNs according to no obvious pattern, although positive relationships between RSFC 

Gruskin and Patel Page 10

Neuroimage. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong2


and gISC were more pronounced than negative relationships (as seen in the scales of Figs. 

2D–E).

Importantly, individual differences in RSFC are known to depend on factors that could 

complicate the interpretation of our results, including head motion, parcellation selection 

(Bryce et al., 2021), and individual differences in areal topologies (Gratton et al., 2018; 

Gordon et al., 2017). To control for head motion more conservatively, we assigned subjects 

to a low or high motion group based on a median split over mean FD and repeated this 

CPM analysis in both groups independently, finding that Day 2 gISC could be predicted 

in both groups (low motion ρ = 0.55, P = 8 × 10−8; high motion ρ = 0.53, P = 1.7 × 

10−7 ; Supplementary Fig. S2). RSFC could also be used to predict Day 2 gISC when 

controlling for individual differences in global intrasubject correlation, a potential measure 

of data quality (Supplementary Fig. S3). Finally, we repeated the rCPM analysis using 

individualized versions of the Schaefer 400 parcellation, again finding that Day 2 gISC 

could be predicted from RSFC (Supplementary Fig. S4).

To examine how models trained on data from one group of subjects can predict gISC 

in held-out individuals watching the same stimulus, we plotted the prediction accuracies 

obtained from the 100 CV iterations (Fig. 2F, red dots) against a distribution of null 

accuracies (Fig. 2F, gray dots) generated by permuting gISC values across subjects and 

re-running the rCPM pipeline 10,000 times. As shown in Fig. 2F, the median CV accuracy 

was significantly greater than would be expected by chance (median ρ = 0.15, permutation P 
= .037).

3.2. Inbound and outbound analyses characterize region-specific RSFC-ISC relationships

In the previous section, we demonstrated that an individual’s RSFC profile is predictive of 

their cortex-wide ISC during movie watching. Next, to investigate region-specific RSFC-ISC 

relationships, we introduce the related “inbound” and “outbound” analyses. The inbound 

analysis, demonstrated in Fig. 3A using Day 1 data, describes how ISC in a given parcel 

is associated with that parcel’s resting connectivity to every other parcel (raw values are 

shown in Supplementary Fig. S5). The intuition behind and results of this analysis are first 

exemplified using the left frontal eye field (FEF), a parcel chosen for its circumscribed role 

in the well-studied saccade pathway (Felleman and Van Essen, 1991; Paus, 1996). To create 

the brain maps shown in the top row of Fig. 3A, left FEF ISC was correlated with RSFC 

between left FEF and the other 359 cortical parcels while controlling for head motion and 

tSNR from the corresponding rest and movie scans. This analysis revealed that individuals 

whose left FEF was more connected to visual and parietal areas at rest exhibited more 

typical FEF activity during movie watching, consistent with the FEF’s known inputs from 

visual and parietal cortex (Felleman and Van Essen, 1991; Paus, 1996).

Having demonstrated that the inbound analysis reveals expected RSFC-ISC relationships 

in a relatively unimodal and well-studied area, we next sought to apply the same analysis 

to a parcel in the temporo-parieto-occipital junction (TPOJ2), a multimodal area in the 

temporoparietal junction/posterior superior temporal sulcus region whose functioning is 

less understood but has been implicated in sensory integration during narrative processing 

(Lerner et al., 2011; Patel et al., 2019). Reflecting TPOJ2’s multimodal function, greater ISC 
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in this parcel was associated with increased connectivity to unimodal sensory (e.g., visual, 

auditory, somatomotor) cortices and decreased connectivity to higher order areas (e.g., 

angular gyrus, dorsolateral prefrontal cortex; dlPFC) at rest (Fig. 3A, lower row). Although 

only Day 1 results are visualized in Fig. 3, Spearman spatial correlations confirmed that 

the inbound maps for both left FEF and TPOJ2 were consistent across both days of data 

collection (spatial ρ = 0.90, Pspin < 1 × 10−4 and spatial ρ = 0.98, Pspin < 1 × 10−4 

respectively).

While the inbound analysis describes how a brain region’s functioning (ISC) is related 

to its intrinsic connectivity (RSFC) to other regions, a distinct but similarly informative 

relationship is how a region’s RSFC to other areas is associated with ISC in those areas. 

To quantify this “outbound” relationship, we calculated the Spearman partial correlation 

between the RSFC edge strengths for all connections involving a given parcel and ISC in 

every other parcel. The FEF outbound map therefore illustrates that greater RSFC between 

FEF and dlPFC is associated with greater ISC in dlPFC (Fig. 3B), again replicating known 

hierarchical relationships between these two areas (Arkin et al., 2020; Corbetta et al., 

2008). The TPOJ2 outbound map shows a diffuse pattern that is notably attenuated in 

somatosensory, auditory, and visual regions compared to the corresponding inbound map, 

illustrating that RSFC between sensory regions and TPOJ2 is more relevant to TPOJ2 ISC 

than to sensory cortex ISC. Both the FEF and TPOJ2 outbound maps were consistent across 

the different days of data collection (spatial ρ = 0.84, Pspin < 1 × 10−4 and spatial ρ = 

0.85, Pspin < 1 × 10−4, respectively). In addition to our FEF and TPOJ2 maps, we have 

also included inbound and outbound maps for the unimodal sensory areas A1 and V1 in 

Supplementary Fig. S6 for interested readers.

3.3. Network-level inbound/outbound relationships and means

The human cortex is organized into large-scale networks that sub-serve different sensory and 

cognitive functions during movie-watching. To characterize how movie-evoked activity in 

these networks is associated with intra- and inter-network RSFC, we averaged inbound 

and outbound values according to network membership to create the heatmaps shown 

in Fig. 4A. Greater intra-network RSFC was consistently associated with greater ISC, 

as indicated by the red diagonals of both heatmaps. On the other hand, inter-network 

RSFC showed more variable relationships with ISC, but these relationships tended to 

be consistently positive or negative within networks and inbound/outbound analyses. For 

example, sensory networks like visual 2, somatosensory, and auditory networks tended to 

exhibit more positive outbound relationships with other networks. Meanwhile, the posterior 

and ventral multimodal networks (PMN/VMN) exhibited positive inbound relationships with 

all networks except the frontoparietal and default mode networks (FPN/DMN), indicating 

that these areas encode more stimulus-related information when they are more broadly 

connected to sensory areas at rest.

Classical theories of sensory information processing place cortical areas on a spectrum 

ranging from specialized to integrative (Mesulam, 1998). To identify integrative hubs 

whose normal functioning during movie watching is most associated with greater intrinsic 

connectivity to the rest of the brain, we visualized the average of each parcel’s inbound 

Gruskin and Patel Page 12

Neuroimage. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



map and grouped these average values by RSN affiliation to illustrate network-level trends 

(Fig. 4B). At the network level, the PMN and VMN displayed the highest average inbound 

values (Fig. 4D). These were also the only RSNs whose average values were found to be 

significantly different from zero on both Day 1 (PMN mean ρ = 0.048, 99.6% bootstrap CI 

[0.020, 0.077]; VMN mean ρ = 0.045, 99.6% bootstrap CI [0.012, 0.078]) and Day 2 (PMN 

mean ρ = 0.050, 99.6% bootstrap CI [0.041, 0.084]; VMN mean ρ = 0.035, 99.6% bootstrap 

CI [0.0056, 0.069]).

We next averaged the outbound maps to identify source-like parcels to which greater 

connectivity at rest was associated with greater ISC during movie watching (Figs. 4C and 

E). The visual 2 and auditory networks exhibited the highest and second-highest average 

outbound values across Days 1 (mean visual 2 ρ = 0.044, 99.6% bootstrap CI [0.017, 0.068]; 

mean auditory ρ = 0.027, 99.6% bootstrap CI [−0.001, 0.056]) and 2 (mean visual 2 ρ = 

0.047, 99.6% bootstrap CI [0.023, 0.060], mean auditory ρ = 0.025, 99.6% bootstrap CI 

[0.024, 0.076]). On the other hand, the FPN and DMN exhibited negative average outbound 

relationships on Day 1 (FPN mean ρ = −0.039, 99.6% bootstrap CI [−0.054, −0.022]; DMN 

mean ρ = −0.030, 99.6% bootstrap CI [−0.050, −0.0096]) and Day 2 (FPN mean ρ = −0.024, 

99.6% bootstrap CI [−0.054, −0.023]; DMN mean ρ = −0.017, 99.6% bootstrap CI [−0.021, 

0.021]). Because averaging positive and negative values together can potentially obscure 

interesting effects, we have included mean inbound/outbound values using of positive- and 

negative-only values in Supplementary Fig. S7.

Although the Day 1 auditory and Day 2 DMN CIs contained zero, this overall pattern of 

results indicates that for the average parcel, greater connectivity at rest to unimodal sensory 

areas (i.e., auditory and visual networks) was most associated with greater ISC during 

movie watching, while the opposite was true regarding greater connectivity to higher-order 

networks (i.e., FPN and DMN). This suggests that a parcel’s mean outbound value reflects 

its position along a sensory-to-cognitive gradient. To test this hypothesis explicitly, we 

correlated outbound scores for each parcel with sensorimotor-association hierarchy rankings 

from (Sydnor et al., 2021). We found strong negative relationships between these two 

variables on both days (Fig. 4F; Day 1 spatial ρ = −0.71, Pspin < 1 × 10−4; Day 2 spatial 

ρ = −0.70, Pspin < 1 × 10−4 ), confirming that greater connectivity to more sensorimotor 

parcels at rest is associated with greater ISC during movie-watching (Fig. 4F). Finally, 

to determine the sensitivity of the mean inbound/outbound topologies identified here to 

parcellation choice, we generated the mean inbound/outbound maps using the Schaefer 400 

individualized parcellations and found qualitatively similar maps (Supplementary Fig. S8).

3.4. Principal component analysis reveals low-dimensional embedding of inbound and 
outbound maps

Although the network-level analysis shown in Fig. 4A serves as a convenient way to reduce 

the dimensionality of the inbound and outbound maps, it is unable to reveal connectivity-

activity relationships that cut across network boundaries. To explore the underlying structure 

of the 360 inbound and outbound maps without making a priori assumptions about network 

organization, we used principal component analysis (PCA), a dimension reduction technique 

that preserves more of the information in the original feature space than the averaging shown 
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in Section 3.3. PCA of the outbound maps revealed that two PCs (Fig. 5A) were sufficient 

to account for a majority of the outbound map variance on both days, describing ~30% 

and ~20% of variance, respectively (Fig. 5B). Here, parcels with higher (redder) scores 

in the upper rows have outbound maps that look like the PCs shown in the lower rows. 

Relatedly, given the complementary nature of the outbound and inbound matrices, parcels 

with stronger loadings on these PCs have inbound maps that look more like the cortical 

maps shown in the upper rows.

The first PC was most positively expressed in visual, cingulo-opercular, and dorsal attention 

parcels, and was negatively expressed in DMN parcels. This PC loaded most strongly onto 

left TPOJ, but DMN parcels loaded either negatively or only weakly positively on this 

component. In other words, DMN parcels exhibited greater ISC when they were more 

connected to other DMN (and less connected to visual) parcels in this PC. The second 

PC, most positively represented in the superior temporal sulci (STS) and somatomotor 

cortices and negatively represented in FPN parcels, loaded most heavily onto left dlPFC. 

Although TPOJ and dlPFC had among the highest average inbound values in Fig. 4, the 

former’s loading onto PC1 and the latter’s loading onto PC2 suggests that greater ISC in 

these two integrative areas is most associated with connectivity to separate sets of regions. 

This difference is especially apparent when considering connectivity to STS, which was 

positively associated with dlPFC ISC (in PC2) but negatively associated with ISC in TPOJ 

(in PC1). Similarly, although DMN and FPN parcels both had similarly low outbound values 

(shown in Fig. 4A/C), their differential expression in PC 1 vs. PC2 suggests heterogeneous 

connectivity-activity relationships between these sets of parcels and the rest of the brain.

While the inbound analysis introduced in Section 3.2 neatly parallels the dimensionality 

of the outbound analysis, it only captures how ISC in parcel A is associated with its 

RSFC to parcels B-Z, ignoring RSFC between parcels B-Z. To fill this gap, results from 

a version of the inbound PCA that relates RSFC across all edges with ISC are visualized 

in Supplementary Fig. S9, which shows that ISC in different functional systems is most 

associated with notably different full RSFC patterns.

3.5. Subjects with more similar RSFC fingerprints share more similar spatial patterns of 
ISC

Our analyses thus far have focused on relationships between the magnitudes of RSFC and 

ISC across participants. However, the spatial pattern of ISC across a person’s brain likely 

reflects additional individual-specific aspects of brain function. An emphasis on topological 

patterns is apparent in functional connectome fingerprinting studies, which have shown that 

individuals can be identified by their unique set of (relative) RSFC edge strengths (Finn et 

al., 2015). However, the relevance of these whole-brain RSFC profiles to spatial patterns of 

ISC is still unclear.

To investigate whether RSFC profiles are related to how ISC, independent of its overall 

magnitude, is distributed across the brain, we used a pairwise similarity analysis to 

determine if individuals with more similar functional connectomes also shared more similar 

spatial patterns of ISC. First, we correlated RSFC and ISC profiles separately across 

participants to generate the similarity matrices shown in Fig. 6A. As expected, patterns 
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of RSFC and ISC were largely conserved across participants (Day 1/Day 2 RSFC mean 

pairwise similarity ρ = 0.52/0.53, std. = 0.015/0.012; ISC mean pairwise similarity ρ = 

0.74/0.74, std. = 0.017/0.021). On each day, the ISC topologies for two individuals were 

markedly different compared to the rest of the sample (seen as dark stripes in the ISC 

similarity heatmaps in 6A, different individuals on each day), so these four outlier movie 

scans were discarded from the following analysis. Next, we correlated the pairwise ISC and 

RSFC similarity values, controlling for similarity in gISC, and rest and movie scan head 

motion and tSNR. Across both days, we found that participant pairs with more similar RSFC 

profiles also shared more similar spatial patterns of ISC (Day 1 ρ = 0.16, permutation P = 

1.0 × 10−3; Day 2 ρ = 0.18, permutation P = 5.0 × 10−4; Fig. 6B, upper row; raw values 

shown in Supplementary Fig. S10). Null distributions generated to test this relationship are 

shown in Fig. 6B (lower row) and illustrate that the topological similarity relationships are 

significantly stronger than would be expected by chance. Because individual differences 

in areal topologies could complicate the interpretation of this result, we repeated this 

analysis using the individualized Schaefer 400 parcellations, again finding very similar 

effects (Supplementary Fig. S11).

4. Discussion

Here, we extend research into the neural processing of naturalistic stimuli by showing that 

an individual’s brain connectivity at rest is associated with their degree and distribution 

of normative movie-evoked brain activity. First, we demonstrated that distributed networks 

of RSFC edges can be used to predict global ISC across subjects and scanning sessions. 

Next, we explored regional RSFC-ISC relationships, finding that greater ISC in multimodal 

parcels is related to higher RSFC to unimodal sensory cortex and lower RSFC to 

frontoparietal and default mode networks. Finally, we showed that individuals with more 

similar RSFC fingerprints share more similar spatial patterns of ISC. Taken together, these 

results reveal new relationships between intrinsic brain connectivity and task-driven function 

while opening up additional lines of inquiry for the study of idiosyncratic responses to 

naturalistic stimuli.

Individual differences in ISC magnitude have previously been associated with behavioral 

traits such as top-down attentional control (Campbell et al., 2015). Building upon this 

literature, we used rCPM to identify a network of RSFC edges (i.e., the 1437 RSFC edges 

included in the bagged model) whose combined strengths accounted for a sizable proportion 

of between-subject variance in a global measure of ISC. Extending the work of Campbell 

and colleagues, this RSFC network could reflect a general signature of attentional ability, 

similar to networks identified by (Rosenberg et al., 2016; Rosenberg et al., 2020). In this 

case, individuals who express this RSFC profile more so than others would be expected 

to attend more to movie clips, leading to increased levels of ISC. At the parcel level, we 

would expect ISC in different parcels to be associated with the same 1437 RSFC edges 

that comprise the predictive network, as greater attention to the movie clips should lead to 

distributed increases in ISC (Ki et al., 2016; Regev et al., 2019; Song et al., 2021). Instead, 

in our full inbound analysis, we observed that relationships between parcel-level ISC and 

whole-brain RSFC patterns differed considerably across parcels. Specifically, 10+ principal 

components were needed to account for a majority of the full inbound matrix variance 
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shown in Fig. S9. Given this result, the RSFC network might instead be more representative 

of the functional architecture of bottom-up information transfer, independent of top-down 

influences. Future studies that simultaneously evaluate relationships between RSFC, ISC, 

and behavioral traits like attentional control will provide valuable insight into the cognitive 

implications of the present findings.

In addition to identifying RSFC edges that predict global ISC, we also characterized region-

specific RSFC-ISC relationships through our inbound and outbound analyses. First, our 

inbound analysis showed that the resting state connections most associated with ISC in a 

given parcel are not simply a function of its network affiliation. For example, although the 

FEF parcel studied here was shown to be more connected to cingulo-opercular areas than 

to visual cortex at rest (Ji et al., 2019), our inbound analysis showed that typical activity 

in this parcel during movie-watching was more strongly associated with its connectivity 

to visual and dorsal attention networks rather than cingulo-opercular cortex. Furthermore, 

although RSFC derived from bivariate correlation is inherently undirected, comparing the 

inbound and outbound maps for a given parcel allows for the generation of directional 

hypotheses. That visual-FEF connectivity is more associated with FEF ISC than visual 

cortex ISC suggests that, consistent with established models of the visual processing 

hierarchy (Felleman and Van Essen, 1991), stimulus-related information is more likely to 

flow from visual cortex to FEF. This expected finding, as well as the stability of these results 

across different rest and movie scans, motivates the use of inbound/outbound analyses 

to investigate how connectivity relates to function in more arcane regions and functional 

systems, as we demonstrated with the TPOJ.

After showing how the inbound and outbound analyses reveal stable RSFC-ISC 

relationships in specific regions, we next investigated network-level trends in these 

relationships. By averaging across the inbound maps, we found that parcels in the ventral 

and posterior multi-modal networks (located in temporoparietal cortex) exhibited the highest 

average inbound map values. In other words, activity in these parcels was more typical 

when they were more positively connected to the rest of the brain. This finding is consistent 

with previous work showing that these posterior multimodal regions consolidate audiovisual 

information (Baldassano et al., 2017; Ji et al., 2019; Lerner et al., 2011) and suggests that 

the integrative function of these regions is related to their distributed intrinsic connectivity. 

Complementing this result, we found that parcels in visual and auditory networks exhibited 

some of the greatest average outbound values, indicating that greater connectivity to these 

areas at rest was associated with greater ISC. This likely reflects the fact that auditory and 

visual areas are among the most synchronized during movie-watching and can be thought of 

as sources of stimulus-driven signal. Alternatively, connectivity to frontoparietal and default 

mode parcels, which tend to be among the least synchronized by movies, was on average 

inversely related to ISC. Subsequent PCA of the outbound maps clarified this result by 

showing that connectivity to default mode parcels was negatively associated with TPOJ ISC 

but positively associated with ISC in default mode parcels themselves. That these parcels 

exhibited more typical activity when they were more connected to functionally similar (and 

less connected to dissimilar) areas at rest is consistent with the idea that more modular 

cortical organization is associated with more efficient information flow (Wig, 2017). Lastly, 

the loading of left dlPFC and TPOJ onto different PCs indicates that ISC in both areas is 
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closely related to their RSFC to different sets of parcels, suggesting that these areas may 

play important but distinct roles in the processing of naturalistic stimuli.

Beyond informing theories of cortical information processing, our results have implications 

for the understanding of circumscribed ISC deficits reported in patient populations. Our 

inbound/outbound findings provide evidence for the hypothesis that low ISC in a particular 

area may be driven by pathological alterations in inter-regional connectivity rather than 

dysfunction in the region itself. Future work outlining the causal direction of these RSFC-

ISC relationships will inform the clinical applications of naturalistic fMRI (Eickhoff et 

al., 2020), as whether atypical activity in a region is self-limited or a consequence of its 

connectivity to other areas is an important consideration in developing targeted therapies 

(Fox et al., 2012).

Although naturalistic imaging studies have tended to focus on individual differences in 

the magnitude of ISC, it is important to note that this measure is susceptible to session 

effects that may obscure meaningful trait-related variance. For example, an attentive subject 

scanned at the end of a long day may exhibit less ISC than a more distractible individual 

scanned when they are most alert. The low test-retest reliability of activation magnitudes 

is a general issue in task fMRI research (Elliott et al., 2020). However, by asking “where” 

task activations occur instead of “how much” activation is present, researchers have been 

able to more reliably elicit individual differences and excise state-dependent noise from 

their analyses (Kragel et al., 2021). Moreover, individuals’ activation maps derived from 

modeled responses to difficult tasks have been accurately predicted from their RSFC 

profiles, suggesting that unique spatial activation patterns are intimately related to variation 

in the brain’s intrinsic wiring (Cole et al., 2016; Tavor et al., 2016). Extending this line of 

work to model-free naturalistic paradigms, we found that subjects with more similar resting 

state connectomes shared more similar spatial patterns of ISC during movie watching, 

independent of their similarity in ISC magnitude. This finding indicates that spatial 

distributions of ISC capture subject-specific information that ISC magnitudes alone do not, 

echoing recent reports that have established multivariate patterns as superior detectors of 

individual differences (Kragel et al., 2021).

Several limitations of this study constrain the interpretation and generalizability of our 

results. First, the short (3–5 min) clips used here may have failed to adequately engage 

cortical areas with longer temporal receptive windows (Baldassano et al., 2017). Future 

studies that utilize continuous stimuli may be better able to characterize RSFC-ISC 

relationships in these areas. Second, functional brain topologies have been shown to differ 

meaningfully across individuals and task states (Gratton et al., 2018; Salehi et al., 2020). 

Subjects identified as having lower RSFC and/or ISC in our analyses may instead have 

functional topologies that are less represented by the Glasser parcellation, complicating the 

interpretation of our inbound/outbound results. Our use of Spearman partial correlations 

to link RSFC and ISC presents its own set of limitations. Some RSFC-ISC relationships 

may be non-monotonic, such that both hypo- and hyper-connectivity between a pair of 

regions is associated with lower ISC. The correlation method used here also prevents us 

from assessing the unique contribution of single RSFC edges to parcel-level ISC, as would 

be possible with multiple regression. Finally, although we controlled for motion and tSNR 
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while performing our correlations, other imaging artifacts and/or non-monotonic effects 

could still have contributed to our RSFC-ISC relationships.

Despite these limitations, this study constitutes an important step towards characterizing the 

complex relationships between normative stimulus-evoked activity and the brain’s intrinsic 

functional architecture. By linking resting state connectivity with task-driven function at the 

parcel, network, and cortex-wide levels, these findings further develop our understanding 

of sensory information processing and anchor individual differences in ISC in the resting 

state connectome. Additional research into these connectivity-activity relationships will be 

instrumental in exploring the cognitive and perceptual relevance of resting state fMRI and 

contextualizing new discoveries from the growing field of naturalistic imaging.

5. Citation diversity statement

Recent work in several fields of science has identified a bias in citation practices such 

that papers from women and other minority scholars are under-cited relative to the number 

of such papers in the field (Caplar et al., 2017; Dion et al., 2018; Dworkin et al., 2020; 

Maliniak et al., 2013; Mitchell et al., 2013). Here we sought to proactively consider 

choosing references that reflect the diversity of the field in thought, form of contribution, 

gender, race, ethnicity, and other factors. First, we obtained the predicted gender of the 

first and last author of each reference by using databases that store the probability of a 

first name being carried by a woman (Dworkin et al., 2020; Zhou et al., 2020). By this 

measure (and excluding self-citations to the first and last authors of our current paper), our 

references contain 5.56% woman(first)/woman(last), 3.7% man/woman, 27.78% woman/

man, and 62.96% man/man. This method is limited in that a) names, pronouns, and social 

media profiles used to construct the databases may not, in every case, be indicative of 

gender identity and b) it cannot account for intersex, non-binary, or transgender people. 

Second, we obtained predicted racial/ethnic categories of the first and last author of each 

reference by databases that store the probability of a first and last name being carried by 

an author of color (Ambekar et al., 2009; Sood and Laohaprapanon, 2018). By this measure 

(and excluding self-citations), our references contain 8.59% author of color (first)/author of 

color(last), 16.32% white author/author of color, 21.51% author of color/white author, and 

53.58% white author/white author. This method is limited in that a) names and Florida Voter 

Data to make the predictions may not be indicative of racial/ethnic identity, and b) it cannot 

account for Indigenous and mixed-race authors, or those who may face differential biases 

due to the ambiguous racialization or ethnicization of their names. We look forward to future 

work that could help us to better understand how to support equitable practices in science.

Data Availability

The raw HCP data used for this project can be downloaded from ConnectomeDB 

(db.humanconnectome.org). Code for all analyses can be found in the following Github 

repository: https://github.com/davidgruskin/hcp_rsfc_isc. All analyses were performed in 

MATLAB (R2020a). All cortical surface visualizations were performed with Connectome 

Workbench (Marcus et al., 2011).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Ridge CPM pipeline. (A) Predicting gISC from RSFC in held-out subjects: RSFC matrices 

were created by (Pearson) correlating activity time courses from all pairs of parcels for each 

individual and day of data collection. Subjects were divided into two commensurate groups, 

and ISC values for every parcel were calculated for each subject as the Pearson correlations 

between their activity time course in a given parcel and that of the group average. These 

360 parcel-wise values were averaged to yield 1 gISC value per subject per day of data 

collection. A model was then trained to predict gISC values from RSFC data in one group 
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and tested on data from the held-out group, with model performance being evaluated as the 

Spearman partial correlation between predicted and actual Day 1 gISC values, controlling 

for head motion and tSNR. This procedure was repeated 99 more times using different 

train/test group splits, yielding 200 linear models and 100 correlation coefficients reflecting 

prediction accuracies. (B) Predicting gISC from RSFC in held-out stimuli: The 200 linear 

models were aggregated into one composite model which was tested on Day 2 gISC and 

RSFC data from all 176 subjects. Once again, model accuracy was evaluated using the 

Spearman partial correlation between predicted and actual Day 2 gISC values, controlling 

for Day 2 head motion and tSNR.
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Fig. 2. 
RSFC predicts gISC during movie watching in novel stimuli and in novel subjects. (A) 

ISC analysis reveals a non-uniform cortical distribution of shared stimulus-evoked activity 

that is consistent across Day 1 and Day 2 stimuli. (B) Individual differences in gISC were 

consistent across the Day 1 and Day 2 scans. In this and subsequent scatter plots, each dot 

represents an individual subject unless noted otherwise. As these plots represent Spearman 

partial correlations (controlling for head motion and tSNR), the x- and y-axes are in units 

of rank residuals so that the slope of the best fit line represents the corresponding Spearman 

correlation coefficient. (C) A bagged rCPM model trained on Day 1 data predicts Day 2 

gISC from RSFC with considerable accuracy. (D-E) Heatmaps illustrating that the bagged 

rCPM model’s negative and positive features were broadly distributed across functional 

networks. (F) Models trained on Day 1 data from one set of subjects predict Day 1 gISC 

in held-out subjects at above-chance accuracy. Red dots represent prediction accuracies 

from the actual 100 CV iterations, whereas gray dots reflect null prediction accuracies from 

re-running the rCPM analysis using permuted gISC and movie FD values 10,000 times.
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Fig. 3. 
Inbound and outbound relationships between Day 1 RSFC and ISC in FEF and TPOJ2. (A) 

Inbound analysis: This analysis describes how RSFC between the reference parcel (yellow) 

and some other parcel (red) is associated with ISC in the reference parcel. Greater resting 

connectivity from FEF (or TPOJ2) to red-shaded parcels is associated with greater FEF (or 

TPOJ2) ISC during movie watching. Example inbound maps are shown for parcels covering 

left FEF (top row) and TPOJ2 (bottom row). Corresponding scatter plots illustrate how 

the inbound correlation coefficients for the bordered parcels are calculated. (B) Outbound 

analysis: This analysis describes how RSFC between the reference parcel (yellow) and some 

other parcel (red) is associated with ISC in the other parcel. Greater RSFC from FEF (or 

TPOJ2) to red-shaded parcels is associated with greater ISC in those parcels during movie 

watching. Corresponding scatter plots illustrate how the outbound correlation coefficients 

for the bordered parcels were calculated.
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Fig. 4. 
Network-level trends in mean inbound and outbound maps. (A) Heatmaps illustrate inbound 

(shown in columns) and outbound (shown in rows) relationships averaged within functional 

networks. (B) Each parcel’s values on these surfaces reflect the average of the 359 values 

comprising its inbound map (e.g., the surfaces in Fig. 3A) on each day. (C) Same as B 

for the outbound maps. (D) Boxplots group the parcels from the surfaces in (B) according 

to their network affiliation, such that the y-coordinates in these plots are the same as the 

values on the above surfaces. The left and right boxes for each network reflect Day 1 
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and Day 2 results, respectively. The posterior and ventral multimodal networks had mean 

inbound values that were significantly greater than zero on both days. Bonferroni-corrected 

confidence intervals for all other networks contained zero on one or both days. (E) Same 

as D for the outbound analysis; only visual 2 and frontoparietal networks had average 

outbound values that were significantly different from zero on both days. (F) Relationships 

between mean outbound values and sensorimotor-association hierarchy ranks for all left 

hemisphere parcels (Day 1 on left, Day 2 on right). Because Spearman correlations were 

used for this analysis, the least-squares lines visualized here do not directly correspond to 

the accompanying correlation coefficients.
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Fig. 5. 
Principal component analysis of the outbound maps. (A) Cortical surfaces display the scores 

and loadings for the first two principal components (PCs) of the outbound maps. Parcels 

in the lower row of surfaces that appear redder have inbound maps that look more like 

the surfaces in the upper row. Due to the symmetry of the inbound/outbound maps, redder 

parcels in the upper row of surfaces have outbound maps that look more like the surfaces 

in the lower row. (B) Scree plots show that the majority of outbound map variance can be 
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accounted for by two PCs, with the percentage of variance explained tapering off after the 

third PC on both days.
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Fig. 6. 
Individuals with more similar resting state connectomes have more similar spatial 

distributions of ISC. (A) Heatmaps show that RSFC and ISC profiles are generally 

conserved across individuals. (B) Scatterplots show the positive relationships between RSFC 

and ISC profile similarity, where each dot reflects one unique pair of subjects. To preserve 

visual clarity, the x- and y-axes reflect unranked ISC/RSFC similarity values after partialling 

out the effects of head motion, tSNR, and gISC similarity. The null distributions in the 

lower row visualize the results of matching one pair’s RSFC similarity with the ISC 

similarity of a random pair and repeating the Spearman partial correlation 10,000 times. 

Plotting the strength of the true RSFC/ISC profile similarity correlation coefficients on these 

distributions reveals that the observed effects are much stronger than would be expected by 

chance. We note that because unranked values were graphed on the scatterplots, the slopes 

of the best fit lines only indirectly correspond to the vertical lines on the null distributions.

Gruskin and Patel Page 31

Neuroimage. Author manuscript; available in PMC 2022 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and methods
	Participants
	fMRI data
	Preprocessing and parcellation
	Resting state functional connectivity
	Intersubject correlation
	Ridge connectome-based predictive modeling
	Overview:
	Generating the cross-validated models:
	Significance testing the cross-validated models:
	Building and testing the bagged model:

	Inbound and outbound analyses
	Spatial permutation tests
	Principal component analysis
	RSFC and ISC topological similarity
	Replication with Schaefer 400 subject-specific parcellations

	Results
	Functional connectivity at rest predicts a global measure of normative
movie-evoked activity
	Inbound and outbound analyses characterize region-specific RSFC-ISC
relationships
	Network-level inbound/outbound relationships and means
	Principal component analysis reveals low-dimensional embedding of inbound and
outbound maps
	Subjects with more similar RSFC fingerprints share more similar spatial
patterns of ISC

	Discussion
	Citation diversity statement
	Data Availability
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.

