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Viral genomes are compact and encode a limited number of proteins. Because
they do not encode components of the translational machinery, viruses exhibit an
absolute dependence on the host ribosome and factors for viral messenger RNA
(mRNA) translation. In order to recruit the host ribosome, viruses have evolved
unique strategies to either outcompete cellular transcripts that are efficiently
translated by the canonical translation pathway or to reroute translation factors
and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral
responses and escape immune surveillance. This review focuses on some recent
major findings that have revealed unconventional strategies that viruses utilize,
which include usurping the host translational machinery, modulating canonical
translation initiation factors to specifically enhance or repress overall translation
for the purpose of viral production, and increasing viral coding capacity. The
discovery of these diverse viral strategies has provided insights into additional
translational control mechanisms and into the viral host interactions that ensure
viral protein synthesis and replication. © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Viruses are obligate intracellular pathogens that
rely on the host machinery to mediate viral pro-

tein synthesis and to replicate their genomes. Because
viral genomes are compact, they do not encode the
necessary components of the translational machinery
and thus, the virus must usurp the available cellular
resources and divert them toward viral translation.
However, the virus must contend with cellular tran-
scripts that are being translated through the canonical
translation initiation pathway, and evade host innate
immune responses that act to restrict viral spread
by inhibiting virus translation and replication. As
such, viruses have evolved various noncanonical
mechanisms that confer the ability to preferentially
engage the host ribosome during infection and to
counter antiviral mechanisms. In this review, there
will be an emphasis on viral strategies to hijack the
canonical translation pathway, modulation of host
factors and the use of alternate translation initiation
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factors, and viral recoding mechanisms. The examples
of viral translation strategies presented herein are not
all-encompassing, but rather, they are illustrative of
novel strategies that have emerged in recent literature,
with references to classical examples of which the
mechanisms have been well characterized. Compre-
hensive reviews on these translational mechanisms
have been described.1,2 These strategies all confer
a selective advantage for viruses to compete for the
ribosome and in some cases, allow the viral RNA
to be exclusively translated. The strategies described
focus on viral mechanisms in metazoa. Due to space
limitations, the diverse translational mechanisms
found in plant viruses will not be discussed and
readers are directed to several excellent reviews.3–5

Before delving into specific examples, the canonical
translation initiation pathway will be briefly reviewed
to develop a greater appreciation for these alternate
mechanisms of translation.

CANONICAL TRANSLATION
INITIATION

Translation, which includes the processes of initiation,
elongation, termination, and ribosome recycling, is a
tightly regulated process that involves decoding of the
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genetic information stored within a messenger RNA
(mRNA) into a functional polypeptide sequence. Dur-
ing elongation, the ribosome translocates codon by
codon as aminoacyl-transfer RNAs (tRNAs) are sam-
pled to ensure the delivery of the cognate amino acid
into the nascent polyprotein chain. In eukaryotes, the
majority of mRNAs bear a 5′ 7-methyl-guanosine cap
and 3′ poly(A) tail, both of which mediate translation
initiation via a cap-dependent mechanism (Figure 1).
The cap moiety binds the cap-binding protein, eukary-
otic initiation factor (eIF) 4E, which is in complex
with eIF4G and eIF4A to form eIF4F. eIF4A facilitates
unwinding of RNA secondary structures during scan-
ning. eIF4G acts as a scaffold that recruits factors to
the 5′ end, and through interaction with the poly(A)
binding protein (PABP) bound to the 3′ poly(A) tail,
mediates circularization of the mRNA. The 43S preini-
tiation complex comprised of the 40S ribosomal sub-
unit, the ternary complex eIF2⋅Met-tRNAi⋅GTP, eIF3,
eIF1, eIF1A, and eIF5 is delivered to the 5′ end of
the transcript via interaction of eIF3 with eIF4G. In
a process that is facilitated by eIF1 and 1A, the com-
plex subsequently undergoes directional scanning to
locate the authentic AUG codon positioned within a
favorable context. Start codon recognition by the ini-
tiator Met-tRNAi within the ribosomal P site results
in hydrolysis of the eIF2-bound GTP, release of the
Pi, and dissociation of initiation factors. Hydrolysis
of GTP and subsequent release of eIF5B facilitate 60S
joining and the formation of an elongation-competent
ribosome. For a comprehensive review of the canoni-
cal translation pathway, please see Refs 7, 8.

NONCANONICAL TRANSLATION
INITIATION

Usurping the Host Translation Machinery

Internal Ribosome Entry Sites: Picornavirus
In contrast to cap-dependent translation, some
viruses utilize a noncanonical mode of translation
termed internal ribosome entry. This translation
mechanism involves a cis-acting, generally structured
RNA element called an internal ribosome entry site
(IRES) which is often found in the untranslated
region (UTR) of a viral genome.9 IRESs recruit the
ribosome internally within the viral RNA in a 5′

end-independent manner and afford the viral genome
the ability to hijack the translational machinery
for viral protein synthesis during infection. IRESs
were first described in picornaviruses, where the
5′-UTRs of poliovirus (PV) and encephalomyocarditis
virus (EMCV) mediate internal ribosome recruit-
ment and initiate translation within the context of

bicistronic reporter constructs.10,11 Subsequent anal-
yses through the concerted efforts of various groups
have demonstrated that other picornaviral IRESs
exist in the genomes of foot-and-mouth disease virus
(FMDV),12,13 human rhinoviruses,14 and hepatitis A
virus (HAV).15,16 These IRES elements share a com-
mon dependence on many canonical initiation factors
including the ternary complex eIF2⋅Met-tRNAi⋅GTP,
eIF4A, eIF3, and the C-terminal domain of eIF4G
(for review see Ref 17). The fact that IRESs can
mediate internal ribosome recruitment was irrevo-
cably demonstrated through the discovery that an
artificially synthesized circularized RNA harboring
the EMCV IRES can initiate translation, proving
that this mechanism of initiation does not depend on
linear scanning of the translational apparatus.18 In
general, IRESs utilize only a subset of the canonical
translation factors and may also use auxiliary proteins
called IRES trans-acting factors (ITAFs), which are
proteins that are not normally involved in transla-
tion but are usurped for IRES-mediated translation.
Because of the reduced requirement for initiation
factors, IRES translation is active under conditions
such as virus infection and cellular stress when the
activities of specific targeted translation initiation
factors are compromised. How does a viral IRES gain
advantage over cap-dependent translation? In the
case of PV, the viral proteases 2Apro and 3Cpro not
only process the viral polyprotein but also target and
cleave host translation eIFs, including the scaffold
protein eIF4G and PABP, which in effect leads to the
shutoff of host protein synthesis and an increase in the
availability of ribosomes and translation factors for
viral RNA translation.19–22 However, because of the
limited factor requirement for PV IRES translation,
the viral proteins are preferentially translated during
infection (see below). Since these initial findings,
additional IRES elements have been identified in other
viruses as well as in a subset of cellular mRNAs.23

Thus, viral IRESs allow hijacking of the host trans-
lational machinery to mediate preferential, and in
some cases like PV infection, an exclusive switch
from cap-dependent to viral IRES-dependent protein
synthesis.

IRESs can be classified into four primary classes
based on the requirement for canonical initiation fac-
tors, initiator Met-tRNAi and ITAFs.9 The picor-
navirus IRESs are further divided into several sub-
groups. Types I and II picornavirus IRESs, exemplified
by the PV and EMCV IRESs, respectively, have simi-
lar factor requirements. However, while the ribosome
is directly recruited to the AUG start codon on the
EMCV type II IRES, it must scan a short distance to
the initiation codon following recruitment on the PV
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FIGURE 1 | Eukaryotic translation initiation. The 5′ 7-methyl-guanosine cap of cellular mRNA is bound by the cap-binding complex eIF4F, which
consists of the cap-binding protein 4E, the helicase 4A, and the scaffold protein 4G. eIF4G facilitates recruitment of the 43S preinitiation complex (1)
and circularization of the mRNA through interaction with poly(A) binding proteins (PABP) bound to the 3′ poly(A) tail. Following 43S recruitment, the
complex undergoes ATP-dependent directional scanning (2) to locate the AUG start codon within a favorable context. (3) Start codon recognition and
anticodon:codon pairing results in hydrolysis of the eIF2-bound GTP in a process mediated by eIF5. Subsequently, eIF5B mediates joining of the 60S
ribosomal subunit to form an elongation-competent 80S ribosome (4). (Reprinted with permission from Ref 6. Copyright 2004 Nature Publishing
Group)
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type I IRES.24,25 HAV IRES is a member of a minor
group designated type III, as it is mechanistically dis-
tinct from other picornaviral IRES elements.26–28 It is
generally (reasonably) assumed that IRESs from the
same viral family utilize a similar mechanism for trans-
lation initiation. However, recent studies into other
picornaviral IRESs identified two additional subtypes:
one type, best exemplified by Simian picornavirus type
9 and porcine teschovirus 1, encompasses IRES ele-
ments that bear remarkable similarities to the hep-
atitis C virus (HCV)-like IRESs,29–32 while another
type, exemplified by Aichivirus (AV), includes mem-
bers of the Kobuvirus, Salivirus, and Paraturdivirus
genera.33,34 This further demonstrates that IRESs from
the same family may mediate translation via distinct
mechanisms.

Similar to the type I and II IRESs, the AV IRES is
stimulated by the ITAF, polypyrimidine tract binding
protein; however, the AV IRES, although having a
similar core structure, adopts distinct subdomains
that determine its unique translational mechanism.
Unlike type I and II IRESs, the AV IRES is completely
dependent on DHX29,34 which is a DExH-Box heli-
case shown previously to be involved in translational
initiation of mRNAs with structured 5′ UTRs.35,36 As
the initiation codon of the AV IRES is buried within a
stable hairpin structure, it is proposed that DHX29 is
required for unwinding of the hairpin to allow access
to the initiator Met-tRNAi.

34 This finding raises the
possibility of unique IRES translation mechanisms
and factor requirements within the same viral family.
Similarly, recent work involving the picornaviral
HAV IRES suggests that the precise strategy by which
IRESs mediate translation is governed by specific
cellular conditions that persist during infection. Ini-
tial characterization of the 5′-noncoding region of
HAV suggested that it shares many similar structural
motifs with the EMCV IRES.37 Despite this similarity,
however, the HAV IRES differs substantially in its
requirements for optimal activity. Most notably, while
other picornaviral IRESs are resistant to or stimulated
by 2Apro, the HAV IRES is strongly inhibited under the
same conditions.27 The dependence of the HAV IRES
on an intact eIF4G/eIF4F complex is supported by sev-
eral lines of evidence. The addition of purified eIF4F
complexes following protease treatment was demon-
strated to rescue HAV IRES-mediated translation.26,28

In a related manner, methylated cap analog,
eIF4E-binding protein 1, or rotavirus nsp3 inhibit
HAV IRES function by modulation of eIF4F.26,28

Recent reports demonstrate that 2Apro and Lpro

exhibit contradicting effects on HAV IRES translation;
while 2Apro impairs HAV IRES function, the FMDV
Lpro strongly stimulated IRES activity, even upon

proteolytic cleavage of eIF4G and arsenite-induced
phosphorylation of eIF2𝛼.38 Resistance to eIF2𝛼
phosphorylation is reminiscent of PV and EMCV
IRES-mediated translation, as translation can proceed
in an eIF2-independent fashion late in infection.39,40

While these findings are intriguing and may help
reconcile differences that are previously thought to dif-
ferentiate HAV IRES from other picornavirus IRESs,
they warrant further investigations to determine the
cause of divergence from previously published results.

Internal Ribosome Entry Sites: Dicistrovirus
Of the IRES classes, group I IRESs, exemplified by
members of the Dicistroviridae family, have the most
streamlined mechanism of action. Dicistroviruses
are positive-sense RNA viruses that are primarily
pathogenic to arthropods.41 Noteworthy members of
this class include the Cricket paralysis virus (CrPV)
and Drosophila C virus (DCV) which are infectious
to a number of insect species including the genetically
tractable model Drosophila melanogaster; and the
honeybee viruses including the Israeli acute paralysis,
Acute bee paralysis virus, and Kashmir bee virus
which have been recently implicated in the colony
collapse disorder of honeybees.42 The name of the
family is derived from the viral genome organization,
which contains two main open reading frames that
are translated under the regulation of two distinct
IRES elements.43 The 5′ proximal cistron is under the
regulation of the 5′ UTR IRES and encodes viral non-
structural proteins, whereas the downstream cistron
encoding viral structural proteins is regulated by the
intergenic region (IGR) IRES (Figure 2(a)). The two
ORFs are distinctly regulated during infection; the
viral structural proteins are produced in molar excess
of the nonstructural proteins (nsps).43,48,49 Studies
of the 5′ UTR IRESs have been limited. It has been
shown that the Rhopalosiphum padi virus (RhPV) 5′

UTR IRES, which can direct translation in a number
of systems including rabbit reticulocyte lysates, insect
lysates, and wheat germ extracts50,51 uses limited
translation factors and exhibits an absolute depen-
dence on eIF1, eIF2, and eIF3 for 48S formation.52

The 5′ UTR IRESs lack sequence conservation,53

and although it remains to be investigated, it seems
unlikely that other dicistroviral 5′ UTR IRESs exhibit
the same factor requirement as the RhPV 5′ UTR
IRES. In contrast, the IGR IRES has been exten-
sively studied through biochemical and structural
approaches to reveal an unprecedented mechanism of
action. Remarkably, the IGR IRES directly recruits the
40S and 80S ribosome in the absence of initiation fac-
tors or initiator Met-tRNAi.

54–56 Moreover, the IRES
functionally mimics a tRNA to occupy the ribosomal
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FIGURE 2 | Dicistrovirus intergenic region internal ribosome entry site (IGR IRES). (a) Genome organization of members of the Dicistroviridae
family. Dicistroviruses have a single-stranded, positive-sense RNA genome that contains the genome-linked protein (Vpg) and poly(A) tail at the 5′-
and 3′-ends, respectively. The genome contains two non-overlapping open reading frames. The upstream cistron (encoding viral nonstructural
proteins) is regulated by the 5′ IRES, while the downstream cistron (encoding viral structural proteins) is expressed under the regulation of the IGR
IRES (boxed). The IGR IRES can directly recruit ribosomes in the absence of canonical translation initiation factors. (b) Sequence and secondary
structure of the CrPV IGR IRES. The IGR IRES adopts a triple-pseudoknotted structure (PKI/II/III) with two independently folded domains: the ribosome
binding domain (boxed in blue) and tRNA-mimicry domain. Within the ribosome binding domain, stem-loop (SL) V interacts with ribosomal protein
(RP) S5 whereas SL IV interacts with RPS25 (shaded in gray). The conserved L1.1 bulge is thought to interact with the L1 stalk of the 60S subunit to
direct 80S formation. Notable structural elements are boxed in the corresponding colors as those used in crystal structure in (c). The tRNA-mimicry
domain structurally mimics an authentic codon:anticodon interaction and establishes the translational reading frame by occupying the ribosomal P
site. IRES-mediated translation initiates from the A site and at a non-AUG codon to direct synthesis of the viral structural proteins. The IRES
codon:anticodon-like interaction is boxed in green. Specific nucleotides within this region are depicted in the corresponding colors as the structure
shown in (d). (Reprinted with permission from Ref 44. Copyright 2010 Cold Spring Harbor Laboratory Press) (c) Crystal structure of the ribosome
binding domain from the Plautia stali intestinal virus. The ribosome binding domain forms a solvent-inaccessible core that mediates contacts with the
40S ribosomal subunit. (Reprinted with permission from Ref 45. Copyright 2006 American Association for the Advancement of Science) (d)
Comparison of the CrPV PKI codon:anticodon-like interaction and an authentic P-site mRNA:tRNA interaction. Analogous bases in both structures are
highlighted in the same color. (Reprinted with permission from Ref 46. Copyright 2008 Nature Publishing Group) (e) Cryo-EM reconstructions of the
vacant human 40S ribosomal subunit (left) and the CrPV IGR IRES-bound 40S complex (right) at 25.3 Å and 20.3 Å, respectively. The IGR IRES binds to
the intersubunit space and induces conformational changes in the 40S subunit (indicated by asterisk). (Reprinted with permission from Ref 47.
Copyright 2004 Cell Press)

P site and direct translation initiation from the riboso-
mal A site using a non-AUG codon.55–57 The unique
triple-pseudoknotted structure of the IGR IRES
allows it to adopt two functional domains, including

a solvent-inaccessible domain largely responsible for
direct ribosome binding54,58,59 and a tRNA-mimicry
domain that bears remarkable structural similari-
ties to an authentic codon:anticodon pairing46,56
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(Figure 2(b)–(d)). The tRNA-mimicry domain primes
the ribosome into an elongation-like mode where the
initial pseudo-translocation step mediated by eEF2
occurs in the absence of peptide bond formation.60,61

The IGR IRES domains are modular in nature
and are functionally interchangeable to generate
chimeric IRESs with activities that are dictated by the
ribosome binding domain.44,62 Cryo-EM and struc-
tural docking studies have yielded insights into the
specific contacts between the IRES and the ribosome
that drive IRES translation. The IGR IRES occupies
the intersubunit space proximal to the decoding
center, with specific contacts to the ribosomal P and
E sites (Figure 2(e)).47,63 Binding induces conforma-
tional changes in the IGR IRES, where it retracts
from the A site toward the E site of the ribosome.47

Reciprocal conformational changes are also observed
in the ribosome itself. IRES binding to the 40S subunit
alone results in a rotation of the head relative to the
body.47 An additional connection is also established
between the head and the shoulder on the solvent
accessible side of the subunit, which may be involved
in latch closure to the mRNA entry channel to effec-
tively anchor the 3′ end of the incoming mRNA.47

Remarkably, 60S subunit joining causes a reversion
in the head rotation and opening of the mRNA
channel, possibly facilitating delivery of the first
incoming aminoacyl-tRNA.47 Interestingly, binding
of an unrelated IRES, the HCV IRES, to the ribosome
induces similar conformational changes, suggesting
that such structural rearrangements may be intrinsic
to ribosome function and underlie the ability of these
IRES elements to manipulate the ribosome (compare
Figures 2(e) and 3(b)).47,65

Internal Ribosome Entry Sites: HCV-like
Like the IGR IRES, the HCV IRES, which belongs to
the class II IRESs, can also directly recruit the 40S
subunit in the absence of translation factors. Follow-
ing 40S binding, the HCV IRES then recruits eIF3
and eIF2⋅Met-tRNAi to form 48S complexes that are
properly positioned at the initiation site.67,68 Interest-
ingly, unlike the IGR IRES which binds exclusively
within the mRNA cleft of the ribosome, cryo-EM
studies revealed that the HCV IRES is mostly located
on the solvent side of the 40S with only domain II
of the IRES occupying near the E site of the ribo-
some (Figure 3(b)).65,69 The HCV IRES adopts an
open RNA structure consisting of distinct domains
to mediate specific functions during IRES translation.
The apical region of domain III is responsible for eIF3
binding70–72 and the junction of domain III and IV
forms a high-affinity core for 40S subunit binding
(Figure 3(a)).71,73,74 Domain II is essential for IRES

translation and is thought to induce conformations
within the 40S subunit to mediate translation.65,75

At the heart of the HCV IRES, a pseudoknot within
domain IV facilitates positioning of the ribosome and
the ternary complex at the AUG start codon.76,77 It is
noteworthy that both the IGR IRES and HCV IRES,
though using distinct strategies to manipulate the ribo-
some, can recruit the ribosome by binding to different
regions of the 40S subunit. Moreover, both IRESs use
a pseudoknot structure, which is a general feature that
dictates ribosome positioning to initiate translation.

Although the precise mechanism of HCV
IRES-mediated translation is not fully understood,
structural studies have provided mechanistic insight
into how it hijacks the ribosome. As described above,
after the HCV IRES directly recruits the 40S subunit,
the eIF2 ternary complex and eIF3 play essential roles
in facilitating proper ribosome positioning at the AUG
start codon.67,72 It has been proposed that eIF3 acts as
a structural scaffold to facilitate 40S positioning but its
mechanistic role in HCV IRES translation has not been
elucidated. In a recent report, using the classical swine
fever virus (CSFV) IRES, an HCV-like IRES, cryo-EM
studies comparing the position of eIF3 within the 43S
or IRES-ribosome complexes reveal conformational
discrepancies.66 In the 43S preinitiation complex,
eIF3 forms extensive contacts with specific ribosomal
proteins (RPs).66 In contrast, eIF3 binds exclusively
to the IRES within the IRES-ribosome complex,
suggesting that the IRES (particularly domain III)
functionally displaces eIF3 to gain access to the ribo-
some (Figure 3(c)). This finding suggests a possible
strategy whereby the IRES evicts eIF3 from the 43S
complex to minimize competition of cellular mRNAs
for the translational machinery.66 To substantiate
this finding, primer extension analysis demonstrated
that 48S complex formation on 𝛽-globin mRNA was
reduced upon addition of HCV-like IRES domain
IIIabc, which alone is sufficient for eIF3 binding.66

Although it is unknown whether this represents a
viable strategy to outcompete host transcripts within
the context of virus infection, it nevertheless provides
insight into how HCV-like IRESs may usurp the host
translational machinery. Structural analyses have sim-
ilarly been useful in illuminating events downstream
of initiation during HCV IRES-mediated translation.
Through the use of cryo-EM, complemented by NMR
and biochemical approaches, Kieft and colleagues
demonstrated that domain IIb of the HCV IRES is
responsible for promoting a switch from translation
initiation to elongation and suggests that the IRES has
roles beyond ribosome recruitment and positioning at
the initiation site.78 Mutants bearing deletions or sub-
stitutions in this specific region could still effectively
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complex. The IRES consists of domains II–IV, where the apical region of domain III interacts with eIF3 (shaded in orange), and regions within domains
II, III, and IV establish contacts with the ribosome (shaded in gray). The IRES translational start site is highlighted in red. Within the 5′ and 3′
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red). The stop codon of the coding region is highlighted in blue. The structures of the HCV 5′ and 3′ UTRs are Reprinted with permission from Ref 64.
Copyright 2005 American Association for the Advancement of Science. (b) Cryo-EM structure of the vacant 40S ribosomal subunit from rabbit
reticulocytes and 40S-HCV complex at 20Å. The HCV IRES binds to the solvent accessible side of the ribosome and induces conformational changes in
the 40S subunit, similar to those induced by IGR IRES-40S binding (indicated by asterisks). (Reprinted with permission from Ref 65. Copyright 2001
American Association for the Advancement of Science). (c) Cryo-EM structure of the 40S-eIF3 (11.6 Å) and 40S-CSFV ΔII IRES-eIF3 (9.5 Å) complexes
containing eIF3 and 40S from rabbit reticulocytes. In the 40S-eIF3 complex (right), eIF3 (shown in red) interacts directly with the 40S subunit (in
yellow). In contrast, eIF3 binds to the IRES (in blue) via the apical loop of domain III in the IRES-containing complex (left), suggesting that the IRES
displaces eIF3 to gain access to the ribosome. (Reprinted with permission from Ref 66. Copyright 2013 Nature Publishing Group)

assemble 80S ribosomes and correctly position the
start codon, but exhibited moderate impairment in the
first translocation event.78 These findings provided
the first documented example in which ribosome
assembly on the HCV IRES is uncoupled from the
initial translocation step. Translocation on the HCV
IRES necessitates ribosomal conformational changes
that are mediated by a putative interaction between
the HCV IRES domain II and RPS5.65,79 In domain

IIb mutants, this essential interaction is absent, thus
resulting in a defect in translocation.78 It remains to
be investigated whether this property is specific for
HCV IRES or a general strategy utilized by other
viral IRESs. These findings add to the existing roles
of domain II in HCV IRES translation including 60S
joining, eIF5-induced hydrolysis of GTP bound to
eIF2, eIF3j dissociation, and configuration of the
RNA in the decoding groove.68,80–82
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Internal Ribosome Entry Sites: HIV
IRES-dependent mechanisms appear to mediate the
translation of alternate isoforms of gag protein within
the human immunodeficiency virus types 1 and 2
(HIV-1 and HIV-2, respectively),83,84 and the related
simian immunodeficiency viruses (SIVs).85,86 These
viral elements, located within the gag coding region,
are translated most efficiently as leaderless RNAs, but
within the context of the viral genome, are preceded
by upstream 5′ UTR elements that modulate IRES
activity.84,87 Interestingly, these viral IRESs utilize a
unique mechanism to recruit ribosomal complexes to
an initiation site upstream of the IRES core. Using
sucrose gradient centrifugation, the HIV-2 IRES was
shown to assemble three distinct translation initia-
tion complexes, which were confirmed by toeprint-
ing analysis to be at the authentic and internal AUG
codons of the gag gene.87 RNA-based affinity purifi-
cation revealed that 48S initiation complexes formed
on the HIV-2 IRES are comprised of all the canon-
ical initiation factors with the exception of eIF4G
and eIF1.88 Intriguingly, similar to a strategy used
by the dicistrovirus IGR IRES and HCV IRES, the
HIV-2 IRES can directly bind to the 40S subunit.88

eIF3 is also recruited through a conserved structural
core, and can form an IRES/40S/eIF3 ternary complex
that is likely a nonrate-limiting step and a prereq-
uisite in translation initiation.88 It is speculated that
subsequent to ternary complex formation, the initia-
tion complexes are shuttled to the alternate initiation
codons to mediate expression of the gag isoforms.88

A recent report showed that the HIV-1 gag leader
IRES (to be distinguished from the coding region IRES
discussed above) exhibits enhanced activity in lym-
phocyte cell line, suggesting that specific ITAFs found
in these cells may facilitate HIV IRES translation.89

While structural conservation of the IRES suggests
that it has functional implications in the HIV life cycle,
further investigations will be required to identify spe-
cific ITAFs that facilitate its translation.

Direct Role of miRNA on Virus Infection
Infection by HCV, a positive-sense RNA, is hepa-
totrophic in nature and is a major causative agent
for chronic liver disease. Tissue tropism was initially
thought to be associated with the requirement of spe-
cific cell surface receptors or the dependence of the
viral life cycle on factors that are expressed exclu-
sively in liver cells; however, this speculation was over-
turned by the discovery that viral RNA abundance is
modulated by the liver-specific microRNA (miRNA),
miR-122.64 Indeed, exogenous expression of miR-122
greatly enhanced HCV abundance in nonhepatic
cells.90 The HCV genome contains three potential

miR-122 binding sites identified through base comple-
mentarity with the miRNA seed sequence: one within
the variable sequence of the 3′ UTR and two in the
5′ UTR (Figure 3(a), sequences in red). Sequestration
of miR-122 by antisense oligonucleotides or disrup-
tion of the miRNA seed match resulted in a decrease in
viral RNA abundance.64 Expression of artificial miR-
NAs bearing compensatory mutations that restored
the seed match ameliorated these effects, indicating a
direct interaction of miR-122 with the HCV binding
sites.64,91,92 How does miR-122 mediate HCV repli-
cation? Given the role of miRNAs on translation, it
was proposed that miR-122 affected translation of the
HCV mRNA. Viral RNA accumulation was suggested
to be a result of miR-122-dependent stimulation of the
HCV IRES and required both binding sites within the
5′ UTR to be intact.92,93 Additionally, the 3′ region of
miR-122 downstream of the seed sequence is essen-
tial and stimulation is facilitated by Argonaute (Ago)
proteins94 and the P body protein LSm1.95 Although
the contribution of miR-122 on HCV translation is
moderate, the finding that a miRNA positively affects
translation is in line with other reports that miRNAs
can function positively and contrasts their conven-
tional role in translational repression.96 Furthermore,
insertion of the miR-122 binding site into the 3′ UTR
of a reporter RNA negated the stimulatory effects and
instead, conferred the canonical repressive function
of miRNAs.92 In contrast to the modest translational
effects, recent reports have proposed that the major
role of miR-122, in association with Ago2, is to pre-
vent decay of the HCV genome, independently of its
translation status.97 The exonuclease Xrn1 was shown
to degrade the HCV RNA and miR-122 binding func-
tions to protect the HCV RNA from degradation.98

Interestingly, supplementation of miR-122 or specific
knockdown of Xrn1 has redundant and nonadditive
effects on HCV RNA stability.98 However, due to the
inability of Xrn1 knockdown to rescue viral replica-
tion defects from impaired miR-122 binding, miR-122
may have additional roles in the viral life cycle that
are yet unidentified.98 Though a comprehensive under-
standing of miR-122 function on the HCV life cycle
is still lacking, its roles in HCV IRES stimulation and
RNA stabilization suggest a multifaceted mode of reg-
ulation by miRNAs that may be prevalent in other
viruses.

Specialized Ribosomes in Cap-Independent
Translation
While ribosomes may be conventionally perceived
as homogenous, indiscriminatory protein-translating
apparatuses, there is emerging evidence suggesting
that ribosomes are heterogeneous in nature as a result
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of varying RP content, unique posttranslational mod-
ifications and/or ribosomal RNA composition.99 In
fact, the idea that specific constituents of the ribosome
may confer a more specialized function was formally
proposed as the ribosome filter hypothesis.100 It under-
scores the intriguing possibility that the translational
activities of ribosomes are not static, but rather are
selective for specific transcripts, thus representing an
additional level of complexity in translational regula-
tion. The first indication of this process came through
studies of some viruses bearing IRES elements, includ-
ing PV, HCV, and CrPV. A genome-wide siRNA screen
for genes involved in DCV infection of Drosophila
S2 cells identified 66 ribosomal proteins that are
required for DCV IGR IRES-mediated translation and
virus infection.101 Surprisingly, while knockdown of
ribosomal proteins had relatively modest effects on
cap-dependent translation, IRES-mediated translation
was dramatically reduced. Furthermore, it was shown
that this translational defect is not specific to insect
viruses, but is observed also for PV infection.101 These
initial findings suggested that the general integrity of
the ribosome may be important in promoting viral
growth. The notion that specific ribosomes may medi-
ate translation of distinct classes of mRNAs was
spawned by studies on the role of RPS25 on IGR
IRES translation. In IGR IRES-ribosome complexes,
RPS25 crosslinks specifically with the ribosome bind-
ing domain of the IRES,102 and cryo-EM reconstruc-
tions suggest that the IRES interacts with a protein
adjacent to RPS5 that has no prokaryotic homolog.63

Additionally, RPS25-deficient ribosomes isolated from
Saccharomyces cerevisiae exhibit significantly dimin-
ished binding to the IGR IRES, and IRES translational
activity is negligible in yeast translation extracts pre-
pared from RPS25-deficient strains.103 Interestingly,
cryo-EM studies revealed that RPS25 and the neigh-
boring RPS5 together constitute the primary interface
for ribosome-IGR IRES binding.59,103 In vivo charac-
terization of the role of RPS25 in CrPV IGR IRES and
HCV IRES function revealed that while global trans-
lation was only minimally affected, the loss of RPS25
yielded a significant impairment in IRES activity.104,105

Similarly, the activities of structurally and function-
ally diverse IRES elements including the CSFV, EMCV,
PV, and EV71 IRESs and a subset of cellular IRESs
were also affected,104 suggesting that specific riboso-
mal proteins may have evolved to accommodate IRES
translation in general. Because the IGR IRES and HCV
IRESs can recruit the 40S subunit directly, it is rea-
sonable to propose that specific ribosomal proteins
such as RPS25 may interact directly with and facili-
tate recruitment of the IRES (Figure 4). Furthermore, it
may also provide an explanation as to why these IRESs

may not function in prokaryotes, which do not have
RPS25. However, in the case of picornaviruses such
as PV and EV71, it is not clear how RPs contribute
to infection, as these IRESs require a multitude of fac-
tors to recruit the ribosome. Nevertheless, the com-
mon requirement for specific ribosomal proteins and
specialized ribosomes suggest that diverse viral IRESs
may in fact share more mechanistic features than ini-
tially thought.

The regulatory effects of RPs may go beyond
IRES translation. Through an siRNA screen of ribo-
somal proteins required for vesicular stomatitis virus
(VSV) infection, eight ribosomal proteins, including
RPL40, were shown to play an intrinsic role in
viral mRNA translation but not global translation
(Figure 4).107 The VSV viral genome, which is both
capped and polyadenylated, is thought to be translated
via a distinct cap-dependent mechanism. During infec-
tion, host translational repression is achieved, in part,
by the hypophosphorylation of eIF4E-binding protein
1 (4E-BP1), which effectively disrupts formation of the
eIF4F complex through sequestration of eIF4E.111,112

Despite having extensive similarities to host mRNAs,
viral RNAs can escape translational shutoff and
translation proceeds via an RPL40-dependent mech-
anism, likely through cis-acting elements present in
the viral 5′ and 3′ UTR elements.107 RPL40 facili-
tates VSV translation at the level of initiation, and as
a ribosomal constituent (as opposed to its potential
extra-ribosomal functions).107 Other viruses related
to VSV, including the rabies virus, measles virus, and
Newcastle disease virus, all have a similar sensitivity
to RPL40 depletion; more intriguingly, however, is the
identification of a small subset of cellular mRNAs,
through sequencing polysome-associated RNAs, that
are expressed by a RPL40-dependent pathway.107

This suggests that VSV and related viruses may have
usurped an endogenous translational pathway.

It is well established that the catalytic peptidyl-
transferase domain of the ribosome lies in the rRNA
constituent; the majority of ribosomal proteins are
localized to the periphery of the ribosome and the
content varies dramatically between the prokaryotic
and eukaryotic ribosomes (reviewed in Ref 113). It
is interesting to note that the RPs which constitute
the specialized ribosomes essential for IRES-mediated
or viral translation have no prokaryotic counterparts,
which may suggest that these additional RPs may facil-
itate ribosome selection of IRESs or in the case of
VSV, viral cap-dependent translation. Recent lines of
evidence support the emerging notion that ribosomal
proteins modulate translation and there is increasing
interest as to how they may contribute to the differ-
ential regulation of a subset of mRNAs. Although the
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loss of RPs does not have a detrimental effect on cell
viability or host cap-dependent translation, it is not
clear if there are certain cellular conditions that favor
ribosomes with a specific composition. It is likely that
the RPs are regulated via posttranslational modifica-
tions which may modulate ribosome activity and/or
specificity and it remains to be investigated whether
specific ribosomal proteins are regulated during virus
infection to control IRES-mediated translation.

In addition to RPs, rRNA is also subject to modi-
fications that can regulate the translation of a subset of
RNAs. In an attempt to understand how rRNA mod-
ifications contribute to the pathogenesis of X-linked
dyskeratosis congenita, a fatal disease characterized
by bone marrow failure and an increased susceptibil-
ity to cancer, Ruggero and coworkers have identified
a specific requirement of rRNA pseudouridylation in
IRES translation.109 While global translation is not
affected, the loss of pseudouridine synthase activity

results in a significant downregulation of p27, XIAP,
and Bcl-xL translation. Furthermore, the effect is
not exclusive to cellular IRES elements but is also
observed with the CrPV IRES, suggesting an intrinsic
ribosomal defect in IRES-dependent translation.109

Further investigation into the molecular mechanism
revealed that it is attributable to a decrease in affinity
of pseudouridine-deficient ribosomes for the CrPV
IGR IRES, and that this defect is conserved from lower
to higher eukaryotes.110 Pseudouridine-deficient ribo-
somes also exhibited other translational defects
including reduced translational fidelity and main-
tenance of translational reading frame, altered
sensitivities to translational inhibitors, and reduced
ribosome-tRNA affinities.110 Because these defects are
governed in part by tRNA binding and that the CrPV
IGR IRES also adopts a tRNA-like conformation,
it is speculated that the loss of pseudouridylation
manifests as a universal defect in ribosome-ligand
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binding.110 There are 91 known pseudouridylation
modification sites within human rRNA.114 Whether
specific pseudouridylation modifications within the
rRNA are responsible for IRES binding remains to
be examined. Furthermore, these findings raise the
intriguing possibility that specific nucleotides within
the rRNA may be modified during virus infection.
These modifications would most likely have to occur
during maturation of the ribosomal subunits in order
for the modifying enzymes to access sites on the rRNA.

Modulation of Translation Initiation Factors
Inactivation of the Cap-Binding Complex
One common hallmark and dramatic consequence
of some viral infections is host translational shutoff,
which effectively dampens the antiviral response
and diverts the cell’s translational capacity toward
viral production. Because translation initiation is
the rate-limiting step that is tightly regulated by
the availability of canonical initiation factors, con-
stituents of the eIF4F cap-binding complex represent
major targets for translational control. PV-mediated
translational repression provides an exemplary way
in which the virus modulates canonical initiation
factors for its exclusive usage while consequently
rendering the host cell incapable of translation initia-
tion. Translational repression is initiated by cleavage
of eIF4GI by 2Apro, and proceeds to completion by
cleavage of the more resistant functional homolog,
eIF4GII.19,20 Furthermore, the proteases 3Cpro and
2Apro lead to cleavage of PABP.21 Cleavage of eIF4G
and PABP effectively inactivates the cap-binding com-
plex essential to canonical translation initiation. The
proteolysis of eIF4G generates two cleavage products
that have disparate functions: an amino-terminal
fragment containing the eIF4E binding domain115,116

and a carboxyl-terminal fragment containing the eIF3
and eIF4A binding sites.116,117 While cap-dependent
translation is severely impaired by eIF4G cleavage,
the C-terminal proteolytic product of eIF4G is nec-
essary and sufficient in supporting IRES-mediated
translation.118 A specific and direct interaction
between PV IRES domain V and the central core
of eIF4G is essential for ribosome recruitment.119

This interaction promotes eIF4A recruitment, and
by association with eIF3 (likely as a constituent of
the 43S complex), allows hijacking of the ribosome
during infection.25 Interestingly, a recent report
demonstrated that upregulation of miR-141 during
enterovirus EV71 infection results in the targeted
inhibition of eIF4E. Transfection of antagomiR-141
(antisense miR-144) delayed host translational shut-
off and moderately attenuated virus production.120

Furthermore, ectopic expression of miR-141 resulted
in shutoff of cap-dependent translation concomitant
with an increase in IRES translation.120 Thus, this
study reveals an additional level of regulation that acts
in coordination with the cleavage of eIF4G and PABP
to ensure efficient shutoff of host translation and to
promote the switch to IRES translation. Therefore,
viral modulation of initiation factors helps to establish
an environment that minimizes the ability of cellular
transcripts to compete for the translational machinery
to thereby promote its own preferential translation.

Stimulation of Cap-Binding Complex
While host translational repression and a switch to
viral cap-independent translation is a hallmark of
some virus infections, other viruses do not use IRES
elements to recruit the ribosome. DNA viruses such as
herpes simplex virus-1 (HSV-1) and Kaposi’s sarcoma
herpesvirus (KSHV) use a strategy to actively assem-
ble eIF4F complex to mediate cap-dependent viral
protein synthesis despite suppressing host protein
synthesis during virus infection.121,122 For example,
during HSV-1 infection, the viral protein ICP6 binds
to eIF4G to promote eIF4F assembly.122 In contrast,
human cytomegalovirus (HCMV) infection does not
lead to inhibition of host translation and thus, viral
translation proceeds concomitantly with host protein
synthesis.123 Insights of this mechanism have come
to light. Under HCMV infection, the virus modulates
the pool of translation initiation factors to actively
promote eIF4F formation.124–127 In particular, cellu-
lar poly(A) binding protein (PABP1) is translationally
stimulated and accumulates in the cytoplasm124 (in
contrast to the nuclear retention of PABP described
in HSV-1128,129 and KSHV infections121,130). Trans-
lational upregulation is dependent on the terminal
oligopyrimidine (TOP) motif within the 5′ UTR
of PABP1 and requires mTORC1 activation by the
viral-encoded UL38 mTORC1 activator.131 Prevent-
ing PABP accumulation impairs eIF4F assembly and
decreased viral titer, suggesting that newly-synthesized
PABP facilitates eIF4F formation on viral RNAs.131

Thus, remodeling of translational complexes can
be achieved by viral modulation of initiation fac-
tor levels, which has significant implications on the
ability of the virus to mount a productive infection.
Interestingly, HCMV infection coordinately increases
the levels of the PABP1 repressor, Paip2, and the
E3 ubiquitin ligase EDD1, which targets Paip2 for
proteolytic degradation.132 This effect at first seemed
paradoxical, as it neutralizes the virus’ attempt to
upregulate PABP1. However, the increase in Paip2
abundance has been established as a virus-induced
innate antiviral strategy in response to the upregula-
tion of PABP1.132 The host cell precisely modulates
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the ratio of PABP1 and its cognate repressor in order
to diminish the pool of free PABP1 available for viral
translation.132 Although this mechanism of regulation
remains to be elucidated under HCMV infection,
Paip2 may have a more universal role in regulating
PABP1 levels and thus the overall translation profile
in the absence of viral infection.

Inactivation of eIF2 and Alternate Initiation
Factor Usage
While a common strategy is to target the eIF4F
complex (as described above), an alternate and nonex-
clusive way in which host translational repression can
be triggered is through activation of eIF2𝛼 kinases,
which results in the downstream phosphorylation

and inactivation of eIF2𝛼 (Figure 5). Upon delivery of
the ternary complex eIF2⋅Met-tRNAi⋅GTP to a start
codon, GTP hydrolysis occurs to allow for tRNA
accommodation. For subsequent rounds of transla-
tion initiation to ensue, eIF2⋅GDP must be recycled
to eIF2⋅GTP in a process mediated by the guanine
nucleotide exchange factor eIF2B. The 𝛼-subunit of
eIF2 is susceptible to phosphorylation by various
kinases that are activated during stress conditions as a
means to repress translation. eIF2𝛼-P acts as a potent
competitive inhibitor to eIF2B, and impedes its ability
to recycle eIF2⋅GDP; thus targeting eIF2 serves a fun-
damental role in altering gene expression during dif-
ferent environmental stresses (for review, see Ref 133).
Four eIF2𝛼 kinases exist in eukaryotes: HRI responds
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to fluctuations in heme:globin ratios; GCN2 is acti-
vated by UV irradiation and amino acid starvation;
PERK is triggered by overload of the ER; and PKR is
stimulated by dsRNAs. Perhaps the most important
eIF2𝛼 kinase implicated in host antiviral immune
defense is PKR, as it acts as a sensor for incom-
ing viral dsRNAs or viral replication intermediates.
GCN2 has also been identified as a regulator of the
antiviral response, as it is specifically activated upon
binding of two nonadjacent regions of the Sindbis
virus (SV) genomic RNA to the GCN2 histidyl-tRNA
synthetase-related domain.134 Strikingly, GCN2−/−

mouse embryonic fibroblasts were highly permissive
to SV (and to a lesser extent, VSV infection and Sem-
liki forest virus), suggesting the involvement of GCN2
in an innate antiviral response pathway.134 Similarly,
HIV-1 viral RNA activates GCN2 in vitro, although
GCN2 is targeted for cleavage by the HIV-1 protease
during infection.135 Conceivably, phosphorylation
of eIF2𝛼 and the subsequent depletion of the avail-
able ternary complex pool is beneficial for the host
cell, as incapacitating the translational machinery
can restrict viral spread. The identification of viral
products that counter the activation of PKR and/or
eIF2𝛼 phosphorylation to maintain viral translation
further points to the importance of eIF2𝛼 kinases in
the antiviral response (for extensive review of such
examples, see Ref 136). Alternately, viruses that utilize
eIF2-independent modes of translation may actively
induce eIF2𝛼 phosphorylation to ameliorate the host
antiviral response. IRESs such as the dicistrovirus IGR
IRES that can recruit the ribosome independently of
factors or initiator Met-tRNAi are translationally
stimulated under cellular stresses and virus infections
that induce eIF2𝛼 phosphorylation.56,137 However,
there are new data to suggest that viruses may utilize
other factors to recruit the Met-tRNAi. For example,
eIF5B and ligatin/eIF2D can deliver Met-tRNAi to
the 40S ribosome bound to some viral mRNAs such
as HCV IRES-like RNAs.138–141 Interestingly, HCV
IRES-mediated translation is stimulated upon eIF2𝛼
phosphorylation by PKR or under conditions that
decrease eIF2 activity.142,143 The fact that the eIF2
ternary complex is dispensable for HCV translation
presents an interesting conundrum, since ternary
complex-mediated positioning of the 40S at the initia-
tor codon is a prerequisite for HCV translation.67 The
significance of eIF2D during virus infection remains
to be determined. In addition to the role of eIF2D
on viral translation, recent studies have implicated
another Met-tRNAi-interacting protein, eIF2A, on
HCV IRES translation. In this study, eIF2A knock-
down and repletion studies demonstrate that eIF2A
is responsible for Met-tRNAi delivery during stress

conditions and is required for HCV proliferation.144

Upon infection, eIF2A is relocalized from the nucleus
(and partially the cytoplasm) to an exclusively cyto-
plasmic distribution, where recruitment to the viral
genome occurs by direct interaction with domain IIId
of the HCV IRES.144 Since phosphorylation of eIF2𝛼
occurs under HCV infection, it is speculated that
eIF2A-dependent translation may play a physiological
role during an authentic infection.144

The use of alternate initiation factors in viral
protein synthesis is not restricted to HCV. For the
alphavirus SV, translation of its capped, subgenomic
26S RNA can proceed in both an eIF2-dependent and
-independent manner. The specific mode of translation
is dependent on the context of the experimental assay:
transfection or overexpression of the 26S renders it
sensitive to eIF4G cleavage and eIF2𝛼 phosphoryla-
tion whereas 26S translation is refractory to the same
conditions within the context of a virally infected
cell.145,146 Resistance of 26S translation to eIF2𝛼
phosphorylation is conferred by a stable hairpin
structure located ∼25 nucleotides downstream of the
translation initiation site.140 Reconstitution experi-
ments using this hairpin structure demonstrated that
eIF2D, but not eIF5B, efficiently promoted translation
initiation on 26S RNA.140 Interestingly, in an indepen-
dent study, eIF2A was implicated in eIF2-independent
translation of 26S RNA.146 siRNA-mediated knock-
down of eIF2A results in a substantial decrease in the
synthesis of SV structural proteins in PKR+/+, but not
PKR0/0 cells.146 While these studies altogether provide
evidence that translation of 26S subgenomic RNA
during infection likely utilizes an alternate initiation
factor, the precise identity of this factor is still debat-
able. The ability of viruses like HCV and alphaviruses
to utilize alternate Met-tRNAi delivery factors rep-
resents novel strategies to evade host translational
shutoff and sustain viral translation regardless of the
functional status of eIF2. More interestingly, it poses
the possibility that a subset of cellular transcripts,
particularly those that encode for stress inducible
genes, may undergo the same initiation pathway and
be preferentially expressed when general translation is
compromised.

Increasing Viral Coding Capacity/Recoding
Mechanisms
Because viral genomes are extremely compact with a
limited sequence space, numerous strategies have
evolved to effectively increase the viral coding
capacity.1 Maximizing the genetic information in
a viral genome by encoding multiple, commonly
overlapping genes may be selectively advantageous
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in establishing a productive viral infection. While
the ribosome must maintain a constant translational
reading frame to faithfully decode the mRNA into a
functional polypeptide, an elongating ribosome may
be subjected to the effects of cis-acting RNA elements
that affect accuracy during decoding. A programmed

ribosomal frameshift (PRF) involves a displacement in
the translational reading frame of the elongating ribo-
some toward the 5′ end (−1 frameshift) or 3′ end (+1
frameshift) (Figure 6). The parameters constituting a
−1 PRF have been extensively defined in viral genomes
and involve a ‘slippery’ heptanucleotide RNA motif
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FIGURE 6 | Increasing coding capacity by programmed ribosomal frameshift elements and IRES-mediated translational reading frame selection.
The translation cycle involves the steps of initiation, characterized by the recruitment and positioning of the ribosome at the translational start site;
elongation, where amino acids are sequentially added to the growing polypeptide chain; and termination, where the nascent polypeptide is released
from the ribosome. Programmed ribosomal frameshifts (PRFs) act on an elongating ribosome whereas translational reading frame selection mediated
by the IGR IRES occurs at the level of initiation. (a) Three types of PRFs, including the −1, +1 and −2 PRFs, have been identified in various viral
genomes. In the −1 PRF, the frameshift site is comprised of a heptanucleotide sequence with the consensus X_XXY_YYZ (where X represents any
nucleotide, Y represents A or U, Z represents A, C, or U, and the underscores designate the codons in the 0 frame) and a downstream spacer
sequence. While the consensus for −1 PRFs is well characterized, the frameshift consensus in +1 PRF is more variable. −1 PRFs require a 3′

stimulatory element and +1 PRFs depend on cis-elements that facilitate the displacement of the ribosome into an alternate frame. The −2 PRF,
recently identified in the arterivirus porcine reproductive and respiratory syndrome virus, produces a transframe fusion (TF). The −2 PRF occurs at a
conserved G_GUU_UUU sequence and is stimulated by a conserved downstream CCCANCUCC motif located 11 nucleotides downstream. The
mechanism of this mode of frameshift has not been fully elucidated. (b) Israeli acute paralysis virus (IAPV) IGR IRES-mediated translation in the +1
reading frame occurs via a U:G wobble (highlighted in red) adjacent to the IRES translational start site. The first amino acid decoded in the +1 frame
is alanine. Mass spectrometry analysis has identified the presence of ORFx in virally infected honeybees, although its role in virus infection is currently
unknown. (Reprinted with permission from Ref 147. Copyright 2012 Elsevier Inc.)
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with the consensus X_XXY_YYZ and a downstream
stimulating element (usually a pseudoknot, and in
some cases, a stable hairpin) located six to eight
nucleotides from the 3′ boundary of the slippery
sequence (Figure 6(a)).148–151 A slippery sequence
alone is insufficient for frameshifting to occur152,153;
the additional stimulatory element is required to
induce sufficient pausing of the elongating ribosome
such that the interactions between the mRNA and the
A- and P-site tRNAs are disrupted to allow translo-
cation into an alternate frame.154 Because only the
wobble positions of the −1 frame codons are changed
relative to the reference frame, −1 decoding involves
re-pairing of the mRNA with near-cognate tRNAs. By
reconstituting an active −1 frameshifting event using
mammalian ribosomes and a variant of the coron-
avirus IBV frameshift signal, cryo-EM reconstructions
of the stalled complexes provided significant insight
into the conformational rearrangements and mechan-
ical tensions that occur during the decoding of a
ribosomal frameshift.155 Most notably, the stimula-
tory pseudoknot obstructs the entrance of the mRNA
channel and induces a ratchet-like rearrangement that
traps the eEF2 translocase in an orientation that pre-
cludes A-site tRNA binding.155 Additionally, the P-site
tRNA undergoes structural deformation that results
from a bending of the D-arm, suggesting that the dis-
tortable nature of the tRNA might be essential in the
frameshifting process.155 These cryo-EM structures
provide a mechanical explanation for frameshift-
ing, wherein the ribosome attempting to undergo
eEF2-catalyzed translocation is counteracted by the
blockage of the mRNA channel and occlusion of the
A site.155 This resistance distorts the P-site tRNA
and places sufficient strain on the anticodon–codon
interaction that causes their dissociation.155 Allevia-
tion of this strain likely promotes realignment of the
anticodon with the codon in the −1 direction and the
occurrence of a frameshifting event.155

Frameshift elements are essential in regulating
the translation of proteins during the viral life cycle. In
HIV-1 and other related retroviruses, the expression
of the viral proteins, including the RNA-dependent
DNA polymerase, is under the regulation of frameshift
signals.156–158 Classical translation of the viral mRNA
terminates at a stop codon to generate exclusively the
gag protein, which represents the precursor for the
viral structural proteins. Via a −1 PRF approximately
200 nucleotides upstream of the gag stop codon,
the gag-pol fusion is generated from which the viral
enzymes are derived (for review, see Ref 159). The
frequency of frameshift thus dictates the precise ratio
of the viral structural and nonstructural proteins,
which is crucial to the assembly of an infectious

virion. Deviation of this ratio results in a decrease in
viral yield.160 Though initially described in retroviral
genomes, PRFs have since been documented in many
other viruses and cellular genes and are more prevalent
than originally thought. While −1 PRF appears to
be the predominant type of frameshifting, examples
of +1 PRF are limited. Well characterized modes
of +1 PRF have been found in the yeast Ty1 and
Ty3 retrotransposons which, similar to −1 PRF, are
dependent on cis-acting elements161,162 (Figure 6(a)).

Bioinformatic algorithms have proven to be
extremely powerful in identifying frameshift ele-
ments, some of which act through nonconventional
mechanisms.163–167 For example, until recently,
the utilization of −2 PRF is poorly documented
in eukaryotes. Computational analysis of various
genotype isolates of porcine reproductive and res-
piratory syndrome virus (PRRSV), a member of the
Arteriviridae family, revealed a region of increased
conservation in the +1 reading frame encoding viral
nsp 2, designated as nsp2TF.166 Mass spectrometric
and biochemical analyses demonstrated definitively
that translation of nsp2TF occurs via a −2 PRF and
necessitates both a G GUU UUU motif at the shift
site and a downstream CCCANCUCC for efficient
ribosomal frameshifting (Figure 6(a)).166 Interest-
ingly, nsp2TF is partitioned to specific foci under
infection and is excluded from replication structures
where nsp2 resides.166 The observation that nsp2TF
frameshift mutants severely impair virus replication
further substantiates the physiological role of nsp2TF
during infection. While the precise role of nsp2TF is
currently unknown, the novel mode of frameshift-
ing adds to the complexity in discerning the coding
potential of a compact viral genome. It is also known
that sequences downstream of the −2 PRF signal
can also mediate a −1 PRF to generate the two viral
replicase precursor polyproteins.168,169 Thus, many
regulatory mechanisms must be in place to ensure
that appropriate partitioning of translating ribosomes
occurs to allow specific viral proteins to be expressed
at precise times during the viral life cycle.

A similar bioinformatics approach has been used
to identify enhanced coding potential via an over-
lapping gene in a subset of dicistroviruses infectious
to honeybees and fire ants.167,170 The alternate gene,
ORFx, is encoded in the +1 translational reading
frame within the 5′ proximal region of the cistron
encoding viral structural proteins.171 Its translation
does not occur through a conventional ribosomal
frameshift, but through a unique and novel mech-
anism mediated by the IGR IRES. While canoni-
cal frameshift elements act upon an elongating ribo-
some, the dicistrovirus IRES engages in an alternate
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reading frame during the initiation step. Translation
initiates by a noncanonical U:G basepair adjacent
to the tRNA-mimicry domain of the IRES, which,
through a mechanism that is still poorly understood,
causes decoding to be displaced in the +1 frame
(Figure 6(b)).171 Although the function of ORFx
in viral infection is still under investigation, mass
spectrometry has confirmed that it is expressed in
virus-infected bees.171 Additionally, the maintenance
of the ORFx sequence under selective pressure sug-
gests that there is a biological function during the viral
life cycle.

CONCLUSION

Viruses utilize various mechanisms to harness the host
translational machinery for viral propagation. While
these strategies are diverse and yield differing out-
comes on the translational status of the host, they pro-
vide unique means to outcompete cellular mRNAs in
support of the efficient and sometimes exclusive pro-
duction of viral proteins. Other mechanisms may func-
tion to increase the overall viral coding capacity, which
is advantageous in the context of compact genomes.
Although many noncanonical mechanisms have been

identified and characterized, recent advances in bioin-
formatic and biochemical approaches have driven the
discovery of novel viral translational strategies. For
example, technologies such as SILAC (stable isotope
labeling by amino acids in cell culture) in combina-
tion with Click chemistry have proven useful in the
identification and quantification of newly-synthesized
proteins.172,173 Ribosome profiling has also provided a
complementary approach in examining RNAs that are
translated. The subcodon resolution of this technique
has made it possible to obtain genome-wide insight
into processes intrinsic to translation, including read-
ing frame selection and initiation codon usage.174 In
fact, insights into ribosomal frameshift were gleaned
not only from bioinformatic approaches but also from
ribosomal profiling.175 These techniques have been
fundamental in expanding our understanding of the
translational responses that occur upon viral infection
and other cellular stresses, and will only increasingly
perpetuate the discovery of novel translational mech-
anisms. In light of our increasing understanding of
translational control mechanisms, new antiviral ther-
apeutics can also be developed through the discovery
of novel compounds that specifically target viral trans-
lational pathways176,177 or modulate viral frameshift
elements.178
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