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Abstract: A joint demosaicing and denoising task refers to the task of simultaneously reconstructing
and denoising a color image from a patterned image obtained by a monochrome image sensor with
a color filter array. Recently, inspired by the success of deep learning in many image processing
tasks, there has been research to apply convolutional neural networks (CNNs) to the task of joint
demosaicing and denoising. However, such CNNs need many training data to be trained, and work
well only for patterned images which have the same amount of noise they have been trained on.
In this paper, we propose a variational deep image prior network for joint demosaicing and denoising
which can be trained on a single patterned image and works for patterned images with different
levels of noise. We also propose a new RGB color filter array (CFA) which works better with
the proposed network than the conventional Bayer CFA. Mathematical justifications of why the
variational deep image prior network suits the task of joint demosaicing and denoising are also given,
and experimental results verify the performance of the proposed method.
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1. Introduction

Nowadays, many digital imaging systems use a single monochrome sensor with color filter
array (CFA) to capture a color image. Without color filters, the monochrome camera sensor would
give only brightness or luminance information and could not recover the colors of the light that fall
on each pixel. To obtain color information, every pixel is covered with a color filter that only lets
through a certain color of light: red, green or blue. These sampled red, green and blue channels are
then interpolated to fill in the missing information at the pixels for which certain colors could not be
sampled. This procedure is called the demosaicing procedure, for which many methods have been
proposed [1–9].

Current image sensors come in CCD (charge-coupled device) or CMOS (complementary
metal–oxide–semiconductor) types, which are both sensitive to thermal noise. Therefore, CFA pattern
images taken in low illumination suffer from noise of Poisson distribution. The noise in the CFA
pattern image has a large effect on the reconstruction of the color image, as the noise in the noisy pixels
spreads out to neighboring regions by the demosaicing process. The denoising is also a challenging
task since at least two-thirds of the data are missing. Complex aliasing problems can occur in the
demosaicing process if a poor denoising is applied beforehand. As most digital camera pipelines
are sequential, quite often the demosaicing and denoising are also performed in an independent
and sequential way. This leads to an irreversible error accumulation, since both the demosaicing
and the denoising are ill-posed problems and the error occurring in one of the procedures cannot
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be undone in the other procedure. It has been shown that simultaneous coping with the errors in
both the denoising and the demosaicing has advantages, and some joint demosaicing and denoising
methods based on optimization techniques have been developed [10–12]. Recently, inspired by the
success of the convolutional neural network (CNN) in many image processing tasks, methods which
use the CNN in joint demosaicing and denoising have been proposed [13–15]. The work of [13] is a
first attempt to apply a learning approach for demosaicing, and the work in [14] is a first attempt to use
a convolutional network for joint demosaicing and denoising, but works only on a single noise level.
The work in [15] exposes a runtime parameter and trains the network so that it adapts to a wider range
of noise levels, but still can only work with a relatively low level of noise. The work of [16] proposes
a residue learning neural network structure for the joint demosaicing and denoising problem based
on the analysis of the problem using sparsity models, and that of [17] presents a method to learn
demosaicing directly from mosaiced images without requiring ground truth RGB data, and showed
that a specific burst improves the fine-tuning of the network. Furthermore, the work in [18] proposes a
demosaicing network which can be described as an iterative process, and proposes a principled way
to design a denoising network architecture. Such CNN-based methods need a lot of data to be trained,
and normally, work poorly with varying noise.

In this paper, we propose a deep image prior based method which needs only the noisy image as
the training data for the demosaicing. The proposed method uses as the input a sum of a constant and
varying noise. We give mathematical justifications as to why the added varying input noise results in
the denoising of the demosaiced image. Furthermore, we propose a color filter array which suits the
proposed demosaicing method and show experimentally that the proposed method yields good joint
demosaicing and denoising results.

2. Related Works

The following works are related to the proposed method. The proposed method can be seen as a
variation of the following works fitted to the joint demosaicing and denoising problem.

2.1. Deep Image Prior

Recently, in [19], a deep image prior (DIP) has been proposed for image restoration. The DIP is a
type of convolutional neural network which resembles an auto encoder, but which is trained with a
single image x0; i.e., only with the image to be restored. The original DIP converts a 3D tensor z into a
restored image fθ(z), where fθ(·) denotes the deep image prior network with parameters θ. The tensor
z is filled with random noise from a uniform distribution. The DIP can be trained to inpaint an image
with a loss function as follows:

L = D (m� fθ(z), m� x0) , (1)

where m ∈ {0, 1}H×W is a binary mask with values of zero corresponding to the missing pixels to
be inpainted and values of one corresponding to the existing pixels which have to be kept, and � is
an element-wise multiplication operator. Here, D is a distance measure, which is normally set as the
square of the L2 difference operator; i.e., D(a, b) = ‖a− b‖2

2. The minimization of L in Equation (1)
with respect to the parameters θ of the DIP network has been shown to be capable of inpainting an
image; i.e., the minimization results in an inpainted image fθ(z). Inpainting and demosaicing are
similar in that they try to fill in missing pixels. The difference is that in inpainting the existing pixels
have full channel information, i.e., all R, G and B values are available, whereas in the demosaicing the
existing pixels have only one of the R, G and B values.

2.2. Variational Auto Encoder

The variational auto-encoder [20] is a stochastic spin of the auto-encoder which consists of an
encoder qθ(z | x) and a decoder pφ(x | z), where both the encoder and decoder are neural networks
with parameters θ and φ, respectively. Given an image x as the input, the encoder qθ(z | x) outputs
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parameters to a Gaussian probability distribution. After that, samples are drawn from this distribution
to get a noise input z to the decoder pφ(x | z). The space from which z is sampled is stochastic and
of lower dimension than the space of x. By sampling different samples each time, the variational
auto-encoder learns to generate different images. The proposed method also samples noise from a
Gaussian distribution, but, unlike the variational auto-encoder, the noise is constituted of constant
noise and varying noise and is an input into the network and not used as an intermediate input stage
to the decoder.

3. Variational Deep Image Prior for Joint Demosaicing and Denoising

In this section, we propose a variational deep image prior (DIP) for joint demosaicing and
denoising. We denote by fθ the DIP network, and use the same network structure as the DIP for
inpainting as defined in [19]; i.e., a U-Net type network which is downsampled five times and upsampled
five times. The loss function for the variational DIP differs from that of the original DIP as follows:

L =


‖mr � ( fθ(zc)− yk)‖2] for k < P

‖mr � ( fθ(zc + zv)− yk)‖2] for k ≥ P.
(2)

Here, zc and zv denote the constant noise and the varying noise, respectively, both derived from
a Gaussian distribution, and mr is the binary mask corresponding to the proposed random CFA;
i.e., it consists of three channels. Each channel constitutes of 33% of random pixels with the value one
and 66% of random pixels having the value zero. Unlike the inpainting problem, the positions of the
pixels having the value one are different for each channel. The input to fθ is a constant noise (zc) until
the (P− 1)-th training step. Then, after the (P− 1)-th training step, the input becomes the sum of a
constant noise (zc) and a varying noise (zv), where the noise zv is newly generated and differs for each
training step. The effect of adding this varying noise zv will be explained later. The target image yk

also differs for the different iteration steps:

yk =


x0 for k < P

argmin
y

[(1− α− β)‖mr � (y− yk−1)‖2 + α‖mr � (y− x0)‖2

+β‖mr � (y− fθ(zc))‖2] for k ≥ P

(3)

For the steps k < P, yk = x0, x0 is a three channel image, wherein each channel contains 33% of
either the R, G or B intensity values at the pixel positions where the R, G and B values are sensed by the
random CFA, respectively, and 66% of zero values at the remaining positions. Furthermore, we assume
that x0 contains noise. Therefore, if yk = x0 for all steps k, then the reconstructed image fθ will
converge to a noisy demosaiced image. To avoid this, after the step k = P, the target image yk becomes
a weighted average of the previous target image yk−1, the given noisy image x0 and fθ(zc). The weights
between these images are controlled by α and β. In the experiments, we let α = 0.003 and β = 0.007 for
all images. It should be noted that fθ(zc) differs from the current output fθ(zc + zv). The image fθ(zc)

is a denoised version of yk−1, and the adding of it denoises the target image yk. The adding of x0 has
the effect of adding back the noise, a trick which is widely used in denoising algorithms to restore the
fine details back to the target image. The adding of the previous target image yk−1 keeps the record of
the denoised target image. By using the improved target image yk, the network is not trained toward
the given noisy image x0 any longer, which results in a better denoised output image. Figure 1 shows
the working flow of the proposed method. Here, the orange bullets and the solid lines refer to the
neural network used in the computation with the specific parameters of θ0, θ1, θ2, ..., and the dashed
lines refer to the inputs to the network. Again, it can be observed that zc remains constant, while zvP ,
zvP+1 , ... are changing over the time.
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Figure 1. Diagram of the proposed method. The variational noise zvP , zvP+1 , ... is added after the
(P-1)-th iteration.

Next, we give mathematical justifications on the joint demosaicing and denoising property of
the variational DIP. First, the reason which explains why the DIP performs demosaicing can be found
in [21], where it is proven that an auto-encoder with an insufficient number of input channels performs
an approximation of the target signal under the Hankel structured low-rank constraint:

min f∈Rn ‖ f ∗ − f ‖2

subject to RANK(Hd|p( f )) ≤ r < pd
(4)

where Hd|p( f ) denotes the Hankel matrix of f with p input channels and a convolution filter of size d,
and f ∗ is the target signal. The above approximation can be easily extended to the two-dimensional
case. Thus, letting f = fθ(zc) and f ∗ = yk for the two-dimensional case, we see that we get a low
rank approximation of yk. It has been already shown in [22], that a low rank approximation can
perform a reconstruction of missing pixels. When applied to the CFA patterned image, this results
in a demosaicing. The Hankel structured low-rank approximation in Equation (4) performs a better
approximation than the method in [22], since in [22] the low rank approximation is with respect to the
Fourier basis, whereas in Equation (4) this is with respect to a learned basis which best reconstructs the
given image, and therefore, yields a better demosaicing result.

Now, to consider the effect of adding the varying noise zv to the constant noise zc, we consider
a multi-variable vector-valued function fθ(z) which can be expressed as a set of M multi-variable
scalar-valued function fθi (z):

fθ(z) =
[

fθ1(z), · · · , fθM (z)
]T .

The Taylor expansion of the i-th (i = 1, · · · , M) component is

fθi (z + δz) = fθi (z) + gTδz +
1
2

δzTHδz + ε(δz3) (5)
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where δz = [δz1, · · · , δzN ]
T is a vector. The gradient vector g and the Hessian matrix H are the first

and second order derivatives of the function fθi (z) defined as:

g = g fθi
(z) = ∇ fθi (z) =

d
dz

fθi (z) =


∂ fθi
∂z1
...

∂ fθi
∂zN



H = H fθi
(z) =

d
dz

g fθi
(z) =


∂2 fθi
∂2z1

· · · ∂2 fθi
∂z1∂zN

...
. . .

...
∂2 fθi

∂zN ∂z1
· · · ∂2 fθi

∂2zN

 .

We can extend Equation (5) to fθ(z) as a vector form. The first two terms can be written as

fθ(z + δz) ≈

 fθ1(z)
...

fθM (z)

+


∂ fθ1
∂z1

· · · ∂ fθ1
∂zN

...
. . .

...
∂ fθM
∂z1

· · · ∂ fθM
∂zN


 δz1

...
δzN

 = fθ(z) + J fθ
(z)δz

where J fθ
(z) is the Jacobian matrix defined over fθ(z). The second order term requires a tensor form

to be expressed which is difficult to write in vector form, and therefore, we replace the second order
term with the error term ε(‖zv‖2). Then, we can express fθ(zc + zv) by the Taylor expansion

fθ(zc + zv) = fθ(zc) + J fθ
(zc)zv + ε(‖zv‖2).

This results in

| fθ(zc + zv2)− fθ(zc + zv1)| = |J fθ
(zc)(zv2 − zv1) + ε(‖zv2‖2)− ε(‖zv1‖

2)|
= M‖zv2 − zv1‖2

(6)

where

M =

∣∣∣∣∣J fθ
(zc)

(zv2 − zv1)

‖zv2 − zv1‖2
+

ε(‖zv2‖2)

‖zv2 − zv1‖2
− ε(‖zv1‖2)

‖zv2 − zv1‖2

∣∣∣∣∣ (7)

and J fθ
(z) is the Jacobian matrix defined over the vector function fθ(z):

J fθ
(z) =

d
dz

fθ(z)

Equation (6) implies the fact that if M 6= 0 and zv2 6= zv1 , then fθ(zc + zv2) 6= fθ(zc + zv1);
i.e., the outputs fθ(zc + zv2) and fθ(zc + zv1) cannot be the same. This is contradictory to the loss
function in Equation (2), which minimization forces the outputs fθ(zc + zvk ) to converge to the same
image y0 for all different inputs zvk , k ≥ P. It should be noted that, with very high probability,
M 6= 0 and zv1 6= zv2 , since zv1 and zv2 are random noises. Therefore, the different inputs of zvk

act as regularizers which eliminate the components with small L2 norm energy from fθ(zc + zvk ).
As the components with small energy will be mostly the noise, this will result in a noise removal of
fθ(zc + zvk ).

Furthermore, if we take the expectation of the different outputs fθ(zc + zvk ) with respect to zvk ,
we get

Ezvk
{ fθ(zc + zvk )} ≈ Ezvk

{ fθ(zc)}+Ezvk
{J fθ

(zc)zvk}

= Ezvk
{ fθ(zc)}+ J fθ

(zc)Ezvk
{zvk} = Ezvk

{ fθ(zc)} = fθ(zc),
(8)
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which shows the fact that if we put zc as the input after the DIP has been trained, the output fθ(zc)

will be approximately the average of the outputs fθ(zc + zvk ) for different zvk . This averaging has a
further denoising effect which will remove the remaining noise.

The fact that different inputs of zvk result in different outputs can also be shown by the mean
value theorem. According to the mean value theorem, there always exists a point z̃ between zv1 and
zv2 such that the following equality holds:

fθ(zc + zv1)− fθ(zc + zv2) = ∇z fθ(z̃) · (zv1 − zv2). (9)

When zv1 6= zv2 , then the right-hand side of Equation (9) is, with very high probability, non-zero,
since it is almost unlikely that ∇z fθ(z̃) and (zv1 − zv2) are orthogonal to each other. Therefore,
with very high probability,

| fθ(zc + zv1)− fθ(zc + zv2)| = |∇z fθ(z̃)||zv1 − zv2 |cosine(γ) 6= 0, (10)

where γ is the angle between∇z fθ(z̃) and zv1 − zv2 . This means that if there is a difference between the
inputs, then the outputs of the DIP cannot be the same, so there will be an averaging which removes
the noise.

Next, we propose a CFA pattern, which we think works well with the proposed demosaicing
method. The proposed CFA consists of randomly distributed pixels, where the pixels corresponding to
the R, G and B channels take up 33% of the whole CFA pattern each. The design of the proposed CFA
is not based on a rigorous analysis, as done in classical CFA designs [23–25], but on simple reasoning
and experimental results. We reason that if the filters are to learn to generate the R, G and B pixels
without any bias for a specific color or a specific position, the best training method would be to train
the filters to generate any random color at any random position. For example, if the CFA pattern has,
for example, 50% green pixels, as in the Bayer format, the convolutional filters will be trained mainly
how to generate the green pixels from the noise. When trained like this, the same convolutional
filters may be less effective in generating the R or B pixels. Therefore, we reason that the amount of
information should be the same for all three channels; i.e., the CFA should consist of 33% of R, G and B
pixels each. In the same manner, we reason that if the filters are to learn to generate the R, G and B
pixels without any bias for a specific position, it would be good to train the filters to generate any
random color at any random position, which is why we propose a pattern with randomly distributed
color pixels. Experimental results show that the randomly patterned CFA works better with the
proposed demosaicing method than the Bayer pattern or the Fuji X-Trans pattern. Figure 2 shows the
different color filter arrays (CFAs) which are used in the experiments including the proposed CFA.

Figure 2. Different color filter arrays (CFAs): (a) Bayer CFA [26]; (b) Fuji X-Trans CFA [27];
(c) Lukac [23]; (d) Hirakawa Pattern-A [25]; (e) Hirakawa Pattern-B [25]; (f) proposed CFA (1:1:1);
(g) proposed CFA (1:2:1).

4. Experimental Results

We compared the proposed method with other deep-learning-based demosaicing methods on
three different datasets. We added different noises generated from Gaussian distributions with
different standard deviations of σR, σG and σB, for the R, G and B channels, respectively. This is
due to the fact that the R, G and B filters absorb different light energy. We compared the proposed
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method with the method in [28] as a representative of the non-deep learning demosaicing method;
the sequential energy minimization (SEM) method [14]; the DemosaicNet [15] with two different
CFAs, i.e., the DemosaicNet with Bayer CFA(DNetB) and the DemosaicNet with the Fuji X-Trans
CFA(DNetX); and the plain DIP [19]. We made quantitative comparisons with the PSNR (peak
signal-to-noise ratio), the CPSNR (color peak signal-to-noise ratio), the SSIM (structural similarity
index), the FSIM (feature similarity index) and the FSIMc (feature similarity index chrominance)
measures and summarized the results in tables 2–4. The values in the tables are the average values for
the Kodak images and the McMaster (also known as the IMAX) images, respectively. Furthermore,
the values corresponding to the red, green and blue channels are the average values for those particular
channels, respectively. The parameters for α and β in Equation (3) were set to 0.003 and 0.007,
respectively, throughout all the experiments.

Table 1 shows the results of performance comparison when the proposed method was applied for
the different CFA patterns; i.e, the Bayer [26], the Fuji X-Trans [27], the Lucak [23], the Hirakawa [25]
and the proposed CFA patterns with different noise levels. For the Hirakawa CFA we used the
pattern-A and pattern-B patterns which have RGB ratios of 1:1:1 and 1:2:1, respectively. Likewise,
for the proposed random patterned CFA, we used the Random1 pattern (RGB ratio of 1:1:1) and the
Random2 pattern (RGB ratio of 1:2:1). The CPSNR, SSIM and FSIMc values are the average values of
the images in the Kodak image dataset. When the noise is low, the Hirakawa pattern-A CFA shows the
largest CPSNR and SSIM values. However, when the noise increases, the proposed random pattern
shows larger PSNR, SSIM and FSIM values. This is maybe due to the fact that when the noise increases,
the tasks of demosaicing and denoising become similar—i.e., the task of removing the random noise
and the task of filling in random colors become similar—so the finding of the parameters which do the
demosaicing and denoising tasks simultaneously becomes an easier task with the proposed random
CFA than with other CFAs. It can be seen that the proposed CFA pattern mostly shows the largest
value, especially when the noise is large.

Table 1. Comparison of the CPSNR, SSIM and FSIMc values for the different CFA patterns used with
the proposed method on the Kodak image dataset.

Noise Level Measure Bayer Xtrans Lukac HirakawaA HirakawaB Random1 Random2

CPSNR 31.4386 32.1435 31.8650 32.5018 32.0552 32.1918 32.1410
σR = 9.83 SSIM-R 0.8543 0.8719 0.8596 0.8827 0.8750 0.8718 0.8709
σG = 6.24 SSIM-G 0.8870 0.8769 0.8839 0.8972 0.8823 0.8861 0.8863
σB = 6.84 SSIM-B 0.8530 0.8744 0.8590 0.8854 0.8863 0.8719 0.8749

FSIMc 0.9771 0.9789 0.9759 0.9368 0.9740 0.9775 0.9775

CPSNR 29.2582 29.3572 29.4057 29.7132 29.5584 29.3914 29.3710
σR = 19.67 SSIM-R 0.7724 0.7719 0.7745 0.8257 0.8275 0.7750 0.7927
σG = 12.48 SSIM-G 0.8217 0.8207 0.8244 0.8452 0.8402 0.8230 0.8206
σB = 13.67 SSIM-B 0.7948 0.7992 0.7992 0.8328 0.8239 0.8028 0.8084

FSIMc 0.9537 0.9541 0.9548 0.9532 0.9516 0.9548 0.9548

CPSNR 28.0037 28.0340 28.0733 27.9030 27.5895 27.9799 28.2210
σR = 26.22 SSIM-R 0.7184 0.7126 0.7180 0.7682 0.7631 0.7127 0.7013
σG = 16.64 SSIM-G 0.7801 0.7743 0.7782 0.7682 0.7785 0.7751 0.7809
σB = 18.23 SSIM-B 0.7556 0.7517 0.7543 0.7645 0.7596 0.7542 0.7670

FSIMc 0.9364 0.9354 0.9358 0.9415 0.9616 0.9354 0.9372

Figure 3 shows the results of the different demosaicing methods on the first dataset with color
noise of standard deviations σR = 9.83, σG = 6.24 and σB = 6.84 for the R, G and B channels,
respectively. The parameter P in Equation (3) is set to 1200 for the experiments with this color noise,
and to 500 for all the other experiments. When the noise is light, the SEM, the DNetB and the DNetX
also produce good joint demosaicing and denoising results. The SEM shows the best quantitative
results in the PSNR values for the Kodak dataset, as can be seen in Table 2. However, the proposed
method achieves the best results in the SSIM and the FSIM measures for all datasets, and the best
PSNR values for the McMaster dataset. Figures 4 and 5 and Tables 2–4 show the results on the dataset
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with color noise of standard deviations σR = 19.67, σG = 12.48 and σB = 13.67. The ADMM method
got the highest value of cPSNR for the McMaster dataset; that was due to the fact that the ADMM
method incorporates the powerful BM3D denoising [29] and the total variation minimization into a
single framework, which results in a large denoising power. Therefore, we experimented also on a
combination of the proposed method and the BM3D. In this case, the proposed training method can
focus more on finding the parameters for the demosaicing task, leaving a large part of denoising to the
BM3D, which results in finding effective parameters for demosaicing. The results of the SEM, DNetB
and DNetX are those without using the external BM3D denoising method. The proposed + BM3D
outperforms the other methods on the Kodak dataset with respect to the PSNR and SSIM measures.
As the noise increases, the ADMM, SEM, DNetB and DNetX result in severe color artifacts, as can
be observed from the fence regions in the enlarged images in Figure 5b–e. However, the DIP and
the proposed method overcome such color artifacts due to the inherent rank minimization property.
The figures are selected according to the best PSNR values, which is why the figures for the DIP are
a little more blurry than the figures for the proposed method. The DIP reconstructs the noise when
reconstructing the high frequency components while the proposed method does not. Finally, Figures 6
and 7 and Tables 2–4 show the results on the dataset with color noise of standard deviations σR = 26.22,
σG = 16.64 and σB = 18.23. For this dataset, the non-deep-learning ADMM method outperforms
all the deep-learning-based methods, including the proposed method, in the quantitative measures.
However, the proposed method outperforms all other deep-learning-based methods. Furthermore,
while the ADMM shows large aliasing artifacts, as can be seen in Figure 8b, the proposed method is
free from such artifacts. Again, it should be taken into account that this is the result of training with
the noisy pattern CFA image only. Furthermore, we fixed all the hyper-parameters of the network for
all the different noise levels, which means that the proposed method is not sensitive to the noise levels.

Figure 3. Reconstruction results for the Kodak number 19 image with noise levels σR = 9.83, σG = 6.24
and σB = 6.84. (a) Original, (b) ADMM, [28] (c) SEM, [14] (d) DNetB, [15] (e) DNetX, [15] (f) DIP, [19]
(g) proposed and (h) proposed + BM3D.
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Figure 4. Reconstruction results for the Kodak number 19 image with noise levels σR = 19.67,
σG = 12.48 and σB = 13.67. (a) Original, (b) ADMM, [28] (c) SEM, [14] (d) DNetB, [15] (e) DNetX, [15]
(f) DIP, [19] (g) proposed and (h) proposed + BM3D.

Figure 5. Enlarged regions of Figure 4. (a) Original, (b) ADMM, [28] (c) SEM, [14] (d) DNetB, [15]
(e) DNetX, [15] (f) DIP, [19] (g) proposed and (h) proposed + BM3D.
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Figure 6. Reconstruction results for the Kodak number 5 image with noise levels σR = 26.22, σG = 16.64
and σB = 18.23. (a) Original, (b) ADMM, [28] (c) SEM, [14] (d) DNetB, [15] (e) DNetX, [15] (f) DIP, [19]
(g) proposed and (h) proposed + BM3D.

Figure 7. Enlarged regions of Figure 6. (a) Original, (b) ADMM, [28] (c) SEM, [14] (d) DNetB, [15]
(e) DNetX, [15] (f) DIP, [19] (g) proposed and (h) proposed + BM3D.

Figure 8. Enlarged regions of the denoising results on the Kodak number 19 image with noise levels
σR = 26.22, σG = 16.64 and σB = 18.23. (a) Original, (b) ADMM, [28] (c) SEM, [14] (d) DNetB, [15]
(e) DNetX, [15] (f) DIP, [19] (g) proposed and (h) proposed + BM3D.
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Table 2. Comparison of the PSNR values among the various demosaicing methods on the Kodak and
the McMaster image datasets.

Noise Level Dataset Measure ADMM SEM DNetB DNetX DIP Proposed Proposed +BM3D

Kodak cPSNR 31.3370 32.5468 31.4053 31.3766 30.4512 32.1410 32.6103
PSNR-R 30.9196 31.6351 30.3037 30.4766 29.5487 31.5406 32.2743

σR = 9.83 PSNR-G 31.9553 33.2664 32.1838 32.0917 31.1663 32.5779 32.8726
σG = 6.24 PSNR-B 31.2722 32.9731 32.0131 31.7628 30.9852 32.4079 32.7272

σB = 6.84 McMaster cPSNR 32.1258 30.7908 31.1171 31.0155 29.6490 32.6603 33.0659
PSNR-R 31.8458 29.7472 29.9868 29.9864 28.7221 32.2605 32.9728
PSNR-G 33.2163 32.1750 32.2558 32.1366 30.1651 33.1813 33.4180
PSNR-B 31.6661 30.9114 31.5195 31.2861 30.4179 32.8239 33.0647

Kodak cPSNR 30.1883 26.1682 25.9266 25.8636 27.2001 29.3710 30.2026
PSNR-R 29.5430 25.1485 24.5928 24.9497 26.1787 28.7261 29.6902

σR = 19.67 PSNR-G 30.7728 26.4776 26.6385 26.2463 27.8791 29.9587 30.4681
σG = 12.48 PSNR-B 30.3904 27.1772 26.9603 26.5889 27.9003 29.9483 30.5204

σB = 13.67 McMaster cPSNR 30.5794 25.7280 26.1234 26.0321 26.7356 29.7984 30.4533
PSNR-R 29.9344 24.4154 24.6482 24.8721 25.5419 28.9401 29.9461
PSNR-G 31.5879 26.5727 27.0705 26.6617 27.3464 30.4840 30.9327
PSNR-B 30.5402 26.6814 27.2079 26.9079 27.8159 30.3375 30.7383

Kodak cPSNR 29.3247 23.2843 23.4976 23.4724 25.6570 28.2210 29.0672
PSNR-R 28.5560 22.3131 22.0491 22.5529 24.7341 27.3588 28.4363

σR = 26.22 PSNR-G 29.9424 23.5352 24.2448 23.7847 26.1365 28.7616 29.3628
σG = 16.64 PSNR-B 29.6403 24.3010 24.6938 24.2836 26.2839 28.8031 29.5067

σB = 18.23 McMaster cPSNR 29.5312 23.2554 23.8799 23.7807 25.4785 28.2050 29.0961
PSNR-R 28.6716 21.8944 22.2896 22.6013 24.2930 27.1305 28.4053
PSNR-G 30.5938 23.9948 24.8180 24.2958 26.0823 29.0621 29.6725
PSNR-B 29.6901 24.3931 25.1801 24.8034 26.5224 28.9340 29.4845

Table 3. Comparison of the SSIM values among the various demosaicing methods on the Kodak and
the McMaster image datasets.

Noise Level Dataset Measure ADMM SEM DNetB DNetX DIP Proposed Proposed +BM3D

Kodak SSIM-R 0.8613 0.8581 0.7774 0.7834 0.7977 0.8709 0.8871
σR = 9.83 SSIM-G 0.8840 0.8785 0.8267 0.8154 0.8625 0.8863 0.8891
σG = 6.24 SSIM-B 0.8524 0.8802 0.8288 0.8209 0.8469 0.8749 0.8794

σB = 6.84 McMaster SSIM-R 0.8846 0.8016 0.7612 0.7662 0.8017 0.8805 0.8993
SSIM-G 0.9132 0.8577 0.8222 0.8134 0.8657 0.9013 0.9074
SSIM-B 0.8624 0.8192 0.8068 0.8000 0.8407 0.8758 0.8822

Kodak SSIM-R 0.8253 0.5630 0.5372 0.5405 0.6490 0.7927 0.8300
σR = 19.67 SSIM-G 0.8535 0.6007 0.6087 0.5762 0.7501 0.8206 0.8372
σG = 12.48 SSIM-B 0.8264 0.6256 0.6218 0.5931 0.7320 0.8084 0.8270

σB = 13.67 McMaster SSIM-R 0.8416 0.5258 0.5320 0.5385 0.6529 0.8104 0.8378
SSIM-G 0.8817 0.6083 0.6185 0.5919 0.7725 0.8467 0.8588
SSIM-B 0.8288 0.5941 0.6209 0.6007 0.7485 0.8241 0.8221

Kodak SSIM-R 0.7972 0.4296 0.4240 0.4319 0.5881 0.7013 0.7948
σR = 26.22 SSIM-G 0.8315 0.4642 0.4972 0.4657 0.6875 0.7809 0.8074
σG = 16.64 SSIM-B 0.8058 0.4858 0.5093 0.4819 0.6706 0.7670 0.7978

σB = 18.23 McMaster SSIM-R 0.8091 0.4066 0.4289 0.4364 0.5915 0.7463 0.7961
SSIM-G 0.8579 0.4828 0.5173 0.4864 0.7156 0.8116 0.8265
SSIM-B 0.8031 0.4672 0.5213 0.4962 0.6863 0.7839 0.7873

Figure 9 compares the convergence of the PSNR values according to the training iterations of the
plain DIP and the proposed variational DIP, respectively. As can be seen, the plain DIP converges to a
lower PSNR value as the training step iterates, which is due to the fact that the noise in the target image
is reconstructed. In comparison, with the proposed variational DIP, the noise is not reconstructed,
due to the reasons explained in the previous section. Therefore, the final output image converges to a
joint demosaiced and denoised image, which results in a convergence to a higher PSNR value.

Table 5 shows the computational time costs of the different methods. All the methods have been
run on a PC with an Intel Core i9-9900K Processor, NVIDIA GeForce RTX 2080 Ti and 32 GB RAM.
The proposed method is the slowest of all the methods, which is due to the fact that the proposed
method uses a training step for each incoming CFA image. The computational time can be reduced
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if the proposed method is combined with the meta learning approach. One of the possible methods
would be to initialize the neural network with good initial parameters obtained by some pre-training
with many images. This should be one of the major topics of further studies.

Table 4. Comparison of the FSIM values among the various demosaicing methods on the Kodak and
the McMaster image datasets.

Noise Level Dataset Measure ADMM SEM DNetB DNetX DIP Proposed Proposed +BM3D

Kodak FSIMc 0.9722 0.9792 0.9743 0.9730 0.9666 0.9775 0.9764
FSIM-R 0.9580 0.9635 0.9469 0.9471 0.9469 0.9665 0.9705

σR = 9.83 FSIM-G 0.9729 0.9794 0.9738 0.9734 0.9639 0.9736 0.9737
σG = 6.24 FSIM-B 0.9574 0.9728 0.9650 0.9607 0.9606 0.9704 0.9708

σB = 6.84 McMaster FSIMc 0.9807 0.9788 0.9756 0.9746 0.9708 0.9824 0.9824
FSIM-R 0.9650 0.9565 0.9478 0.9481 0.9540 0.9716 0.9756
FSIM-G 0.9802 0.9773 0.9743 0.9743 0.9667 0.9779 0.9784
FSIM-B 0.9629 0.9600 0.9613 0.9587 0.9638 0.9749 0.9754

Kodak FSIMc 0.9598 0.9232 0.9225 0.9175 0.9276 0.9548 0.9562
FSIM-R 0.9399 0.8936 0.8654 0.8738 0.8978 0.9548 0.9463

σR = 19.67 FSIM-G 0.9603 0.9266 0.9217 0.9210 0.9270 0.9514 0.9540
σG = 12.48 FSIM-B 0.9471 0.9259 0.9068 0.9014 0.9245 0.9490 0.9520

σB = 13.67 McMaster FSIMc 0.9695 0.9290 0.9304 0.9268 0.9378 0.9625 0.9656
FSIM-R 0.9462 0.8911 0.8749 0.8803 0.9086 0.9467 0.9525
FSIM-G 0.9683 0.9315 0.9277 0.9284 0.9345 0.9582 0.9618
FSIM-B 0.9509 0.9197 0.9085 0.9056 0.9320 0.9554 0.9591

Kodak FSIMc 0.9502 0.8811 0.8835 0.8776 0.9007 0.9372 0.9433
FSIM-R 0.9255 0.8479 0.8148 0.8272 0.8687 0.9042 0.9305

σR = 26.22 FSIM-G 0.9508 0.8868 0.8848 0.8832 0.8981 0.9352 0.9417
σG = 16.64 FSIM-B 0.9383 0.8876 0.8676 0.8607 0.8969 0.9329 0.9406

σB = 18.23 McMaster FSIMc 0.9601 0.8919 0.8971 0.8929 0.9164 0.9470 0.9530
FSIM-R 0.9309 0.8462 0.8291 0.8379 0.8855 0.9258 0.9351
FSIM-G 0.9588 0.8982 0.8946 0.8964 0.9132 0.9437 0.9500
FSIM-B 0.9402 0.8869 0.8727 0.8700 0.9092 0.9403 0.9473

Figure 9. Comparison of the convergence between the DIP and the proposed variational DIP.

Table 5. Showing the computational time costs of the different joint demosaicing and denoising methods.

Method ADMM SEM DNetB DNetX DIP Proposed

Time Cost 567 s 465 s 8 s 8 s 525 s 647 s

Software Tool MATLAB Python Python Python Pytorch Pytorch
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5. Conclusions

In this paper, we proposed a variational deep image prior for the joint demosaicing and denoising
of the proposed random color filter array. We mathematically explained why the variational model
results in a demosaicing and denoising result, and experimentally verified the performance of the
proposed method. The experimental results showed that the proposed method is superior to other
deep-learning-based methods, including the deep image prior network. How to apply the proposed
method on the demosaicing of color filter arrays including channels other than the three primary color
channels could be the topic of further studies.
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4. Alleysson, D.; Süsstrunk, S.; Hérault, J. Linear demosaicing inspired by the human visual system. IEEE Trans.
Image Process. 2005, 14, 439–449. [PubMed]

5. Gunturk, B.K.; Glotzbach, J.; Altunbasak, Y.; Schafer, R.W.; Mersereau, R.M. Demosaicking: Color filter array
interpolation. IEEE Signal Process. Mag. 2005, 22, 44–54. [CrossRef]

6. Kimmel, R. Demosaicing: Image reconstruction from color ccd samples. IEEE Trans. Image Process.
1999, 8, 1221–1228. [CrossRef] [PubMed]

7. Pei, S.-C.; Tam, I.-K. Effective color interpolation in ccd color filter arrays using signal correlation. IEEE Trans.
Circuits Syst. Video Technol. 2003, 13, 503–513.

8. Menon, D.; Calvagno, G. Color image demosaicking: An overview. Signal Process Image 2011, 26, 518–533.
[CrossRef]

9. Dubois, E. Frequency-domain methods for demosaicking of bayer-sampled color images. IEEE Signal
Process. Lett. 2005, 12, 847–850. [CrossRef]

10. Hirakawa, K.; Parks, T.W. Joint demosaicing and denoising. IEEE Trans. Image Process. 2006, 15, 2146–2157.
[CrossRef] [PubMed]

11. Jeon, G.; Dubois, E. Demosaicking of noisy bayer sampled color images with least-squares luma-chroma
demultiplexing and noise level estimation. IEEE Trans. Image Process. 2013, 22, 146–156. [CrossRef] [PubMed]

12. Buades, A.; Duran, J. CFA Video Denoising and Demosaicking Chain via Spatio-Temporal Patch-Based
Filtering. IEEE Trans. Circuits Syst. Video Technol. 2019. [CrossRef]

13. Khashabi, D.; Nowozin, S.; Jancsary, J.; Fitzgibbon, A.W. Joint demosaicing and denoising via learned
nonparametric random fields. IEEE Trans. Image Process. 2014, 23, 4968–4981. [CrossRef] [PubMed]

14. Klatzer, T.; Hammernik, K.; Knobelreiter, P.; Pock, T. Learning joint demosaicing and denoising based on
sequential energy minimization. In Proceedings of the 2016 IEEE International Conference on Computational
Photography (ICCP), Evanston, IL, USA, 13–15 May 2016; pp. 1–11.

15. Gharbi, M.; Chaurasia, G.; Paris, S.; Durand, F. Deep Joint Demosaicking and Denoising. ACM Trans. Graph.
(TOG) 2016, 35, 1–12. [CrossRef]

http://dx.doi.org/10.1109/TIP.2012.2210726
http://www.ncbi.nlm.nih.gov/pubmed/22868571
http://dx.doi.org/10.1109/TIP.2016.2518082
http://www.ncbi.nlm.nih.gov/pubmed/26780794
http://dx.doi.org/10.1109/TIP.2002.801121
http://www.ncbi.nlm.nih.gov/pubmed/18249722
http://www.ncbi.nlm.nih.gov/pubmed/15825479
http://dx.doi.org/10.1109/MSP.2005.1407714
http://dx.doi.org/10.1109/83.784434
http://www.ncbi.nlm.nih.gov/pubmed/18267539
http://dx.doi.org/10.1016/j.image.2011.04.003
http://dx.doi.org/10.1109/LSP.2005.859503
http://dx.doi.org/10.1109/TIP.2006.875241
http://www.ncbi.nlm.nih.gov/pubmed/16900672
http://dx.doi.org/10.1109/TIP.2012.2214041
http://www.ncbi.nlm.nih.gov/pubmed/22910110
http://dx.doi.org/10.1109/TCSVT.2019.2956691
http://dx.doi.org/10.1109/TIP.2014.2359774
http://www.ncbi.nlm.nih.gov/pubmed/25265607
http://dx.doi.org/10.1145/2980179.2982399


Sensors 2020, 20, 2970 14 of 14

16. Huang, T.; Wu, F.; Dong, W.; Guangming, S.; Li, X. Lightweight Deep Residue Learning for Joint Color Image
Demosaicking and Denoising. In Proceedings of the 2018 International Conference on Pattern Recognition
(ICPR), Beijing, China, 20–24 August 2018; pp. 127–132.

17. Ehret, T.; Davy, A.; Arias, P.; Facciolo, G. Joint Demosaicking and Denoising by Fine-Tuning of Bursts of Raw
Images. In Proceedings of the 2019 International Conference on Computer Vision, Seoul, Korea, 27 October–2
November 2019; pp. 8868–8877.

18. Kokkinos, F.; Lefkimmiatis, S. Iterative Joint Image Demosaicking and Denoising Using a Residual Denoising
Network. IEEE Trans. Image Process. 2019, 28, 4177–4188. [CrossRef] [PubMed]

19. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep Image Prior. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 9446–9454.

20. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. In Proceedings of the 2nd International
Conference on Learning Representations(ICLR 2014), Banff, AB, Canada, 14–16 April 2014.

21. Ye, J.C.; Han, Y.S. Deep Convolutional Framelets: A General Deep Learning for Inverse Problems. SIAM J.
Imaging Sci. 2017, 11, 991–1048. [CrossRef]

22. Zhou, J.; Kwan, C.; Ayhan, B. A High Performance Missing Pixel Reconstruction Algorithm for Hyperspectral
Images. In Proceedings of the 2nd International Conference on Applied and Theoretical Information Systems,
Taipei, Taiwan, 10–12 February 2012; pp. 1–10.

23. Lukac, R.; Konstantinos, N.P. Color Filter Arrays: Design and Performance Analysis. IEEE Trans.
Consum. Electron. 2005, 51, 1260–1267. [CrossRef]

24. Vaughn, I.J; Alenin, A.S.; Tyo, J.S. Focal plane filter array engineering I: Rectangular lattices. Opt. Express
2017, 25, 11954–11968. [CrossRef] [PubMed]

25. Hirakawa, K.; Wolfe, P.J. Spatio-Spectral Color Filter Array Design for Optimal Image Recovery. IEEE Trans.
Image Process. 2008, 17, 1876–1890. [CrossRef] [PubMed]

26. Bayer, B. Color Imaging Array. U.S. Patent 3,971,065, 20 July 1976.
27. Fujifilm X-Pro1. Available online: http://www.fujifilmusa.com/products/digital_cameras/x/fujifilm_x_

pro1/features (accessed on 23 May 2020).
28. Tan, H.; Zeng, X.; Lai, S.; Liu, Y.; Zhang, M. Joint demosaicing and denoising of noisy bayer images with

ADMM. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP 2017), Beijing,
China, 17–20 September 2017; pp. 2951–2955.

29. Kostadin, D.; Alessandro, F.; Vladimir, K.; Karen, E. Image denoising by sparse 3D transform-domain
collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2019.2905991
http://www.ncbi.nlm.nih.gov/pubmed/30892208
http://dx.doi.org/10.1137/17M1141771
http://dx.doi.org/10.1109/TCE.2005.1561853
http://dx.doi.org/10.1364/OE.25.011954
http://www.ncbi.nlm.nih.gov/pubmed/28788751
http://dx.doi.org/10.1109/TIP.2008.2002164
http://www.ncbi.nlm.nih.gov/pubmed/18784035
http://www.fujifilmusa.com/products/digital_cameras/x/fujifilm_x_pro1/features
http://www.fujifilmusa.com/products/digital_cameras/x/fujifilm_x_pro1/features
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Deep Image Prior
	Variational Auto Encoder

	Variational Deep Image Prior for Joint Demosaicing and Denoising
	Experimental Results
	Conclusions
	References

