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Scaling of species distribution 
explains the vast potential marine 
prokaryote diversity
Victor M. Eguíluz 1,2*, Guillem Salazar3, Juan Fernández-Gracia2, John K. Pearman1, 
Josep M. Gasol4, Silvia G. Acinas4, Shinichi Sunagawa 3, Xabier Irigoien5,6 & Carlos M. Duarte1

Global ocean expeditions have provided minimum estimates of ocean’s prokaryote diversity, supported 
by apparent asymptotes in the number of prokaryotes with sampling effort, of about 40,000 species, 
representing <1% of the species cataloged in the Earth Microbiome Project, despite being the largest 
habitat in the biosphere. Here we demonstrate that the abundance of prokaryote OTUs follows a 
scaling that can be represented by a power-law distribution, and as a consequence, we demonstrate, 
mathematically and through simulations, that the asymptote of rarefaction curves is an apparent one, 
which is only reached with sample sizes approaching the entire ecosystem. We experimentally confirm 
these findings using exhaustive repeated sampling of a prokaryote community in the Red Sea and the 
exploration of global assessments of prokaryote diversity in the ocean. Our findings indicate that, 
far from having achieved a thorough sampling of prokaryote species abundance in the ocean, global 
expeditions provide just a start for this quest as the richness in the global ocean is much larger than 
estimated.

The ocean, the largest habitat in the biosphere, is a microbial-dominated ecosystem holding an estimated 1029 
prokaryote cells1. Exploration of the ocean biodiversity associated with the huge prokaryote pool was prevented 
due to the limitations in the cultivation of marine prokaryotes2. This barrier was partially overcome by efficient 
sequencing approaches, typically targeting the genes that code for the 16S region of rDNA, which allows the 
definition and enumeration of the operational taxonomic units (OTUs) present in a sample, thereby providing 
a culture-free basis to assess biodiversity somewhat equivalent to that of species numbers3. In the past decade, 
global ocean expeditions and research based on them have utilized these technological developments in order 
to attempt to estimate the total number of prokaryote OTUs in the ocean4–8. For instance, the TARA Oceans 
Expedition explored prokaryote biodiversity in the upper ocean and described the detection of 35,650 prokaryote 
OTUs5 in a set of globally distributed samples, with the exception of the Arctic, while the Malaspina Expedition 
gave a minimum estimate of the number of prokaryote OTUs in the deep ocean which is an order of magnitude 
lower, at around 3,7004. The TARA Expedition estimated the total richness to be 37,470 OTUs based on the Chao 
estimator, which defines a lower bound on species richness. This result should be interpreted to be at least 37.470 
OTUs in the upper ocean.

The fraction of the total volume of the ocean sampled by any study is minimal and thus requires extreme 
extrapolation (over 20 orders of magnitude) from the number of species found in the samples to an estimate 
for the global ocean. The approach used is that of rarefaction curves, a development first introduced in 1943 by 
Fisher et al. to provide a basis to estimate the species richness of Malaysian butterflies9, subsequently popularized 
by Sanders (1968)10 to compare benthic invertebrate species richness from marine surveys with different sample 
sizes. Rarefaction curves use resampling techniques to develop a curve of the number of species against the num-
ber of samples collected11. Initially introduced to evaluate how comprehensive the assessment of species num-
bers was based on a sampling set, it was subsequently used to infer the total number of species in the ecosystem 
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investigated as that corresponding to the asymptote of the curve12. This approach was adopted to deliver estimates 
of the prokaryote species richness in the global ocean4,5. These estimates correspond mathematically to mini-
mum estimates (e.g., Chao estimator)13, yet their precision has not been assessed. Indeed, beyond the apparent 
asymptote in rarefaction curves, other estimators have been proposed to estimate species richness13–16. Marine 
prokaryote communities are characterized by the presence of a few abundant OTUs and a large number of rare 
OTUs2, suggesting a much broader distribution of OTU abundance than that required to reliably apply rarefac-
tion curves to estimate the global biodiversity of prokaryotes. Here we examine the scaling of prokaryote diversity 
in the ocean as a step to better understanding the extent that current assessments may underestimate prokaryote 
diversity in the global ocean. We do so using an array of novel approaches, including assessments across the 
global ocean coupled with experimental and in silico tests, to establish the scaling of ocean microbial diversity and 
explore its implications for the discovery of microbial diversity.

Results
Prokaryote diversity in the upper and deep ocean.  The distribution of prokaryote OTUs in the upper 
ocean and deep ocean samples of the TARA Oceans5 and Malaspina4 Expeditions conform to broad distributions 
with power-law behavior, P(x) ~ x−1−α, where x represents the abundance measured in number of reads, and is 
characterized (the tail of the distribution) by a scaling exponent α = 1.57 for the upper ocean, and α = 0.89 for 
the deep ocean (Fig. 1), similar to the classic power-law describing the number of species per taxa of Willis and 
Yule (1922)17. A comparison to other broad distributions (lognormal, Weibull) shows that a distribution with a 
power-law tail (either pure power-law or truncated power-law) are most likely to be the best fitting (Table 1). This 
finding implies that the most abundant 1% OTUs account for 40% of the sequences while the least abundant 90% 
of sampled OTUs account for only 10% of the sequences in the upper ocean; while for the deep ocean, the most 
abundant 1% of OTUs account for more than 70% of the sequences while the least abundant 90% of sampled 
OTUs account for only 8% of the sequences.

Theoretical scaling.  Prokaryote diversity and, in general, species diversity can be characterized by magni-
tudes like the Shannon and Simpson indices, which by giving greater weight to the larger, common species, pro-
vide estimators with less uncertainty13 (Supplementary Table 1). However, the presence of rare species impacts the 
estimation of species richness. Species richness scales with sampling effort as a consequence of the power-law tail 
of the distribution of prokaryote abundance. Let us assume that the number of OTUs of abundance x, nx, is given 
by nx = Ax−1−α, where A is a normalizing constant, the scaling exponent α is larger than 0, α > 0, and the abun-
dances are in the range nx ∈ [1, Nmax]. Thus, the total species richness, S, is given by S = ∑x=1,Nmax nx. In the limit of 
large Nmax, the richness can be approximated as ζ α= +S A (1 ), that is, A = S/ζ (1 + α), where ζ (α) is the 
Riemann zeta function. The total number of reads N can be obtained by N = ∑x=1,Nmax x nx. For α >1, we obtain
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Figure 1.  Abundance distribution of prokaryote OTUs in the upper and deep ocean. The rank vs abundance 
distribution for the (A) upper ocean and (B) deep ocean shows broad distributions with power-law tails. The 
abundance-rank distribution, r ~ x−α, where r is the rank of abundance x, has the same functional dependence 
(only the ranks have to be normalized between 0 and 1) as the complementary cumulative distribution CCD, 
CCD(x) = ∑i = x,∞ P(i), where P(i) is the abundance distribution. Thus, if the abundance rank distribution is 
given by r ~ x−α the abundance distribution decays as P(x) ~ x−1−α. (A) For the upper ocean, the abundance 
distribution shows a double power-law decay separated at a characteristic scale of 2,313 reads: for abundances 
x < 2,313, the scaling exponent is 0.37 (blue line); for abundances x > 2,313, the scaling exponent is α = 1.57 
(see Materials and Methods). (B) For the deep ocean, the abundance-rank distribution is characterized by a 
power-law decay, P(x) ~ x−1−α, with an exponent of α = 0.89 (red line).
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Finally, the abundance of the most abundant OTU can be evaluated as the value Nmax at which there is only one 
group with abundance larger or equal than Nmax, that is, in the continuous limit ∫ =

∞ n dx 1
N x

max
. This leads to 

αSNmax (a detailed calculation can be found in ref. 18).
Combining the previous expressions, we obtain the following scaling laws: ∝ αS Nmax and for α < 1

Ν∝ ∝ αS N (3)max
a

while for α > 1

∝ ∝ .S N N (4)max
a

The same scaling laws are obtained in the Yule model19 (which can also be mapped to the Simon model20,21), 
where the scaling exponent α is related to the ratio between speciation rate g and group growth s, α = g/s. Systems 
showing distributions with power-law tails are ubiquitous: several methodologies have been described to fit and 
compare different functional forms as well as mechanisms to explain their origin18,22–24.

Empirical and in silico scaling.  The scaling of species richness and the distribution of species abundances 
are two sides of the same coin. The power-law distribution of prokaryote species abundance implies that species 
richness (S) scales with sampling effort (N, number of samples) as S ~ Nγ, where (i) γ equals the exponent of the 
rank-abundance power-law (i.e., γ = α), when this exponent is α < 1, as observed in the deep ocean (Malaspina 
Oceans Expedition, Fig. 2), and (ii) S is proportional to sampling effort (i.e., γ = 1) for larger exponents α > 1, 
such as observed for the upper ocean (TARA Expedition, Fig. 2). Indeed, the power-law scaling of species rich-
ness with sampling effort implicit in the power-law distribution of the prokaryote species abundance distribution 
(Fig. 1) implies that the asymptote of rarefaction curves is artifactual and that indeed, the number of species 
does not approach any asymptote at the sampling effort this far deployed by global expeditions (Fig. 2). This 
expectation was confirmed by producing an in silico global ocean microbiome with an underlying distribution of 
prokaryote species abundance with the same shape and exponent as those empirically derived for the upper and 
deep ocean (dotted lines in Fig. 2). The in silico data was obtained, first, by expanding the empirically fitted data 
to larger populations and, second, by randomly generating abundance OTUs from the expanded distributions 
(see Materials and Methods). These simulations showed that increasing sampling effort, expressed as the total 
number of 16S reads sequenced, about 30 to 50 times relative to that applied to the upper and deep ocean by the 
TARA Oceans (3.3 × 106 reads, ref. 5) and Malaspina Expedition (1.8 × 106 reads, ref. 4) respectively would lead 
to estimates of prokaryote species abundance 4.2 and 1.2 times greater than inferred on the basis of rarefaction 
curves for the upper and deep ocean respectively (Fig. 2 and Supplementary Fig. 1). The estimators are calculated 
for a global population of 108 reads, which corresponds to 1 liter of upper ocean water (105 prokaryote cells/ml) 
and 10 liters of deep ocean water (104 prokaryote cells/ml) (Supplementary Table 1).

Mesocosm experiment.  We challenged the mathematically-derived predictions, tested and confirmed by 
the in silico experiment, by enclosing a plankton community of the Central Red Sea in duplicate, and sampling 

ΔAIC 
PL

ΔAIC 
TPL

ΔAIC 
LN

ΔAIC 
Weibull α

standard 
error (α) β λ

Upper ocean 0.47 0 0.74 0.77 1.57 0.09 1.34 0.000019

Deep ocean 0.03 0 2.01 15 0.89 0.02 0.73 0.000002

Mesocosm C1 23 0 8.44 5.84 0.52 0.02 0.41 0.000106

Mesocosm C2 0 2 2.01 3.00 0.52 0.31 0.52 0

Mesocosm C3 19 0 13 11 0.53 0.02 0.43 0.000088

Mesocosm C4 26 0 8.36 5.57 0.54 0.02 0.42 0.000119

Mesocosm C5 38 0 13 9.49 0.57 0.02 0.38 0.000178

Mesocosm C6 18 0 13 11 0.52 0.02 0.44 0.000080

Table 1.  Comparing fitting models to the prokaryote abundance distribution. The delta Akaike Information 
Criterion (ΔAIC) indicates the most likely fit (value 0 in bold) and the difference to the most likely fit. For the 
six cases reported, the most likely fit is a distribution with a power-law decay (either pure or truncated). The 
parameters of a power law distribution P(x) ~x −1− α are the scaling exponent α; for the truncated power-law 
P(x) ~ x −1− β exp(−λx), are the scaling exponent β, and the characteristic abundance λ (λ = 0, for a pure power-
law). ΔAIC PL: delta Akaike Information Criterion for power-law distribution fit; ΔAIC TPL: delta Akaike 
Information Criterion for truncated power-law distribution fit; ΔAIC LN: delta Akaike Information Criterion 
for log-normal distribution fit; ΔAIC W: delta Akaike Information Criterion for Weibull distribution fit. The 
standard error of the power-law scaling exponent (α) is also reported. For the upper ocean, the prokaryote 
abundance distribution shows a double power-law regime. A Maximum Likelihood Estimation for a double 
power-law model gives P(x) ~ x −1− δ, with exponent δ = 1.54 for x < 2,313; and P(x) ~x −1− α, with exponent 
α = 0.36 for x ≥ 2313 (see Materials and Methods).
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and sequencing it every day during 20 days25 (c.f. Materials and Methods). The abundance distribution of 
prokaryote OTUs in the sampled Central Red Sea community continued to increase with additional sampling 
effort (Fig. 3), according to a power-law distribution with an average exponent of α = 0.53, comparable to that 
obtained for the deep ocean (α = 0.89) and for the less abundant of the upper ocean (α = 0.36) (Fig. 3D). In line 

Figure 2.  Number of species as a function of the number of reads. The expected number of OTUs in a 
random sampling of the total population grows sublinearly with sampling size, S ~ Nγ. (A) In the upper 
ocean (continuous black line), we can identify a first quasi-linear regime with γ = 0.90 (confidence interval 
95% <0.01) and a second regimen with γ = 0.33 (confidence interval <0.01), while (B) in the deep ocean 
(continuous red line) the exponent γ = 0.62 (confidence interval <0.01). The number of OTUs in the upper 
ocean (horizontal dotted black line) is estimated at 35,650 OTUs5 and in the deep ocean (horizontal dotted red 
line) the maximum number of OTUs found is 3,6954.

Figure 3.  Scaling of the number of OTUs with the number of reads in an experiment. The number of 
prokaryote OTUs as a function of the number of reads is plotted, in a log-log scale, every two days as the 
experiment runs for 20 days in different conditions (A) control (Mesocosm C1 and C2), (B) single dose nitrate 
phosphate addition (NP) (Mesocosm C3 and C4), and (C) single dose nitrate phosphate sulfate addition (NPS) 
(Mesocosm C5 and C6). For all the conditions, we plot two replicates. The number of OTUs, S, scales with the 
number of reads, N, as S ~ Nγ, with γ = 0.44, 0.40 (control), 0.38, 0.40 (NP), 0.48, 0.52 (NPS). The insets show 
the same data in linear scale (same ranges as main plots) where an apparent saturation asymptote is observed. 
(D) Abundance vs rank plot for one of the controls for successive days from bottom to top. The exponent of a 
power-law distribution fit, P(x) ~ x−1−α, for the aggregated data after 20 days (black line) is α = 0.52.
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with the upper and deep ocean cases, a comparative analysis performed for all the samples of the mesocosm 
experiment in three experimental conditions (control, single dose Nitrate-Phosphate addition and single dose 
Nitrate-Phosphate-Silicate addition) shows that a distribution with a power-law decay (either as a pure power-law 
or a truncated power-law) is the most likely fit (Supplementary Tables 2–7). The results confirmed the expectation 
that the number of OTUs retrieved in this community increased, on average, with the power 0.46 of the cumula-
tive number of 16S reads sequenced without a clear asymptotic behavior despite exhaustive sampling (Fig. 3A–C 
and Tables 1 and 2).

Discussion
The results presented show that the abundance of different prokaryotic species in the ocean is described by a 
power-law distribution that implies that the total number of OTUs continues to increase, with a power given 
by that of the rank-abundance power-law, with increasing sampling effort. The dependence of the estimated 
richness on sampling effort is not an exclusive property of a power-law distribution and it has also been reported 
for lognormal distributions both theoretically26 and empirically7,23. We expect that the effort-dependence of the 
species richness applies to distributions with sufficient long tails and thus characterized by the presence of many 
rare species (OTUs). Thus, in the presence of a rare biosphere2, the effort-dependence of richness estimates is 
the expected outcome. Hence, the estimates that the upper and deep ocean contain ca. 37,000 and 3,700 prokar-
yote OTUs4,5, respectively, derived from rarefaction curves is an underestimate (Fig. 2). The estimation of the 
diversity based on sampling effort (both the number of samples collected and the sequencing depth applied to 
each sample) still represents a challenge and requires broad extrapolations. We have addressed the estimation 
of prokaryote diversity with the parsimonious assumption that the sampled distribution represents the popula-
tion distribution, furthermore supported by the relatively conserved shape of this abundance distributions when 
sampling is replicated as in our mesocosm experiment (see Supplementary Tables 2–7). Thus, we have explored 
the estimation of prokaryote diversity derived from fitting different underlying distributions to the upper and 
deep ocean, and the mesocosm experiment. Future research increasing sampling effort, both for individual com-
munities and locations across the ocean, are likely to yield OTU counts much higher than these estimates. The 
power-law distribution of species richness is not a new observation in ecology27–31 but is rooted in the seminal 
work of Willis and Yules showing a power-law distribution of species membership within taxa17. Indeed, a recent 
estimate of oceanic prokaryote species richness derived by extrapolating across more than 20 orders of magni-
tude the relationship between species numbers and number of cells sampled to match the 1029 prokaryote cells 
estimated in the global ocean, led to an estimate of 1010 different OTUs for this ecosystem7. Whereas the estimate 
derived from such wild extrapolation rests on a number of assumptions and does not necessarily reflect the shape 
of species abundance distribution of oceanic prokaryotes, it supports our empirical, mathematical, modeling and 
experimental results that indicate that the number of prokaryote OTUs in the ocean is far larger than currently 
estimated. A much-enhanced sampling effort is, therefore, required to unveil the prokaryote diversity concealed 
within the rare biosphere. Enhanced sampling efforts should be deployed both to retrieve the least abundant 
components of anyone community and also to benefit from the dynamics of microbial populations, which can 
bring otherwise rare components of the microbial biosphere to a level of abundance where they may be retrieved 
in sequencing projects (e.g., ref. 32). Efforts to achieve an inventory of prokaryotic OTUs in the ocean will require 
a far more exhaustive sampling than deployed to date combined with sound extrapolation approaches rooted in 
the observed abundance distributions of prokaryotic OTUs.

Materials and Methods
Data and experimental design.  We have analyzed three datasets. The three empirical datasets are: from 
the TARA expedition we collected the abundance of 18,022 OTUs from the surface water and deep chlorophyll 
maximum layers in 63 and 46 sites, respectively, containing 3,323,839 reads5 (available at http://ocean-microbi-
ome.embl.de/companion.html). From the Malaspina expedition, we collected the abundance of 3,695 free-living 
and particle-attached OTUs from 30 globally distributed sites in the bathypelagic ocean4 (available at https://
github.com/GuillemSalazar/MolEcol_2015). The experimental data reported the OTU abundance every day for 
a period of 20 days in three experimental conditions: (a) control (referred as Mesocosm C1 and C2), (b) single 
dose Nitrate-Phosphate addition (referred as C3 and C4), and (c) single dose Nitrate-Phosphate-Silicate addi-
tion (referred as C5 and C6) (Nitrate = 2 µM, Phosphate = 0.12 µM, Silicate = 3.75 µM)25. Samples range from an 
average of 11,126 ± 5,400 (SD) reads leading to 337 ± 100 (SD) OTUs the first day to an aggregated number of 

Scaling 
exponent γ

Confidence 
Interval (95%)

Days of 
observation

Mesocosm C1 0.44 0.026 14

Mesocosm C2 0.70 0.089 18

Mesocosm C3 0.44 0.039 19

Mesocosm C4 0.29 0.043 17

Mesocosm C5 0.36 0.062 19

Mesocosm C6 0.54 0.076 20

Table 2.  Scaling exponents and confidence interval for the mesocosm experiment. For each condition and for 
each replica of the mesocosm experiment, the number of prokaryote species is fitted with the number of reads 
S ~ Nγ, with a least square method and the confidence intervals are calculated according to the number of days 
of observations in each condition.
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212,761 ± 22,000 (SD) reads and 1,331 ± 56 (SD) OTUs after completion of the experiment. Raw reads, which 
the OTUs counts were based on, have been deposited in the NCBI Sequence Read Archive under the accession 
number SRP051855.

Statistical analysis.  Abundance distribution.  The model fittings of the power-law distributions, the 
truncated power-law distributions, lognormal distributions, and the stretched exponential distributions ware 
obtained with the Maximum Likelihood Estimation applied to the empirical data33. For the upper ocean, we have 
fitted also a double power-law distribution.

In silico prokaryote diversity: upper ocean.  We proposed a distribution with two power-law regimes, with 
the parameter values (scaling exponents and transition point) obtained as described below: P(x) = Ax−1−δ, 
for abundances x ≤ xc, and P(x) = Bx−1−α, for x > xc. The condition that the distribution is continuous at xc 
(P(xc) = Axc

−1−δ = Bxc
−1−α) and the normalization (ΣP(x) = 1), lead to the values A = δ + (δ – α) xc

−α, and B = Axc 
(δ –α). We assigned to the exponents α and δ, and to the transition point xc the values obtained from the Maximum 
Likelihood α = 1.54, δ = 0.36, and xc = 2,313.

In silico prokaryote diversity: deep ocean.  We proposed a shifted power-law to capture the power-law tail and the 
deviation at the head of the distribution: P(x) = α ((x + x0)/(1 + x0))−1− α. The parameters α and x0 can be obtained 
by the Maximum Likelihood Estimation: α = NOTU Σlog ((x0 + xi)/(1 + x0)), and (x0 + 1) Σ1/(1 + xi) = NOTU α /
(1 − α). To solve these implicit equations, we proposed x0 and α, evaluate the previous expressions, and obtained 
new values x0′ and α′. We repeated these steps until we reached the condition |x0′ − x0| < T, for some convergence 
value T. For T = 10−6, the values we obtained are α = 0.89, and x0 = 20.34.

Akaike Information Criterion (AIC).  The Akaike Information Criterion is defined as AIC = −2log L + 2 V, 
where L is the maximum likelihood of a fit model, and V is the number of free parameters. The delta Akaike 
Information Criterion is calculated as ΔAIC = AIC-AICmin, where AICmin corresponds to the minimum value of 
all the candidate models, and AIC the value of the candidate model. The weight AIC

=
Δ

∑ Δ

−

=
−

( )
( )

w AIC
exp

exp
( )

AIC

AIC
i

i

K
M

k

1
2

1
1

2

can be interpreted as the probability that the model is the best model (in the AIC sense, that it minimizes the 
Kullback–Leibler discrepancy), given the data and the set

of candidate models (e.g., Burnham & Anderson, 2001).

Extrapolation of abundance distributions for larger number of samples.  For the upper Ocean, the abundance 
distribution is fitted to a double power-law defined as P(x) = Ax−1−δ for x < xc and P(x) = Bx−1−α for xc < x. A 
continuity condition (Axc

−1−δ = Bxc
−1−α) and the normalization condition (1 = ∫1

∞P(x)dx) gives the values for 
the constants A and B as A = αδ(α + (δ − α)xc

−δ)−1 and B = A xc
α−δ. In order to fit this distribution, we have to 

obtain estimates for the two exponents δ and α and for the cutoff xc. We use first the maximum likelihood method 
implemented in ref. 30 which fits the exponent for the tail α and the value of the cutoff xc. Then we adjust the value 
of the exponent for the range [1, xc] by using the same method, only fixing the minimum value to 1 and disre-
garding any data over the cutoff value xc. In order to extract the behavior of the parameters for an increasingly 
large ecosystem, we used increasingly randomly aggregated samples from the TARA Oceans Expedition (139 
samples in total). The average parameters for aggregations of samples of similar total number of reads are shown 
in the left column of Supplementary Fig. 2 in black and the error bars reflect their standard deviation. Next, in 
order to extrapolate these parameters to larger number of reads we fitted the estimated parameters to some simple 
curves (shown in red in Supplementary Fig. 2). The results were xc = 0.0002 · Nreads

1.1 + 52.6, δ = 0.32 (1 + 0.71 
exp(−Nreads/570007)) and α = 1.42 (1 − 0.2 exp(−Nreads/110185)). Note that the values of the scaling exponent 
of the tail of the distribution α are in agreement with recently reported estimates34. For the in-vitro generation of 
larger samples we extrapolated the parameter values to the value corresponding to the desired number of reads 
and generated random numbers from the corresponding distribution up to the desired number of reads, using the 
method of the inversion of the cumulative distribution.

For the deep Ocean, the abundance distribution is fitted to a shifted power-law P(x) = A(x + x0)−1−α with 
a maximum possible value for the abundance xmax. The value of A is given by the normalization condition 
(1 = ∫1

XmaxP(x)dx) and is A = α((1 + x0)−α − (xmax + x0)−α)−1. In this case, we need to estimate again three param-
eters to fit the distribution. In order to estimate the parameters, we first fitted the exponent α and the shifting 
parameter x0 by solving iteratively the equations from maximum likelihood:
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where S stands for the number of data points. With those estimated parameters we estimated the max-
imum abundance xmax through the average abundance <x> found in the data by solving the implicit 
equation <x> = ∫1

XmaxxP(x)dx:

=
−

+ − +
+ − +

−
− −

− −x a
a

x x x
x x x

x
1

( ) (1 )
(1 ) ( )

max
a a

a
max

a
0

1
0

1

0 0
0

The parameters are shown in the right column of Supplementary Fig. 2 and again in black are average esti-
mates with standard deviations shown with error bars, and in red the simple fitted curves used for the extrapola-
tion. In this case the simple curves fitted were x0 = 0.000003 Nreads

1.1 – 1, α = 0.88 (1 − 0.45 exp(−Nreads/363263)) 
and <x> = 0.00042 Nreads

0.97 + 23.6.
The estimation for a larger number of reads was performed as for the upper ocean but using the proper shifted 

power-law distribution as given by the extrapolated parameters.

Data availability
The TARA expedition dataset is available at http://ocean-microbiome.embl.de/companion.html; the Malaspina 
expedition dataset is available at https://github.com/GuillemSalazar/MolEcol_2015; and the experimental data 
have been deposited in the NCBI Sequence Read Archive under the accession number SRP051855.
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